首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The hallmark of T cell responses to staphylococcal enterotoxins (SE) and other super-Ag is a selective stimulation of cells expressing particular TCR-V beta segments. Our previous studies suggested that the disulfide loop in SE is critical for their interaction with the TCR. To investigate this concept in further detail we constructed disulfide loop mutants of staphylococcal enterotoxin A (SEA), and examined these altered toxins for mitogenicity, class II MHC binding, and V beta specificity. We found that substitutions of either Cys-96 or Cys-106 decreased mitogenicity by 100-fold without significantly affecting class II binding or resistance of the molecule to proteolysis. Several mutants lost the capacity to stimulate V beta 11+ cells, except a Cys-106----Gln mutant for which V beta 11-stimulatory activity was increased. By contrast, mutants containing Cys----Ala substitutions acquired the capacity to stimulate V beta 6+ cells. Despite these effects of V beta specificity, all mutants retained the predominant preference of SEA for V beta 3+ cells. Neither exchange of regions flanking the loop in SEA with corresponding residues in SEB, nor conversion of the entire loop region of SEA to that of SEE, were associated with transfers of V beta specificity. Our results suggest that the disulfide loop in SEA contributes to toxin avidity for the TCR, rather than specificity for particular V beta.  相似文献   

2.
Staphylococcal toxins bind to different sites on HLA-DR   总被引:5,自引:0,他引:5  
Staphylococcal enterotoxins (SE) and toxic shock syndrome toxin 1 (TSST-1) bind to MHC class II molecules and the toxin-class II complexes induce proliferation of T cells bearing specific V beta sequences. We have previously reported that these toxins display varying binding affinities for HLA-DR1. We now investigated whether these differences simply reflected differences in binding affinity for a single class II binding site or, at least in part, the engagement of different binding sites on the HLA-DR complex. Through competitive binding studies we show that SEB and TSST-1, which are not closely related by their amino acid sequences, bind to two different sites on HLA-DR. Both of these sites are also occupied by staphylococcal enterotoxin A (SEA), enterotoxin D (SED), and enterotoxin E (SEE) which exhibit more than 70% amino acid sequence homology. SEB and TSST-1 failed to inhibit SEA binding to HLA-DR. These studies suggest that there may be three distinct, although perhaps overlapping, binding sites on HLA-DR for these toxins. Further, although SED and SEE are similar to SEA in structure, and appear to bind the same sites on HLA-DR as SEA, they displayed significantly lower binding affinities. T cell proliferative responses to SED required a higher concentration of the toxin than SEA, probably reflecting its lower binding affinity. SEE, however, elicited T cell responses at very low concentrations, similar to SEA, despite its much lower binding affinity. Therefore, although the affinities of these toxins to MHC class II molecules appear to significantly influence the T cell responses, the effective recognition of the toxin-class II complex by the TCR may also contribute to such responses.  相似文献   

3.
T cell reactivity toward self MHC class II molecules has been recognized in syngeneic MLR in a number of studies, where the T cells are believed to recognize the combination of self/nonself peptide and self MHC molecule. We investigated the stimulation of T cell proliferation by synthetic peptides of sequences corresponding to the first polymorphic amino terminal domain of alpha- and beta-chains of self I-A molecules. Both unprimed and primed T cells responded to a number of peptides of alpha 1 and beta 1 domains of self I-Ad molecules. The response was dependent on the presentation of I-Ad peptides by syngeneic APC and was blocked by anti-class II MHC mAb. Upon further investigation it was observed that I-Ad peptides could inhibit the stimulation of Ag-specific MHC class II-restricted T cell hybridoma due to self presentation of peptides rather than to direct binding of free peptides to the TCR, further supporting their affinity/interaction with intact self MHC class II molecules. The peptide I-A beta d 62-78 showed high affinity toward intact self MHC II molecule as determined by the inhibition of Ag-specific T cell stimulation and yet was nonstimulatory for syngeneic T cells, therefore representing an MHC determinant that may have induced self tolerance. Thus we have shown that strong T cell proliferative responses can be generated in normal mice against the peptides derived from self MHC class II molecules and these cells are part of the normal T cell repertoire. Therefore complete tolerance toward potentially powerful immunodominant but cryptic determinants of self Ag may not be necessary to prevent autoimmune diseases.  相似文献   

