首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Cheese whey powder (CWP) solution with different CWP or sugar concentrations was fermented to ethanol in a continuous fermenter using pure culture of Kluyveromyces marxianus (DSMZ 7239). Sugar concentration of the feed CWP solution varied between 55 and 200 g l−1 while the hydraulic residence time (HRT) was kept constant at 54 h. Ethanol formation, sugar utilization and biomass formation were investigated as functions of the feed sugar concentration. Percent sugar utilization and biomass concentrations decreased and the effluent sugar concentration increased with increasing feed sugar concentrations especially for the feed sugar contents above 100 g l−1. Ethanol concentration and productivity (DP) increased with increasing feed sugar up to 100 g l−1 and then decreased with further increases in the feed sugar content. The highest ethanol concentration (3.7%, v v−1) and productivity (0.54 gE l−1 h−1) were obtained with the feed sugar content of 100 g l−1 or 125 g l−1. The ethanol yield coefficient (YP/S) was also maximum (0.49 gE gS−1) when the feed sugar was between 100 and 125 g l−1. The growth yield coefficient (YX/S) decreased steadily from 0.123 to 0.063 gX gS−1 when the feed sugar increased from 55 to 200 g l−1 due to adverse effects of high sugar contents on yeast growth. The optimal feed sugar concentration maximizing the ethanol productivity and sugar utilization was between 100 and 125 g l−1 under the specified experimental conditions.  相似文献   

2.
The effect of changing dilution rate (D) on Bacillus sp. CCMI 1051 at dilution rates between 0.1 and 0.55 h−1 in a glucose-limited medium was studied. Biomass values varied between 0.88 and 1.1 g L−1 at D values of 0.15–0.35 h−1. Maximal biomass productivity was found to be 0.39 g L−1 h−1, obtained at D = 0.35 h−1 and corresponding to a 54.4% conversion of the carbon into cell mass. The highest rate of glucose consumption was 4.45 mmol g−1 h−1 occurring at D = 0.4 h−1. The glucose concentration inside the chemostat was below the detection level starting to accumulate around 0.4 h−1. Growth inhibition of fifteen strains of fungi by the broth of the steady-state cell-free supernatants was assessed. Results showed that the relative inhibition differ among the target species but was not influenced by the dilution rate changing.  相似文献   

3.
Acidithiobacillus ferrooxidans was immobilized in poly(vinyl alcohol) (PVA) by a PVA–boric acid method, and spherical beads of uniform size were produced. Biooxidation of ferrous iron by immobilized cells was investigated in repeated batch culture and continuous operation in a laboratory scale packed-bed bioreactor. During repeated batch culture, the cell-immobilized gels were stable and showed high constant iron-oxidizing activity. In continuous operation in a packed-bed bioreactor, biooxidation of ferrous iron fits a plug-flow reaction model well. A maximum Fe2+ oxidation rate of 1.89 g l−1 h−1 was achieved at the dilution rate of 0.38 h−1 or higher, while no obvious precipitate was detected in the bioreactor.  相似文献   

4.
The therapeutic enzyme asparaginase, which is used for the treatment of acute lymphoblastic leukaemia, is industrially produced by the bacteria Escherichia coli or Erwinia crysanthemi. In spite of its effectiveness as a therapeutic agent, the drug causes severe immunological reactions. As asparaginase is also produced by the yeast Saccharomyces cerevisiae, this microorganism could be considered for the production of the enzyme, providing an alternative antitumoral agent. In this study the ASP3 gene, that codes for the periplasmic, nitrogen regulated, asparaginase II from S. cerevisiae, was cloned and expressed in the methylotrophic yeast Pichia pastoris, under the control of the AOX1 gene promoter. Similarly to S. cerevisiae the heterologous enzyme was addressed to the P. pastoris cell periplasmic space. Enzyme yield per dry cell mass reached 800 U g−1, which was seven fold higher than that obtained using a nitrogen de-repressed ure2 dal80 S. cerevisiae strain. High cell density cultures performed with P. pastoris harbouring the ASP3 gene using a 2 l instrumented bioreactor, where biomass concentration reached 107 g l−1, resulted in a dramatic increase in volumetric yield (85,600 U l−1) and global volumetric productivity (1083 U l−1 h−1).  相似文献   

