首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The Gambia River of West Africa is a large unobstructed river, characterized by a natural flow regime and lateral connectivity across its floodplain. Construction of a major dam, however, is planned. We compared patterns of fish diversity, habitat use, assemblage structure, and the distribution of trophic position and body morphology in riverine and floodplain habitats in Niokolo Koba National Park, located downstream of the planned dam site. A total of 49 fish species were captured, revealing a lognormal distribution as expected for species‐rich assemblages. Fish species exhibited a range of habitat use patterns, from generalist to highly habitat‐specific, and appeared to migrate laterally among habitats between seasons. Species richness was homogenous among habitats in the wet season yet appeared to increase with isolation from the main river in the dry season. Fish assemblage structure was best explained by the interaction between habitat type and season, underlining the importance of the natural flow regime and lateral connectivity among floodplain habitats. The abundance of fishes having elongate bodies increased with isolation from the main channel in the wet season only. The distribution of fishes having compressed cross‐sectional morphology decreased with isolation from the main channel in the dry season only. These patterns of trait distribution support the conclusion that variation in hydrologic connectivity structures the fish assemblage. Our results suggest that altered flow regimes and loss of floodplain habitats after damming could lead to both decreased taxonomic and functional diversity of the fish assemblage.  相似文献   

2.
The relationship between food web dynamics and hydrological connectivity in rivers should be strongly influenced by annual flood pulses that affect primary production dynamics and movement of organic matter and consumer taxa. We sampled basal production sources and fishes from connected lagoons and the main channel of a low-gradient, floodplain river within the Orinoco River Basin in Venezuela. Stable isotope analysis was used to model the contribution of four basal production sources to fishes, and to examine patterns of mean trophic position during the falling-water period of the annual flood cycle. IsoSource, a multi-source mixing model, indicated that proportional contributions from production sources to fish assemblages were similar in lagoons and the main channel. Although distributions differed, the means for trophic positions of fish assemblages as well as individual species were similar between the two habitats. These findings contradict recent food web studies conducted in temperate floodplain rivers that described significant differences in trophic positions of fishes from slackwater and floodplain versus main channel habitats. Low between-habitat trophic variation in this tropical river probably results from an extended annual flood pulse (ca. 5 mo.) that allows mixing of sestonic and allochthonous basal production sources and extensive lateral movements of fishes throughout the riverscape.  相似文献   

3.
The ontogenetic patterns of habitat use by a community of fishes in the main channel of the Broken River, an Australian lowland river, was investigated. Stratified sampling was conducted fortnightly across six habitat types throughout the spring‐summer period within the main channel. As predicted by the 'low flow recruitment hypothesis', backwaters and still littoral habitats were important nursery habitats for most species. These habitats were found to be used by some species throughout all stages of their life cycle, while other species showed clear ontogenetic shifts in habitat preference. Only one species, Murray cod Maccullochella peelii peelii , was never found in backwaters. This study confirms the significance of main channel habitats in the rearing of larvae of some riverine fish species, and emphasizes the importance of considering the habitat requirements of all stages of a fish's life cycle in the management and restoration of rivers and streams.  相似文献   

4.
5.
In order to assess ecological values of Lower Rhine and Meuse floodplain habitats we studied the spatial and seasonal variation in diversity, species assemblages and feeding traits of caddisfly larvae in water bodies over the lateral connectivity gradient: eupotamon: main and secondary channels; parapotamon: channels connected permanently with the main channel only at their downstream ends; plesiopotamon: disconnected channels close to the main channel; paleopotamon: abandoned meanders at a greater distance from the main channel.Spatial variety was studied by analyzing the summer species composition in 70 Lower Rhine and Meuse water bodies which were categorized in connectivity habitats, whereas seasonal variety was studied in Lower Rhine water bodies along a connectivity gradient by monthly sampling over a whole year. Physico-chemical data and environmental parameters were recorded for each water body during sampling. Diversity and species assemblages of caddisfly larvae varied in relation to connectivity, macrophyte diversity and abundance and stream velocity. A comparison with historical records and species lists from less disturbed rivers showed that diversity in the main channel was very low.Caddisfly larvae species assemblages varied over the connectivity gradient. Lotic habitats (eupotamon) were separated from the lentic ones, and the well vegetated paleopotamon from the sparsely vegetated parapotamon and pleisopotamon habitats, indicating the overall importance of vegetation and current velocity for the species assemblages. Hydropsychidae have been found in the eupotamon exclusively, whereas Limnephilidae, Hydroptilidae and Polycentropodidae have been found predominantly in the paleopotamon water bodies. Leptoceridae were found in all floodplain water body categories. A similar pattern of distribution of families along the lateral connectivity gradient was found in more natural rivers.Caddisfly larvae species feeding traits showed a clear differentiation over the lateral connectivity gradient with filter-feeders and scrapers most important in the eupotamon and parapotamon, and shredders, piercers and predators most dominant in the paleopotamon habitats, indicating the importance of nutritional resources in relation to hydrological connectivity for the structure and functioning of caddisfly larvae species assemblages. The analysis of the species feeding traits allows generalizations towards the entire aquatic community and general prognoses for other floodplain ecosystems.  相似文献   