4.
Staphylococcal enterotoxin microbial superantigens   总被引:21,自引:0,他引:21  
Staphylococcal enterotoxins are a family of structurally related proteins that are produced by Staphylococcus aureus. In addition to their role in the pathogenicity of food poisoning, these microbial superantigens have profound effects on the immune system, which makes them useful tools for understanding its mechanism of action. These molecules (24-30 kDa) are highly hydrophilic and exhibit low alpha helix and high beta pleated sheet content, suggesting a flexible, accessible structure. Staphylococcal enterotoxins are among the most potent activators of T lymphocytes known. The receptors for staphylococcal enterotoxins on antigen-presenting cells are major histocompatibility complex (MHC) class II molecules. Further, the alpha-helical regions of the class II molecule are essential for function and appear to interact directly with the NH2-terminal region of staphylococcal enterotoxins such as SEA. Recent studies have shown that a complex of staphylococcal enterotoxin and MHC class II molecules is required for binding to the V beta region of the T cell antigen receptor. Staphylococcal enterotoxin mitogenic activity is dependent on induction of interleukin 2, which may be intimately involved in the mechanism of toxicity. The mouse minor lymphocyte stimulating (M1s) "endogenous" self-superantigen has been shown to be a retroviral gene product, so this too is apparently a microbial superantigen. An understanding of the mechanisms of action of these microbial superantigens has implications for normal and pathological immune functions.  相似文献   

5.
The enterotoxins produced by Staphylococcus aureus are the most potent mitogens known. They belong to a group of distantly related mitogenic toxins that differ in other biologic activities. In this study we have compared the molecular mechanisms by which these mitogens activate human T lymphocytes. We used the staphylococcal enterotoxins A to E, the staphylococcal toxic shock syndrome toxin, the streptococcal erythrogenic toxins A and C (scarlet fever toxins, erythrogenic toxins (ET)A, ETC), and the soluble mitogen produced by Mycoplasma arthritidis. We found that all these toxins can activate both CD4+ and CD8+ T cells and require MHC class II expression on accessory and target cells. However, T cells could be activated in the absence of class II molecules if the toxins ETA or SEB were co-cross-linked on beads together with anti-CD8 or anti-CD2 antibodies. Enterotoxins, toxic shock syndrome toxin and scarlet toxins stimulate a major fraction of human T cells, and show preferential, but not exclusive, stimulation of T cells carrying certain TCR V beta. In contrast, the mitogen of M. arthritidis, a pathogen for rodents stimulates only a minority of human T cells but activates a major fraction of murine T cells. Analysis of human T cell clones expressing V beta 5 or V beta 8 TCR showed that these clones responded also to those toxins that did not stimulate V beta 5+ and V beta 8+ T cells in bulk cultures. These results indicate that different TCR bind to these toxins with different affinities and that the specificity of the TCR-V beta-toxin interaction is quantitative rather than qualitative in nature. Taken together our findings suggest that these toxins use a common mechanism of T cell activation. They are functionally bivalent proteins crosslinking MHC class II molecules with variable parts of the TCR. Besides V beta, other parts of the TCR must be involved in this binding. The finding that murine T cells responded more weakly to the toxins produced by the human-pathogenic bacteria than to the Mycoplasma mitogen could indicate that the toxins have been adapted to the host's immune system in evolution.  相似文献   