5.
When cultivated in Murashige & Skoog medium supplemented with 0.2 mg l−1 2,4-dichlorophenoxy acetic acid and 0.5 mg l−1 6-benzyladenine, Perilla frutescens cells in suspension culture grew rapidly reaching about 13.6 g dry wt l−1 after 12 days. The cell line produced both anthocyanin 0.9 g l−1 and triterpenoids: 16 mg l−1 oleanolic acid (OA), 25 mg l−1 ursolic acid (UA) and 14 mg l−1 tormentic acid (TA). When P. frutescens cells of 7-day-old cultures were exposed to a yeast elicitor at 0.5–5% (v/v) for 7 days, it was found that anthocyanin content peaked at 10.2% of dry weight with yeast elicitor at 1% (v/v) whereas the maximum production of oleanolic acid and ursolic acid in cultures treated with 2% (v/v) yeast elicitor was 19 and 27 mg l−1, a 46 and 24% increase over the control, respectively. This is the first report of simultaneous production of both anthocyanin and triterpenoids in a single culture system.  相似文献   

6.
7.
Bacillus macerans cyclodextrin glycosyltransferase (CGTase) fused with 10 lysine residues at its C-terminus (CGTK10ase) was immobilized onto a cation exchanger by ionic interaction and used to produce -cyclodextrin (CD) from soluble starch. Poly-lysine fused immobilization increased the Vm of the immobilized CGTase by 40% without a change in Km. The activation energies of thermal deactivation (Ea) were 41.4, 28.1, and 25.9 kcal mol−1, respectively, for soluble wild-type (WT) CGTase, soluble CGTK10ase, and immobilized CGTK10ase, suggesting destabilization of CGTase by poly-lysine fusion and immobilization onto a cation exchanger. Maximum -CD productivity of 539.4 g l−1 h−1 was obtained with 2% soluble starch solution which was constantly fed at a flow rate of 4.0 ml min−1 (D = 240 h−1) in a continuous operation mode of a packed-bed reactor. The operational half-life of the packed-bed enzyme reactor was estimated 12 days at 25 °C and pH 6.0.  相似文献   

8.
Kinetic models are proposed for the batch production of succinic acid from glucose by Mannheimia succiniciproducens MBEL55E. The models include terms accounting for both substrate and product inhibitions. Experimental data collected from a series of batch fermentations with different initial glucose concentrations were used to estimate parameters and also to validate the models proposed. The optimal values of the parameters were approximated by minimizing the discrepancy between the model predictions and corresponding experimental data. The growth of M. succiniciproducens could be expressed by a modified Monod model incorporating inhibitions of glucose and organic acids accumulated in the culture broth. The Luedeking–Piret model was able to describe the formation of organic acids as the fermentation proceeded, in which succinic, acetic, and formic acids followed a mixed-growth-associated pattern. However, unexpectedly, lactic acid fermentation by M. succiniciproducens was nearly nongrowth-associated. In all cases, the model simulation matched well with the experimental observations, which made it possible to elucidate the fermentation characteristics of M. succiniciproducens during efficient succinic acid production from glucose. These models thus can be employed for the development and optimization of biobased succinic acid production processes.  相似文献   

9.
The present study is related to treatment of textile wastewater in microaerophilic–aerobic hybrid reactor. The study showed the effectiveness of biological treatment of wastewater involving appropriate microorganism and suitable reactors. COD and color were reduced to 82–94%, and 99% respectively for textile wastewater. The reactor was operated at highest loading of 16.4 g COD g l−1 d−1 and obtained 80% COD and 72% color removal. Biokinetic models were applied to data obtained from experimental studies in continuously operated hybrid reactor. Treatment efficiencies of the reactor were investigated at different hydraulic retention times (2.3–9.1 d) and organic loading rates (2.6–16.4 g COD l−1 d−1). Second-order and a Stover–Kincannon models were best fitted to the hybrid column reactor. The second-order substrate removal rate constant (k2(S)) was found as 41.44 d−1 for hybrid reactor. Applying the modified Stover–Kincannon model to the hybrid reactor, the maximum removal rate constant (Umax) and saturation value constant (KB) were found to be 212 g l−1 d−1 and 22.89 g l−1 d−1, respectively.  相似文献   

