首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The 16S ribosomal RNA neighborhood of ribosomal protein S20 has been mapped, in both 30S subunits and 70S ribosomes, using directed hydroxyl radical probing. Cysteine residues were introduced at amino acid positions 14, 23, 49, and 57 of S20, and used for tethering 1-(p-bromoacetamidobenzyl)-Fe(II)-EDTA. In vitro reconstitution using Fe(II)-derivatized S20, together with the remaining small subunit ribosomal proteins and 16S ribosomal RNA (rRNA), yielded functional 30S subunits. Both 30S subunits and 70S ribosomes containing Fe(II)-S20 were purified and hydroxyl radicals were generated from the tethered Fe(II). Hydroxyl radical cleavage of the 16S rRNA backbone was monitored by primer extension. Different cleavage patterns in 16S rRNA were observed from Fe(II) tethered to each of the four positions, and these patterns were not significantly different in 30S and 70S ribosomes. Cleavage sites were mapped to positions 160-200, 320, and 340-350 in the 5' domain, and to positions 1427-1430 and 1439-1458 in the distal end of the penultimate stem of 16S rRNA, placing these regions near each other in three dimensions. These results are consistent with previous footprinting data that localized S20 near these 16S rRNA elements, providing evidence that S20, like S17, is located near the bottom of the 30S subunit.  相似文献   

2.
3.
The topography of 5.8 rRNA in rat liver ribosomes has been examined by comparing diethyl pyrocarbonate-reactive sites in free 5.8 S RNA, the 5.8 S-28 rRNA complex, 60 S subunits, and whole ribosomes. The ribosomal components were treated with diethyl pyrocarbonate under salt and temperature conditions which allow cell-free protein synthesis; the 5.8 S rRNA was extracted, labeled in vitro, chemically cleaved with aniline, and the fragments were analyzed by rapid gel-sequencing techniques. Differences in the cleavage patterns of free and 28 S or ribosome-associated 5.8 S rRNA suggest that conformational changes occur when this molecule is assembled into ribosomes. In whole ribosomes, the reactive sites were largely restricted to the "AU-rich" stem and an increased reactivity at some of the nucleotides suggested that a major change occurs in this region when the RNA interacts with ribosomal proteins. The reactivity was generally much less restricted in 60 S subunits but increased reactivity in some residues was also observed. The results further indicate that in rat ribosomes, the two -G-A-A-C- sequences, putative binding sites for tRNA, are accessible in 60 S subunits but not in whole ribosomes and suggest that part of the molecule may be located in the ribosomal interface. When compared to 5 S rRNA, the free 5.8 S RNA molecule appears to be generally more reactive with diethyl pyrocarbonate and the cleavage patterns suggest that the 5 S RNA molecule is completely restricted or buried in whole ribosomes.  相似文献   

4.
5.
6.
70S ribosomes and 30S and 50S ribosomal subunits from Escherichia coli were modified under non-denaturing conditions with the chemical reagent dimethylsulfate. The ribosomal 23S and 16S RNAs were isolated after the reaction and the last 200 nucleotides from the 3' ends were analyzed for differences in the chemical modification. A number of accessibility changes could be detected for 23S and 16S RNA when 70S ribosomes as opposed to the isolated subunits were modified. In addition to a number of sites which were protected from modification several guanosines showed enhanced reactivities, indicating conformational changes in the ribosomal RNA structures when 30S and 50S subunits associate to a 70S particle. Most of the accessibility changes can be localized in double-helical regions within the secondary structures of the two RNAs. The results confirm the importance of the ribosomal RNAs for ribosomal functions and help to define the RNA domains which constitute the subunit interface of E. coli ribosomes.  相似文献   

7.
Rapid and accurate assembly of the ribosomal subunits, which are responsible for protein synthesis, is required to sustain cell growth. Our best understanding of the interaction of 30S ribosomal subunit components (16S ribosomal RNA [rRNA] and 20 ribosomal proteins [r-proteins]) comes from in vitro work using Escherichia coli ribosomal components. However, detailed information regarding the essential elements involved in the assembly of 30S subunits still remains elusive. Here, we defined a set of rRNA nucleotides that are critical for the assembly of the small ribosomal subunit in E. coli. Using an RNA modification interference approach, we identified 54 nucleotides in 16S rRNA whose modification prevents the formation of a functional small ribosomal subunit. The majority of these nucleotides are located in the head and interdomain junction of the 30S subunit, suggesting that these regions are critical for small subunit assembly. In vivo analysis of specific identified sites, using engineered mutations in 16S rRNA, revealed defective protein synthesis capability, aberrant polysome profiles, and abnormal 16S rRNA processing, indicating the importance of these residues in vivo. These studies reveal that specific segments of 16S rRNA are more critical for small subunit assembly than others, and suggest a hierarchy of importance.  相似文献   