6.
A study on seasonal and spatial variations of feeding habits and trophic guilds of dominant fish species in Pattani Bay during March 2003 to February 2004 was aimed at classifying diet composition, identifying dominant food components of each species, categorizing trophic guilds of the community and evaluating effects of habitat characteristics and seasonality on guild organization. Most fishes showed high food intake, fed on a diverse range of food items but relied heavily on calanoid copepods and shrimps. All species, with the exception of Epinephelus coioides, were classified as specialist feeders. Four main dietary guilds were classified. Three of these were classified as the guilds dominated by at least two major food items. Significant variations in trophic guilds of 28 fish species based on habitat types and seasons were also identified. They could be divided into three seasonal groups and three site-groups and a single site. Trophic organization for each season and habitat ranged from two to four groups. This information identifies groups of fishes that seasonally and spatially utilize different food resources within a semi-enclosed estuarine bay ecosystem.  相似文献   

7.
Snags are important to fish communities in small rivers and streams, but their importance to fishes in large rivers has not been investigated. This study examined snag use by fishes during autumn in backwater and channel border habitats in the upper Mississippi River, and compared these to fish communities in reference sites without snags. Species assemblages differed significantly between backwater and channel border habitats, and between snag and reference sites within the channel border, likely responding to differences in substrate, depth, and current velocity. In both habitats, average fish biomass and abundance were higher (2 to 50 ×) at snag sites than at reference sites, but these differences were significant only for channel border biomass. Fish taxa richness differed between backwater and channel border habitats, but not between snag and reference sites. Most large piscivorous fishes (e.g., Micropterus spp., Stizostedion spp.), several insectivorous fishes (Lepomis macrochirus, Ambloplites rupestris, Minytrema melanops), and a few prey fishes (L. macrochirus, Notropis atherinoides) were significantly more abundant at snag sites than at reference sites, suggesting active selection of snags for foraging or protection. Snag quality, as assessed by a snag rating index, had a direct effect on attracting fish communities with greater biomass, especially within the channel border habitat. These results indicate that snags are important habitat for fish communities in both backwaters and channel border habitats of the upper Mississippi River.  相似文献   

8.
In order to assess the impact of seasonality versus connectivity on the ecological quality of the Lower Rhine river-floodplain habitats, we studied the seasonal variation in diversity and species assemblages of caddis larvae by monthly sampling of the littoral zone of four water bodies over a lateral connectivity gradient. Seasonal variation in diversity showed a general pattern in these floodplain habitats and could be related to caddisfly life history and habitat preferences. Despite this seasonal variation, caddis larvae species assemblages in the water bodies appeared to be rather stable and could be firmly related to the position of their habitats over the connectivity gradient. The main channel (lotic habitat) was clearly separated from the lentic water bodies, and also the sparsely vegetated water bodies from the well-vegetated water bodies. It is concluded that the impact of connectivity, and related parameters such as stream velocity and vegetation coverage, outweighed the impact of season on the caddis larvae assemblages.  相似文献   

9.
1. Studies of mesic temperate and tropical rivers suggest an important role for floodplain habitats as nursery areas for larval and juvenile fishes. In arid‐land rivers the extent and duration of flooding is diminished and habitats and resources used by larval fishes are poorly known. Our study documented habitat and resource use of larval fishes in the Rio Grande, New Mexico, an arid‐land river. 2. Spatial and temporal distribution of larval and juvenile fishes and their inferred microhabitat preferences were studied during spring, summer and autumn, 2003. Stable carbon (13C : 12C) and nitrogen (15N : 14N) isotope ratios were measured to identify nutrient sources and characterise trophic positions of young‐of‐year fishes in this system. 3. Some fishes recruited during high flows (in spring), whereas others recruited during low‐flow periods in late summer. Regardless of the timing of reproduction, microhabitats with lower current velocity and higher temperature appeared to serve as vital nursery grounds for Rio Grande fishes. Ephemeral backwaters and disconnected side channels held the highest abundance and diversity of larvae and juveniles. 4. Stable isotope analyses revealed that fish larvae obtained carbon predominately from algal production in early summer, but used organic carbon derived from emergent macrophytes as river discharge decreased in mid‐summer. This shift may have been facilitated by microinvertebrate prey that grazed down edible algae and then switched to macrophytes in mid‐summer. Nitrogen isotope ratios did not differ among species or early life stages, suggesting that larval and juvenile fishes use similar food resources, especially when restricted to isolated pools in summer.  相似文献   