6.
We have analyzed the structural characteristics of the interaction between I-Ed molecules and their peptide ligands. It was found that unrelated good I-Ed binders share structurally similar "core" regions that were experimentally demonstrated to be crucial for binding to I-Ed molecules. Single amino acid substitution analogues of one good I-Ed binder, hen egg lysozyme 107-116, were analyzed for their capacity to bind to I-Ed molecules and to activate two different I-Ed-restricted T cell hybridomas. The results illustrate the great permissiveness of I-Ed-peptide interaction and the great specificity of T cell recognition. It was concluded from these analyses that basic residues on the peptide molecule play a crucial role in binding to I-Ed. This contrasts with the structural requirements for binding to the other Iad isotype, I-Ad, the crucial hydrophobic residues. Thus, different class II molecules of the same MHC haplotype may have rather distinct peptide binding specificities, thereby expanding the repertoire of possible immunogenic peptides presented for T cell recognition.  相似文献   

7.
Streptococcal exotoxins have been implicated in the pathogenesis of a toxic shock-like syndrome and scarlet fever. Previous studies have demonstrated that these toxins are potent stimulators of human T cells and have structural homology to staphylococcal enterotoxins. In the current study, we investigated the mechanism by which streptococcal erythrogenic toxins type A (SPEA) and B (SPEB) activate T cells and compared it with anti-CD3 and the known "superantigen" staphylococcal enterotoxin B. SPEA was found to selectively activate T cells bearing V beta 8, V beta 12, and V beta 14, whereas SPEB selectively activated T cells bearing V beta 2 and V beta 8. Furthermore, fibroblasts transfected with MHC class II molecules were capable of presenting SPEA and SPEB to purified T cells. The T cell response to these toxins, however, was not MHC-restricted. Although the streptococcal exotoxins stimulated both CD4+ and CD8+ T cells, SPEA but not SPEB stimulated the CD4+ T cell subset proportionately more than the CD8+ T cell subset. Our results indicate that SPEA and SPEB, like the staphylococcal enterotoxins, are superantigens and suggest a mechanism by which they may mediate particular systemic syndromes associated with streptococcal infections.  相似文献   

8.
Food poisoning due to staphylococcal enterotoxins A and B (SEA and SEB) affects hundreds of thousands of people annually. SEA and SEB induce massive intestinal cytokine production, which is believed to be the key factor in staphylococcal enterotoxin enteropathy. MHC class II molecules are the major receptors for staphylococcal enterotoxins. We recently demonstrated that normal human subepithelial intestinal myofibroblasts (IMFs) express MHC class II molecules. We hypothesized that IMFs are among the first cells to respond to staphylococcal enterotoxins and contribute to the cytokine production associated with staphylococcal enterotoxin pathogenesis. We demonstrated here that primary cultured IMFs bind staphylococcal enterotoxins in a MHC class II-dependent fashion in vitro. We also demonstrated that staphylococcal enterotoxins can cross a CaCo-2 epithelial monolayer in coculture with IMFs and bind to the MHC class II on IMFs. IMFs responded to SEA, but not SEB, exposure with 3- to 20-fold increases in the production of proinflammatory chemokines (MCP-1, IL-8), cytokines (IL-6), and growth factors (GM-CSF and G-CSF). The SEA induction of the proinflammatory mediators by IMFs resulted from the efficient cross-linking of MHC class II molecules because cross-linking of class II MHC by biotinylated anti-HLA-DR Abs induced similar cytokine patterns. The studies presented here show that MCP-1 is central to the production of other cytokines elicited by SEA in IMFs because its neutralization with specific Abs prevented the expression of IL-6 and IL-8 by IMFs. Thus, MCP-1 may play a leading role in initiation of inflammatory injury associated with staphylococcal enterotoxigenic disease.  相似文献   