8.
We have introduced the intervening sequence (IVS) from 23S rRNA of the rrnD operon of Salmonella typhimurium into the equivalent position of Escherichia coli 23S rRNA. Salmonella typhimurium 23S rRNA is fragmented due to the RNase III-dependent removal of the approximately 100 nt stem-loop structure that comprises the IVS. In this study, we have found that insertion of the S. typhimurium IVS into E. coli 23S rRNA causes fragmentation of the RNA but does not affect ribosome function. Cells expressing the fragmented 23S rRNA exhibited wild-type growth rates. Fragmented RNA was found in the actively translating polysome pool and did not alter the sedimentation profile of ribosomal subunits, 70S ribosomes or polysomes. Finally, hybrid 23S rRNA carrying the A2058G mutation conferred high level erythromycin resistance indistinguishable from that of intact 23S rRNA carrying this mutation. These observations indicate that the presence of this IVS and its removal are phenotypically silent. As observed in an RNase III-deficient strain, processing of the IVS was not required for the production of functional ribosomes.  相似文献   

9.
10.
Modification of 30 S ribosomal subunits with kethoxal causes loss of their ability to associate with 50 S subunits under tight couple conditions. To identify those 16 S RNA sequences important for the association. 32P-labeled 30 S subunits were partially inactivated by reaction with kethoxal. The remaining association-competent 30 S subunits were selected from the modified population by their ability to form 70 S ribosomes. Comparison of kethoxal diagonal maps of the association-competent subunits with those of the total population of modified subunits reveals nine sites in 16 S RNA whose modification leads to loss of association activity. Eight of these sites were previously found to be protected from kethoxal attack and one was shown to have enhanced reactivity in 70 S ribosomes (Chapman &; Noller, 1977). As before, these sites are not distributed thoughout the molecule, but are found to be clustered in two regions, at the middle and at the 3′ terminus of the 16 S RNA chain.We interpret these findings in terms of a simple preliminary model for the functional organization of 16 S RNA, supported by the observations of other investigators, in which we divide the molecule into four domains. (1) Residues 1 to 600 are involved mainly in structural organization and assembly. (2) Residues 600 to 850 include sites which make contact with the 50 S subunit and are essential for subunit association. (3) Sites from the domain comprising residues 850 to 1350 line a pocket at the interface between the two ribosomal subunits. and contribute to the binding site(s) for transfer RNA. (4) Residues 1350 to 1541 also contain sequences which bind the 50 S subunit, but some sites in this domain alternatively participate in the initiation of protein synthesis.  相似文献   

11.
Ribosomal protein S15 binds specifically to the central domain of 16 S ribosomal RNA (16 S rRNA) and directs the assembly of four additional proteins to this domain. The central domain of 16 S rRNA along with these five proteins form the platform of the 30 S subunit. Previously, directed hydroxyl radical probing from Fe(II)-S15 in small ribonucleoprotein complexes was used to study assembly of the central domain of 16 S rRNA. Here, this same approach was used to understand the 16 S rRNA environment of Fe(II)-S15 in 30 S subunits and to determine the ribosomal proteins that are involved in forming the mature S15-16 S rRNA environment. We have identified additional sites of Fe(II)-S15-directed cleavage in 30S subunits compared to the binary complex of Fe(II)-S15/16 S rRNA. Along with novel targets in the central domain, sites within the 5' and 3' minor domains are also cleaved. This suggests that during the course of 30S subunit assembly these elements are positioned in the vicinity of S15. Besides the previously determined role for S8, roles for S5, S6+S18, and S16 in altering the 16 S rRNA environment of S15 were established. These studies reveal that ribosomal proteins can alter the assembly of regions of the 30 S subunit from a considerable distance and influence the overall conformation of this ribonucleoprotein particle.  相似文献   