10.
Synopsis Spatial patterns of resource use by small-bodied fishes in the San Juan River were examined using stable isotopes. Using δ15N of fishes as an index of trophic position, our data suggest both native and non-native fishes primarily consumed macro-invertebrates. The δ13C of these fishes further suggested a detritus-based food web, from which most species fed on chironomids in low-velocity habitats. A two-way ANOVA revealed a significant interaction between trophic level of fish species and longitudinal position in the river. This interaction was primarily attributed to a decline in trophic level of non-native red shiner Cyprinella lutrensis, relative to other species, in upstream reaches of the river. In addition, ANCOVA results suggest trophic position of fishes was dependent on channel type (primary vs. secondary), as there was less variability in resource use in secondary channels. These data provided a spatial framework of trophic interactions that can be used to predict the outcome of management actions. Overall, we confirmed high overlap in resource used between native and non-native fishes. However, spatial variation in trophic interactions both longitudinally and laterally in the river present a challenge to resource managers attempting to managing entire river systems.  相似文献   

11.
Shallow water habitat (SWH) is important for riverine fish and their invertebrate prey, yet the availability of SWH has declined in many systems due to human impacts. We evaluated the potential ecological benefits of restoring SWH by comparing zooplankton and phytoplankton from created backwaters (a floodplain feature connected to the river on the downstream end but disconnected at the upstream end) and chutes (a side channel of the river that diverts flow from the main channel through the chute and back into the main channel) on the lower Missouri River. We tested the hypothesis that backwaters support higher abundances of zooplankton and phytoplankton than chutes using data that were collected during the summer of 2010. As predicted, backwaters had more diverse cladoceran communities and greater abundances of rotifers, copepod nauplii, adult copepods, and cladocerans than chutes. Total algal biovolume was the same in chutes and backwaters; however, phytoplankton taxa richness was higher in backwaters, and there was a greater biovolume of green algae (Chlorophyta), Crypotophyta, cyanobacteria, and Euglenophyta in backwaters than in chutes. Differences in zooplankton and phytoplankton between backwaters and chutes appeared to be related to slower current velocities, longer retention times, and lower levels of turbidity and total suspended solids in backwaters. While chutes have the potential to provide greater habitat diversity than the mainstem, there were no differences in water quality or phytoplankton abundance, community structure, or diversity between these two habitats. Combined, our results suggest that created backwaters initially provide a greater potential food resource for native fishes. However, additional research is needed to determine whether chutes can also develop beneficial shallow water features over a longer period of time.  相似文献   

12.
Habitat homogenization is one of the most important drivers of change in riverine fauna. Therefore, the aim of this study was to determine whether habitat homogenization influences the trophic structure of fish assemblages in tropical streams. We sampled 78 streams located in pasture and crop lands to examine habitat variables and fish. Principal coordinates analysis, canonical analysis of principal coordinates, and a distance-based test for homogeneity of multivariate dispersions revealed two groups of streams, designated homogeneous and heterogeneous, based on the habitat variables. We determined trophic guilds according to the frequency and biovolume of food items. Seven guilds were identified: aquatic insectivores, terrestrial insectivores, detritivores, herbivores, omnivores, algivores, and detritivores–algivores. Homogeneous streams showed higher abundance and biomass of aquatic insectivores, detritivores, and algivores. Heterogeneous streams showed greater diversity of trophic guilds and higher abundance and biomass of terrestrial insectivores and herbivores than homogeneous streams. Our results demonstrate that trophic structure is influenced by habitat condition. Additionally, the riparian canopy and nearshore vegetation have a modulating role in the trophic structure of stream fishes due to their influence on resource supply and promotion of the physical heterogeneity of the channel.  相似文献   