9.
Staphylococcal enterotoxins (SE) are known to be potent T cell activators, stimulating +/- proliferation and lymphokine production. These toxins have recently have been termed "superantigens" because of their ability to bind directly to class II molecules forming a ligand that interacts with particular V beta gene elements within the TCR complex. This interaction between SE and MHC class II molecules plays a central role in toxin-induced mitogenesis. In the present study we have examined the effect of polymorphism on the ability of MHC class II molecules to bind and present SE. Through the use of H-2 congenic mouse strains, it was possible to look directly at haplotype differences within the MHC and their effect on SE presentation to a panel of responsive V beta-bearing T cells. The results demonstrate that toxin presentation by class II-bearing accessory cells to murine T cells is greatly affected by polymorphisms within the H-2 complex. Toxin-pulsed accessory cells obtained from mice of an H-2k and H-2u haplotype were found to be less efficient in activating a variety of T cell clones and hybridomas. However, one T cell clone responded similarly to the enterotoxins presented on all H-2 haplotypes, suggesting that differences in responses of T cells are not simply a function of the degree of binding of these toxins to various class II molecules. Neutralization analysis with monoclonal anti-class II antibodies demonstrates that both I-A and I-E molecules play a significant role in SEA and SEB presentation to murine T cells. These results suggest that the differential activation of T cells by a particular enterotoxin may reflect a difference in recognition of an SE:class II ligand by a surface T cell receptor complex.  相似文献   

10.
Staphylococcal enterotoxins (SE) and toxic shock syndrome toxin-1 bind directly to class II molecules of the MHC and stimulate T cells based predominantly on the V beta segment used by the TCR. We investigated the relationship between the class II binding affinities of four of these exotoxins, SEA, SEB, SEC1, and toxic shock syndrome toxin-1 and their T cell signaling capabilities. Although the toxins stimulated T cells at concentrations that ranged over more than two orders of magnitude, their affinities for class II (DR1) differed by less than sixfold. The affinities of the toxins predicted their capacity to stimulate resting T cells to proliferate. The binding affinities of the toxins for class II molecules indicated that at concentrations required for T cell stimulation, as few as 0.1% of the class II molecules are complexed with toxin. Finally, the isotype of class II molecules affected the ability of the toxins to bind and use these MHC Ag to stimulate T cells. These data thus demonstrate that of the staphylococcal exotoxins studied, both their potency as T cell mitogens and their ability to function in the presence of single class II isotypes can be attributed in part to their characteristic abilities to bind class II molecules.  相似文献   

11.
Crystal structure of the superantigen staphylococcal enterotoxin type A.   总被引:2,自引:1,他引:1  
Staphylococcal enterotoxins are prototype superantigens characterized by their ability to bind to major histocompatibility complex (MHC) class II molecules and subsequently activate a large fraction of T-lymphocytes. The crystal structure of staphylococcal enterotoxin type A (SEA), a 27 kDa monomeric protein, was determined to 1.9 A resolution with an R-factor of 19.9% by multiple isomorphous replacement. SEA is a two domain protein composed of a beta-barrel and a beta-grasp motif demonstrating the same general structure as staphylococcal enterotoxins SEB and TSST-1. Unique for SEA, however, is a Zn2+ coordination site involved in MHC class II binding. Four amino acids including Ser1, His187, His225 and Asp227 were found to be involved in direct coordination of the metal ion. SEA is the first Zn2+ binding enterotoxin that has been structurally determined.  相似文献   

12.
Superantigens are known to activate a large number of T cells. The SAg is presented by MHC class II on the APC and its classical feature is that it recognizes the variable region of the beta-chain of the TCR. In this article, we report, by direct binding studies, that staphylococcal enterotoxin (SE) H (SEH), a bacterial SAg secreted by Staphylococcus aureus, instead recognizes the variable alpha-chain (TRAV27) of TCR. Furthermore, we show that different SAgs (e.g., SEH and SEA) can simultaneously bind to one TCR by binding the alpha-chain and the beta-chain, respectively. Theoretical three-dimensional models of the penta complexes are presented. Hence, these findings open up a new dimension of the biology of the staphylococcal enterotoxins.  相似文献   