12.
During protein synthesis the ribosome interacts with ligands such as mRNA, tRNA and translation factors. We have studied the effect of ribosome-ligand interaction on the accessibility of 18S rRNA for single strand-specific modification in ribosomal complexes that have been assembled in vivo, i. e. native polysomes. A comparison of the modification patterns derived from programmed and non-programmed ribosomes showed that bases in the 630- and 1060-loops (530- and 790-loops in E. coli) together with two nucleotides in helices 33 and 34 were protected from chemical modification. The majority of the protected sites were homologous to sites previously suggested to be involved in mRNA and/or tRNA binding in prokaryotes and eukaryotes, implying that the interaction sites for these ligands are similar, if not identical, in naturally occurring programmed ribosomes and in in vitro assembled ribosomal complexes. Additional differences between programmed and non-programmed ribosomes were found in hairpin 8. The bases in helix 8 showed increased exposure to chemical modification in the programmed ribosomes. In addition, structural differences in helices 36 and 37 were observed between native 80S run-off ribosomes and 80S ribosomes assembled from isolated 40S and 60S subunits.  相似文献   

13.
We have constructed synthetic coding sequences for the expression of poly(alpha,L-glutamic acid) (PLGA) as fusion proteins with dihydrofolate reductase (DHFR) in Escherichia coli. These PLGA coding sequences use both GAA and GAG codons for glutamic acid and contain sequence elements (5'-GAGGAGG-3') that resemble the consensus Shine-Dalgarno (SD) sequence found at translation initiation sites in bacterial mRNAs. An unusual feature of DHFR-PLGA expression is that accumulation of the protein is inversely related to the level of induction of its mRNA. Cellular protein synthesis was inhibited >95% by induction of constructs for either translatable or untranslatable PLGA RNAs. Induction of PLGA RNA resulted in the depletion of free 30S ribosomal subunits and the appearance of new complexes in the polyribosome region of the gradient. Unlike normal polyribosomes, these complexes were resistant to breakdown in the presence of puromycin. The novel complexes contained 16S rRNA, 23S rRNA, and PLGA RNA. We conclude that multiple noninitiator SD-like sequences in the PLGA RNA inhibit cellular protein synthesis by sequestering 30S small ribosomal subunits and 70S ribosomes in nonfunctional complexes on the PLGA mRNA.  相似文献   

14.
A photoreactive analogue of spermine, N1-azidobenzamidino (ABA)-spermine, was covalently attached after irradiation to Escherichia coli 30S ribosomal subunits or naked 16S rRNA. By means of RNase H digestion and primer extension, the cross-linking sites of ABA-spermine in naked 16S rRNA were characterised and compared with those identified in 30S subunits. The 5′ domain, the internal and terminal loops of helix H24, as well as the upper part of helix H44 in naked 16S rRNA, were found to be preferable binding sites for polyamines. Association of 16S rRNA with ribosomal proteins facilitated its interaction with photoprobe, except for 530 stem–loop nt, whose modification by ABA-spermine was abolished. Association of 30S with 50S subunits, poly(U) and AcPhe-tRNA (complex C) further altered the susceptibility of ABA-spermine cross-linking to 16S rRNA. Complex C, modified in its 30S subunit by ABA-spermine, reacted with puromycin similarly to non-photolabelled complex. On the contrary, poly(U)-programmed 70S ribosomes reconstituted from photolabelled 30S subunits and untreated 50S subunits bound AcPhe-tRNA more efficiently than untreated ribosomes, but were less able to recognise and reject near cognate aminoacyl-tRNA. The above can be interpreted in terms of conformational changes in 16S rRNA, induced by the incorporation of ABA-spermine.  相似文献   

15.
A set of Escherichia coli 16S rRNA having unique breaks were prepared using the method of oligodeoxyribonucleotide-directed fragmentation with RNAse H. 16S RNA remained compact or dissociated to separate fragments, depending on the cleavage site location in the RNA structure. 16S rRNAs which have been split at different sites or their isolated fragments were used for a reconstitution of the 30S ribosomal subunits. These reconstituted 30S subunits carrying unique breaks at positions 301, 772, 1047 have the same sedimentation coefficients and electron microscopy images as the native subunit. They were active in the poly(U)-directed cell-free system of synthesis of polyphenylalanine.  相似文献   