13.
Patterns of fish species richness in the Seine River basin,France   总被引:2,自引:2,他引:0  
Variation in fish assemblage structure was examined in different rivers of the Seine Basin. Factor analysis was used to identify similarities among samples and species, and to show ichtyological changes along an upstream-downstream gradient. Fish species richness was correlated with catchment area, distance from the source and number of individuals. Relationships between species richness and number of individuals in a sample were largely an artifact of sampling.Species richness increased with river size, reached a maximum in midsize rivers, then decreased in large rivers. This species richness pattern was consistent with the model of the River Continuum Concept. However, possible causes could include greater pollution effects in large rivers. Distribution of feeding guilds was related to river size. Species richness and proportion of omnivores and piscivores increased with river size, whereas species richness and proportion of invertivores declined downstream. These patterns suggest that trophic diversity of fish assemblages may be related to food availability.  相似文献   

14.
The diets and trophic guilds of small fishes were examined along marine sandy beaches and in estuaries at depths <1·5 m in western Taiwan, Republic of China. Copepods were the most frequently identified item in fish guts, indicating they are key prey for the fish assemblages studied. Piscivore, crustacivore, detritivore, omnivore, zooplanktivore and terrestrial invertivore trophic guilds were identified. The zooplanktivore guild contained the most fish species. Maximum prey size consumption was positively correlated with standard length (LS) in seven species and at the assemblage level and negatively correlated with LS in a single detritivorous species. The diet data and trophic guild scheme produced by this study contribute to an understanding of coastal marine food webs and can inform ecosystem‐based fisheries management.  相似文献   

15.
Samples of larval and juvenile fishes were collected at two depths weekly during spring and summer 1983 near the mouths of backwater areas in Pool 13 of the Upper Mississippi River. The study was conducted to determine the relative value of these habitats as nursery areas for fishes present and to note any interactions that might occur between the backwaters which are being rapidly lost to siltation, and the main channel. The larvae and juveniles collected represented 13 families divided into 27 lower taxa. Cyprinidae, Clupeidae, and Sciaenidae made up 90% of the total catch. Both larvae and juveniles were more abundant near the surface than near the bottom. Densities differed greatly among the three backwater areas studied. Larval fishes were grouped on the basis of their relative abundance in the backwaters or main channel. Overall, more larvae were captured in the backwaters than in main-channel habitats, indicating that backwaters were more productive. In the main channel, densities were greater downstream from the mouths of the backwaters than upstream-possibly indicating that (1) larval fish drifted out of the backwater areas, (2) water rich in nutrients or zooplankton that flowed into the main channel created productive downstream sites that were used as nursery areas, or (3) adult fishes selected downstream sites as spawning areas. Juvenile forms were more abundant in the backwater areas then in the main-channel habitats, some bottom-dwelling fishes excepted. The backwater areas were judged to be important nursery areas for larval and juvenile fishes, and seemed to benefit downstream main-channel sites. Any loss of these habitats would be detrimental to the Mississippi River as a whole.  相似文献   

16.
Shovelnose sturgeon Scaphirhynchus platorynchus are a large‐river fish distributed throughout the Mississippi River basin, including the lower 1,533 km of the Mississippi River where riverine habitat has been and continues to be modified for navigation and is a potential site for development of instream hydrokinetic electric power generation. Information about habitat use and preference is essential to future conservation efforts. Shovelnose sturgeon have previously been found to select particular habitat types, and these selected habitats vary seasonally; although these past analyses do not consider the selected habitats in a landscape context. We used ecological niche factor analysis (ENFA) that uses distributions of telemetry locations and environmental variables to model habitat suitability in a landscape context. We recorded 333 locations of shovelnose sturgeon during July–December 2013 that included periods of relatively high and low river stages. The ENFA analysis indicated high‐suitability locations were in or near deep water during both high and low river stages. During high river stages, high‐suitability locations were near island tip habitat, deep water, and steep bottom slope and far from main channel habitat. During low stages, high‐suitability locations were in or near deep water and main channel habitat and far from secondary channel and wing dike habitats. This landscape‐scale analysis supports seasonal shifts in habitat use and provides insights that can be used to inform habitat conservation and management to benefit shovelnose sturgeon in the lower Mississippi River and possibly other large rivers.  相似文献   