13.
Summary Activation of lymphocytes by interleukin-2 (IL-2) induces lymphokine-activated killer (LAK) cells that show promising effects on tumour growth in clinical trials. We examined the effect of the superantigen staphylococcal enterotoxin A (SEA) on anti-tumour activity of freshly prepared human lymphocytes. Picomolar amounts of SEA rapidly induced cytotoxic activity against K562 and Raji cells as well as some natural-killer(NK)-resistant tumour cell lines. Cytotoxic activity was not dependent on target cell expression of either major histocompatibility complex (MHC) class I or II antigens as shown using mutated cell lines. Cell-sorting experiments showed that the activity was expressed by NK (CD5CD56+) as well as T (CD5+) cells, although the former contained the majority of cytotoxic activity. NK cells could not be directly activated by SEA. In contrast, SEA activated purified T cells to the same extent as in bulk cultures. It is suggested that SEA activation of NK cells is secondary to that brought about by lymphokines produced by T cells. Activation of LAK cells with SEA was comparable in magnitude as well as target cell spectrum to that of IL-2. In addition to the LAK-like cytotoxic activity induced by SEA, a superimposed cytotoxicity towards target cells expressing MHC class II antigens coated with SEA was observed. This staphylococcal-enterotoxin-dependent cell-mediated cytotoxicity (SDCC) was exclusively mediated by T cells. It is well established that MHC class II antigens function as receptors for staphylococcal enterotoxins on mammalian cells and that the complex between MHC class II antigen and — SEA apparently functions as a target structure for activated T cells with target cell lysis as a consequence. Activation of T lymphocytes with IL-2 also resulted in the capability to mediate SDCC. Staphylococcal enterotoxins represent a novel way of inducing anti-tumour activity in human lymphocytes, which could be of value in therapeutic applications.  相似文献   

14.
The bacterial toxic mitogens or superantigens are a family of related proteins that elicit potent T cell proliferative responses. These responses require APC that express MHC class II proteins, but they are not MHC restricted and they do not depend on a processing step, presumably because these mitogens bind directly to MHC class II molecules. These mitogens stimulate T cells by interacting in an unknown way with the portion of the TCR encoded by certain V beta gene segments. In this paper, we explore the importance of MHC class II polymorphism in T cell responses to staphylococcal enterotoxins. We find that certain MHC molecules present SEB to V beta 8-bearing T cells far better than others. These data suggest that one route of host defence against bacterial toxic mitogens may be to alter MHC class II molecules so that stimulation is inhibited.  相似文献   

15.
Several Ia-negative variants of a homozygous Iad-expressing antigen-presenting B lymphoma cell line, M12, have been obtained by repeated cycles of negative immunoselection after mutagenesis with ethylmethane sulfonate or gamma-irradiation. Two such Iad-negative cell lines, selected with a mixture of alpha I-Ad and alpha I-Ed monoclonal antibodies, failed to present antigen to all cloned Iad-restricted T cells tested, whereas the third cell line, selected with alpha I-Ad reagents only, stimulated I-Ed but not I-Ad-restricted T cells. The mutations in all three cell lines resulted in the absence of RNA specific for the A beta d gene. In addition, two-dimensional gel electrophoresis of immunoprecipitates from one of the I-Ed-negative cell lines demonstrated the presence of intracytoplasmic Ed polypeptides that exhibited significantly decreased amounts of oligosaccharide-induced heterogeneity. The introduction of class II A beta b and A alpha b genes by DNA-mediated transfection resulted in the serologic and functional expression of a class II I-Ab molecule but not the reexpression of the endogenous class II molecules; thus a transacting regulatory element is unlikely to be the target of the mutagenic event. The analysis of these and other Ia variant cell lines may prove useful in understanding the molecular mechanisms that control the expression of class II molecules in B cells.  相似文献   