10.
A Bacillus subtilis strain isolated from a hot-spring was shown to produce xylanolytic enzymes. Their associative/synergistic effect was studied using a culture medium with oat spelts xylan as xylanase inducer. Optimal xylanase production of about 12 U ml−1 was achieved at pH 6.0 and 50°C, within 18 h fermentation. At 50°C, xylanase productivity obtained after 11 h in shake-flasks, 96,000 U l−1 h−1, and in reactor, 104,000 U l−1 h−1 was similar. Increasing temperature to 55°C a higher productivity was obtained in the batch reactor 45,000 U l−1 h−1, compared to shake-flask fermentations, 12,000 U l−1 h−1. Optimal xylanolytic activity was reached at 60°C on phosphate buffer, at pH 6.0. The xylanase is thermostable, presenting full stability at 60°C during 3 h. Further increase in the temperature caused a correspondent decrease in the residual activity. At 90°C, 20% relative activity remains after 14 min. Under optimised fermentation conditions, no cellulolytic activity was detected on the extract. Protein disulphide reducing agents, such as DTT, enhanced xylanolytic activity about 2.5-fold. When is used xylan as substrate, xylanase production decreased as function of time in contrast, with trehalose as carbon source, xylanase production in maintained constant for at least 80 h fermentation.  相似文献   

11.
The production of hGM-CSF was investigated in both a flask and a 5-l bioreactor, using transgenic Nicotiana tabacum suspension cells. While the maximum cell density and secreted hGM-CSF in the flask were 15.4 g l−1 and 6.5 μg l−1, respectively, those in the bioreactor were 15.6 g l−1 and 7.6 μg l−1. No detectable growth inhibition, shorter production of hGM-CSF and reduced cell viability in the batch bioreactor were observed under the specific conditions used compared with the flask culture. To improve the productivity, a perfusion culture was carried out in the bioreactor, with three different perfusion rates (0.5, 1.0 and 2.0 day−1). In all cases, the hGM-CSF in the medium was significantly increased during the overall culture period (16 days), with maximum values 3.0-, 9.4- and 6.0-fold higher than those obtained in the batch cultures, respectively, even though the intracellular hGM-CSF content was not significantly varied by the perfusion rate. In terms of the total amount of hGM-CSF secreted, 205.5, 1073.2 and 1246.3 μg accumulated in the perfusate within 16 days at the perfusion rates of 0.5, 1.0 and 2.0 day−1, respectively. It was concluded that the beneficial effect of perfusion on the production of hGM-CSF originated from the reduced proteolytic degradation due to the lower protease activity caused by the perfusion. Additionally, the cell growth and physiology in the perfusion culture were somewhat negatively affected by the increased perfusion rate, although the dry cell density steadily increased, and as a result, 19.4, 22.4 and 22.9 g l−1 of maximum cells were obtained with perfusion rates of 0.5, 1.0 and 2.0 day−1, respectively. This work highlighted the importance of proteolytic degradation in plant cell cultures for the production of secretory proteins and the feasibility of perfusion strategies for the continuous production of foreign proteins by the prevention of protein loss due to proteolytic enzymes.  相似文献   

12.
A combined bioreactor system, composed of a stirred tank and a three-stage tubular bioreactor in series and with a total working volume of 3260 ml, was established. Continuous ethanol production was carried out using Saccharomyces cerevisiae and a very high gravity (VHG) medium containing 280 g l−1 glucose. An average ethanol concentration of 124.6 g l−1 or 15.8% (v) was produced when the bioreactor system was operated at a dilution rate of 0.012 h−1. The yield of ethanol to glucose consumed was calculated to be 0.484 or 94.7% of its theoretical value of 0.511 when ethanol entrapped in the exhaust gas was incorporated. Meanwhile, quasi-steady states and non-steady oscillations were observed for residual glucose, ethanol and biomass concentrations for all of these bioreactors during their operations. Models that can be used to predict yeast cell lysis and viability loss were developed.  相似文献   