17.
  1. Characterising food-web responses to environmental factors could greatly improve our understanding of environment-biota relationships, and especially in floodplains where trophic interactions can be particularly important during phases of hydrological disconnection. The effects of floodplain hydrology and environmental attributes on structural aspects of biotic assemblages have been extensively studied, but responses at the functional level remain largely unknown.
  2. Here, we characterised a central aspect of food-web architecture, the food chain length, as the maximum trophic position within 24 macroinvertebrate communities of parafluvial habitats in the Maggia river floodplain, in Switzerland. We investigated how the food chain length changed with different levels of habitat size, primary productivity and disturbance, the three factors potentially affecting food chain length in both theoretical and empirical studies.
  3. We found that food chain length was lower in frequently flooded habitats and immediately after a flood. We also showed that trophic omnivory, where predators fed at lower trophic levels after flooding, and in more frequently flooded habitats, may explain these changes.
  4. These findings show that trophic omnivory may explain how predators resist disturbance and are maintained in highly dynamic landscapes. More importantly, given that trophic omnivory may overall weaken trophic linkages and thus increase food-web stability, this suggests that it could be a key mechanism in sustaining biodiversity in river floodplains.
  相似文献   

18.
Invasive silver carp (Hypothalmichthys molitrix) occurs throughout much of the Mississippi River and threatens the Laurentian Great Lakes. To quantify habitat selection relative to river flow and potential phytoplankton food, 77 adult silver carp were implanted with ultrasonic transmitters during spring 2008 through spring 2009 in adjacent upstream dammed and downstream undammed reaches (48 km total) of the Mississippi River. Sixty-seven percent of the fish were located. Selection of major river habitat features (dammed vs. undammed, backwaters, channel border, wing dikes, island side channels, and the main channel) was quantified. Flow rates and chlorophyll a concentration were compared between silver carp locations and random sites. Foregut chlorophyll a concentrations plus presence of macrozooplankton and detritus of 240 non-tagged silver carp were quantified. About 30% of silver carp moved upstream into the dammed reach, where average flow was slower and chlorophyll a concentration was higher. Silver carp selected wing dike areas of moderate flow (about 0.3 m/s) and elevated chlorophyll a (about 7 μg/L) relative to random sites. No silver carp occurred in areas where flow was absent. Wing dikes were preferred while the main channel was avoided. Chlorophyll a concentrations in guts were positively related to temperature and were unrelated to flow or river chlorophyll a concentration. Macrozooplankton and detritus were rare in guts. Silver carp seek areas of low flow and successfully forage across a range of temperatures, flows, and chlorophyll a concentrations that occur in rivers and large lakes.  相似文献   

19.
Published species lists were analysed to determine the contributions of dispersal, habitat preference, river channel size, body size, and glacial history to large‐scale patterns in freshwater fish species richness in North America, north of central Mexico. Total species richness declines to the north and west but the pattern for endemics differs from that of widespread species. Mississippi Basin regions are more species rich than more isolated, coastal, regions. Richness declines more rapidly with increasing latitude in riverine specialist than in habitat generalist species. Levels of endemism are greatest in species found in small‐ to medium‐sized river channels. The strong Rapoport effect, more marked in migratory than resident species, is correlated with habitat preference, channel size, and glacial history. Body size increases with latitude, largely as a result of a trend from small resident to large migrant species. In unglaciated regions, ancestral species survived in large habitats because these are longer‐lived, more extensive, less isolated and more stable than headwaters, permitting larger populations and lower extinction levels. Reduced levels of gene flow in small, peripheral, channels isolated by larger downstream habitats have resulted in the production of many, small range, small‐bodied species. The latitudinal richness gradient is a consequence of speciation and extinction events in unglaciated faunas and an increasing domination of faunas by generalist, large bodied, large channel, recolonizing species in more northern regions. © 2010 The Linnean Society of London, Biological Journal of the Linnean Society, 2010, 100 , 46–61.  相似文献   

20.
To evaluate the influence of main channel–floodplain connectivity on fish assemblage diversity in floodplains associated with streams and small rivers, fish assemblages and habitat characteristics were surveyed at 24 stream reaches in the Champlain Valley of Vermont, U.S.A. Fish assemblages differed markedly between the main channel and the floodplain. Fish assemblage diversity was greatest at reaches that exhibited high floodplain connectivity. Whereas certain species inhabited only main channels or floodplains, others utilized both main channel and floodplain habitats. Both floodplain fish α-diversity and γ-diversity of the entire stream corridor were positively correlated with connectivity between the main channel and its floodplain. Consistent with these results, species turnover (as measured by β-diversity) was negatively correlated with floodplain connectivity. Floodplains with waterbodies characterized by a wide range of water depths and turbidity levels exhibited high fish diversity. The results suggest that by separating rivers from their floodplains, incision and subsequent channel widening will have detrimental effects on multiple aspects of fish assemblage diversity across the stream–floodplain ecosystem.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号