16.
Directed hydroxyl radical probing was used to probe the rRNA neighborhood around protein S13 in the 30S ribosomal subunit. The unique cysteine at position 84 of S13 served as a tethering site for attachment of Fe(II)-1-(p-bromoacetamidobenzyl)-EDTA. Derivatized S13 (Fe-C84-S13) was then assembled into 30S ribosomal subunits by in vitro reconstitution with 16S rRNA and a mixture of the remaining 30S subunit proteins. Hydroxyl radicals generated from the tethered Fe(II) resulted in cleavage of the RNA backbone in two localized regions of the 3' major domain of 16S rRNA. One region spans nt 1308-1333 and is close to a site previously crosslinked to S13. A second set of cleavages is found in the 950/1230 helix. Both regions have been implicated in binding of S13 by previous chemical footprinting studies using base-specific chemical probes and solution-based hydroxyl radical probing. These results place both regions of 16S rRNA in proximity to position C84 of S13 in the three-dimensional structure of the 30S ribosomal subunit.  相似文献   

17.
Nuclease S1 mapping of 16S ribosomal RNA in ribosomes   总被引:1,自引:0,他引:1  
Escherichia coli 16S rRNA and 16S-like rRNAs from other species have several universally conserved sequences which are believed to be single-stranded in ribosomes. The quantitative disposition of these sequences within ribosomes is not known. Here we describe experiments designed to explore the availability of universal 16S rRNA sequences for hybridization with DNA probes in 30S particles and 70S ribosomes. Unlike previous investigations, quantitative data on the accessibility of DNA probes to the conserved portions of 16S rRNA within ribosomes was acquired. Uniquely, the experimental design also permitted investigation of cooperative interactions involving portions of conserved 16S rRNA. The basic strategy employed ribosomes, 30S subunits, and 16S rRNAs, which were quantitatively analyzed for hybridization efficiency with synthetic DNA in combination with nuclease S1. In deproteinated E. coli 16S rRNA and 30S subunits, the regions 520-530, 1396-1404, 1493-1504, and 1533-1542 are all single-stranded and unrestricted for hybridization to short synthetic DNAs. However, the quantitative disposition of the sequences in 70S ribosomes varies with each position. In 30S subunits there appear to be no cooperative interactions between the 16S rRNA universal sequences investigated.  相似文献   

18.
Polyamine binding to 23S rRNA was investigated, using a photoaffinity labeling approach. This was based on the covalent binding of a photoreactive analog of spermine, N1-azidobenzamidino (ABA)-spermine, to Escherichia coli ribosomes or naked 23S rRNA under mild irradiation conditions. The cross-linking sites of ABA-spermine in 23S rRNA were determined by RNase H digestion and primer-extension analysis. Domains I, II, IV and V in naked 23S rRNA were identified as discrete regions of preferred cross-linking. When 50S ribosomal subunits were targeted, the interaction of the photoprobe with the above 23S rRNA domains was elevated, except for helix H38 in domain II whose susceptibility to cross-linking was greatly reduced. In addition, cross-linking sites were identified in domains III and VI. Association of 30S with 50S subunits, poly(U), tRNAPhe and AcPhe-tRNA to form a post-translocation complex further altered the cross-linking, in particular to helices H11–H13, H21, H63, H80, H84, H90 and H97. Poly(U)-programmed 70S ribosomes, reconstituted from photolabeled 50S subunits and untreated 30S subunits, bound AcPhe-tRNA in a similar fashion to native ribosomes. However, they exhibited higher reactivity toward puromycin and enhanced tRNA-translocation efficiency. These results suggest an essential role for polyamines in the structural and functional integrity of the large ribosomal subunit.  相似文献   

19.
Under appropriate conditions, functional Escherichia coli 30S ribosomal subunits assemble in vitro from purified components. However, at low temperatures, assembly stalls, producing an intermediate (RI) that sediments at 21S and is composed of 16S ribosomal RNA (rRNA) and a subset of ribosomal proteins (r-proteins). Incubation of RI at elevated temperatures produces a particle, RI*, of similar composition but different sedimentation coefficient (26S). Once formed, RI* rapidly associates with the remaining r-proteins to produce mature 30S subunits. To understand the nature of this transition from RI to RI*, changes in the reactivity of 16S rRNA between these two states were monitored by chemical modification and primer extension analysis. Evaluation of this data using structural and biochemical information reveals that many changes are r-protein-dependent and some are clustered in functional regions, suggesting that this transition is an important step in functional 30S subunit formation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号