13.
Because of its novel bioactive properties the production of gymnodimine for use as a pharmaceutical precursor has aroused interest. The dinoflagellate, Karenia selliformis produces gymnodimine when grown in bulk culture using GP + selenium medium but the growth rates (μ) and levels of gymnodimine are low (μ, 0.05 days−1; gymnodimine 250 μg L−1 max). We describe the effects of organic acid additions (acetate, glycolate, alanine and glutamate additions and combinations of these) in enhancing growth and gymnodimine production in axenic cultures. The most effective organic acid combinations in decreasing order were: glycolate/alanine > acetate > glycolate. Glycolate/alanine optimised gymnodimine production by prolonging growth (maximum cell yield, 1.76 × 105 cells mL−1; gymnodimine, 1260 μg L−1; growth rate (μ), 0.2 days−1) compared to the control (growth maximum cell yield, 7.8 × 104 cells mL−1; gymnodimine, 780 μg L−1; μ, 0.17 days−1). Acetate enhanced gymnodimine by stimulating growth rate (μ, 0.23 days−1) and the large concentration of gymnodimine per cell (16 pg cell−1 cf. 9.8 pg cell−1 for the control) suggests a role for this compound in gymnodimine biosynthesis. Amending culture media with Mn2+ additions resulted in slightly decreased growth in control cultures and increased the gymnodimine while in glycolate/alanine cultures growth was stimulated but gymnodimine production decreased. The results suggest that the organic acid can enhance gymnodimine production by either enhancing growth maximum or the biosynthetic pathway.  相似文献   

14.
The effect of dilution rate on the production of lactic acid from whey permeate by Lactobacillus helveticus has been investigated. In the first chemostat of a two-stage system, total conversion (98.1%) and maximum lactic acid concentration (43.7 g l−1) were obtained at a dilution rate (DItot) of 0.06 h−1. Maximum volumetric productivities of lactic acid (8.27 g l−1 h−1) and biomass (1.90 g l−1 h−1) occurred at DItot of 0.40 h−1. The fraction of -lactate in the product was found to increase with dilution rate and reached a maximum of 66% at the same dilution rate. The maximum specific growth ratemax) on this medium was 0.7 h−1. A YATP (max) value of 22.4 g dry weight (mol ATP)−1 and a maintenance coefficient of 8.0 mmol ATP (g dry weight h)−1 were determined. The second stage, in series with the first, confirmed these results and further showed that the total residence time could be reduced by 50%, compared with a single chemostat for the same nearly complete level of substrate conversion.  相似文献   

15.
The bioconversion of propionitrile to propionamide was catalysed by nitrile hydratase (NHase) using resting cells of Microbacterium imperiale CBS 498-74 (formerly, Brevibacterium imperiale). This microorganism, cultivated in a shake flask, at 28 °C, presented a specific NHase activity of 34.4 U mgDCW−1 (dry cell weight). The kinetic parameters, Km and Vmax, tested in 50 mM sodium phosphate buffer, pH 7.0, in the propionitrile bioconversion was evaluated in batch reactor at 10 °C and resulted 21.6 mM and 11.04 μmol min−1 mgDCW−1, respectively. The measured apparent activation energy, 25.54 kJ mol−1, indicated a partial control by mass transport, more likely through the cell wall.

UF-membrane reactors were used for kinetic characterisation of the NHase catalysed reaction. The time dependence of enzyme deactivation on reaction temperature (from 5 to 25 °C), on substrate concentrations (from 100 to 800 mM), and on resting cell loading (from 1.5 to 200 μg  ml−1) indicated: lower diffusional control (Ea=37.73 kJ mol−1); and NHase irreversible damage caused by high substrate concentration. Finally, it is noteworthy that in an integral reactor continuously operating for 30 h, at 10 °C, 100% conversion of propionitrile (200 mM) was attained using 200 μg  ml−1 of resting cells, with a maximum volumetric productivity of 0.5 g l−1 h−1.  相似文献   


16.
Dry biomass of Spirulina platensis re-hydrated for 48 h was employed as a biosorbent in tests of cadmium(II) removal from water. Various concentrations of biomass (from 1 to 4 g l−1) and metal (from 100 to 800 mg l−1) were tested. Low biomass levels (Xo  2 g l−1) ensured metal removal up to 98% only at Cd0= 100 and 200 mg l−1, while Xo  2.0 g l−1 were needed at Cd0 = 400 mg l−1 to achieve satisfactory results. Whereas Xo = 4.0 g l−1 was effective to remove up to Cd0 = 500 mg l−1, a further increase in metal concentration (Cd0 = 600 and 800 mg l−1) led to progressive worsening of the system performance. At a given biomass levels, the kinetics of the process was better at low Cd2+ concentrations, while, raising the adsorbent level from 1.0 to 2.0 g l−1 and then to 4.0 g l−1, the rate constant of biosorption increased by about one order of magnitude in both cases and the adsorption capacity of the system progressively decreased from 357 to 149 mg g−1.  相似文献   

17.
The fungus Mortierella alpina LPM 301, a producer of arachidonic acid (ARA), was found to possess a unique property of a growth-coupled lipid synthesis. An increase in specific growth rate (μ) from 0.03 to 0.05 h−1 resulted in a two-fold increase in the specific rate of lipid synthesis (milligram lipid (gram per lipid-free biomass) per hour). Under batch cultivation in glucose-containing media with urea or potassium nitrate as nitrogen sources, the ARA content was 46.0 and 60.4% of lipid; 16.4 and 18.8% of dry biomass; and 4.2 and 4.5 g l−1, respectively. Under continuous cultivation of the strain, the productivity of ARA synthesis was 16.2 and 19.2 mg l−1 h−1 at μ=0.05 and 0.03 h−1, respectively.  相似文献   

18.
A group of 34 chromium-resistant bacteria were isolated from naturally occurring chromium percolated serpentine soil of Andaman (India). These isolates displayed different degrees of chromate reduction under aerobic conditions. One of the 34 isolates identified as Bacillus sphaericus was tolerant to 800 mg l−1 Cr(VI) and reduced >80% Cr(VI) during growth. In Vogel Bonner broth, B. sphaericus cells (1010 cells ml−1) reduced 62% of 20 mg l−1 of Cr(VI) in 48 h with concomitant discoloring of yellow medium to white one. Reduction of chromate was pronounced by the addition of glucose and yeast extract as electron donors. In the presence of 4.0 g l−1 of glucose, 20 mg l−1 of Cr(VI) was reduced to 2.45 mg l−1 after 96 h of incubation. Optimum pH and temperature for reduction were 6.0 and 25 °C, respectively. Increase in cell density and initial Cr(VI) concentration increased chromate reduction but was inhibited by metal ions like, Ni2+, Co2+, Cd2+ and Pb2+. Experiments with cell-free extracts indicated that the soluble fraction of the cell was responsible for aerobic reduction of Cr(VI) by this organism.  相似文献   

19.
A bacterial flavin-containing monooxygenase (FMO) gene was cloned from Methylophaga aminisulfidivorans MPT, and a plasmid pBlue 2.0 was constructed to express the bacterial fmo gene in E. coli. To increase the production of bio-indigo, upstream sequence size of fmo gene was optimized and response surface methodology was used. The pBlue 1.7 plasmid (1686 bp) was prepared by the deletion of upstream sequence of pBlue 2.0. The recombinant E. coli harboring the pBlue 1.7 plasmid produced 662 mg l−1 of bio-indigo in tryptophan medium after 24 h of cultivation in flask. The production of bio-indigo was optimized using a response surface methodology with a 2n central composite design. The optimal combination of media constituents for the maximum production of bio-indigo was determined as tryptophan 2.4 g l−1, yeast extract 4.5 g l−1 and sodium chloride 11.4 g l−1. In addition, the optimum culture temperature and pH were 30 °C and pH 7.0, respectively. Under the optimized conditions mentioned above, the recombinant E. coli harboring pBlue 1.7 plasmid produced 920 mg of bio-indigo per liter in optimum tryptophan medium after 24 h of cultivation in fermentor. The combination of truncated insert sizes and culture optimization resulted in a 575% increase in the production of bio-indigo.  相似文献   

20.
Yue Jiang  Feng Chen   《Process Biochemistry》2000,35(10):1205-1209
The effects of medium glucose concentration and pH on growth and docosahexaenoic acid (DHA, C22:6 ω-3) content of Crypthecodinium cohnii were investigated. Over a range of glucose concentrations (5–40 g l−1) investigated, the highest specific growth rate (0.12 h−1), highest cell dry weight concentration (3.13 g l−1) and highest growth yield on glucose (0.6 g g−1) were obtained at 20 g l−1 glucose. However, the highest degree of fatty acid unsaturation (3.2) and highest DHA proportion (53.4% of total fatty acids) were achieved at 5 g l−1 glucose. Low glucose concentrations enhanced the degree of fatty acid unsaturation and DHA formation. Medium pH also affected cell growth, fatty acid unsaturation and DHA proportion. When medium pH was 7.2, the highest specific growth rate (0.089 h−1), highest cell dry weight concentration (2.73 g l−1), highest growth yield on glucose (0.564 g g−1), highest degree of fatty acid unsaturation (3.4) and highest DHA proportion (56.8% of total fatty acids) were obtained. Results suggest that glucose concentration and pH value could be effectively manipulated to achieve maximum DHA production by C. cohnii.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号