16.
The present study was designed to examine the potential involvement of calcium ions as second messengers in the mediation of the staphylococcal enterotoxin A (SEA)/MHC class II-induced activation of human monocytes. Treatment of monocytes with a monomeric form of SEA failed to induce detectable changes in the level of intracellular calcium in either monocytes or THP-1 cells. However, cross-linking of SEA with biotin-avidin induced a rapid and transient increase in calcium levels in monocytes and in INF-gamma-treated THP-1 cells. This artificial cross-linking system was reproduced by natural physiologic ligands expressed on the surface of T lymphocytes. Delayed, transient, and concentration (cell as well as toxin)-dependent increases in the cytoplasmic level of free calcium in SEA-treated monocytes were observed upon the addition of autologous resting T cells or purified CD4+ cells, but not of CD8+ cells, B cells, or neutrophils. Antibodies against MHC class II Ag, TCR/CD3, and CD4 molecules inhibited the SEA-dependent interaction between monocytes and T cells as indicated by significant decreases in the rise of calcium levels observed in monocytes. Anti-CD8 and anti-class I antibodies did not affect the interaction between the monocytes and the T cells and failed to alter the calcium response. Taken together, these results suggest that the SEA-induced, T cell-dependent calcium mobilization in monocytes requires physical interactions between SEA-MHC class II, TCR/CD3, and CD4 molecules. The ability to mediate a T cell-dependent calcium increase in monocytes was shared by several enterotoxins including staphylococcal enterotoxin B and toxic shock syndrome toxin-1. The characteristics of the SEA-mediated calcium mobilization in monocytes strongly support the hypothesis that this response is an integral part of the signal transducing machinery linked to MHC class II molecules.  相似文献   

17.
Binding of staphylococcal enterotoxin A to HLA-DR on B cell lines   总被引:16,自引:0,他引:16  
Staphylococcal enterotoxin A (SEA) is a potent polyclonal T cell activator. Its activating effect is entirely dependent upon its binding to accessory cells. Monocytes, B cells, and B lymphomas can bind SEA and support activation of T cells. We have earlier found that Raji cells are particularly efficient as accessory cells for SEA-induced T cell proliferation. In the present investigation we have used this cell line for the isolation and characterization of the membrane molecule to which SEA binds. Flow cytometric analysis of cells dually stained with SEA and anti-HLA-DR mAb showed that the amount of bound SEA was proportional to the HLA-DR expression. Electrophoresis of detergent extracts of Raji cells revealed one distinct SEA-binding band with a Mr of 60 to 65 kDa. This band had the same electrophoretic mobility as the MHC class II molecules. A mAb (G8) with the ability to block SEA binding to Raji cells was established. This mAb was shown to bind to the HLA-DR molecule. Both the G8 mAb and an anti-HLA-DR mAb 9-49 inhibited SEA binding to accessory cells and also inhibited SEA-induced, but not PHA-induced, T cell proliferation and production of IL-2. Immunoprecipitation with specific anti-HLA-DR and anti-HLA-DQ mAb demonstrated that SEA binds to the HLA-DR molecule but not to the HLA-DQ molecule. Binding SEA to Raji cells followed by cross-linking and detergent solubilization of cell membranes, electrophoresis, and Western blotting resulted in two SEA-containing bands corresponding to a Mr of 90 and 105 kDa, respectively. Both these bands also contained the HLA-DR molecule and their appearance could be blocked by preincubation of the Raji cells with the G8 mAb. Collectively the results show that the HLA-DR molecule is the main functional molecule for binding of SEA to accessory cells and that this binding of SEA to HLA-DR is a necessary requirement for SEA-induced T cell activation.  相似文献   

18.
Ligands binding to Toll-like receptor (TLR), interleukin 1 receptor (IL-1R), or IFN-γR1 are known to trigger MyD88-mediated signaling, which activates pro-inflammatory cytokine responses. Recently we reported that staphylococcal enterotoxins (SEA or SEB), which bind to MHC class II molecules on APCs and cross link T cell receptors, activate MyD88- mediated pro-inflammatory cytokine responses. We also reported that MyD88(-/-) mice were resistant to SE- induced toxic shock and had reduced levels of serum cytokines. In this study, we investigated whether MHC class II- SE interaction by itself is sufficient to activate MyD88 in MHC class II(+) cells and induce downstream pro-inflammatory signaling and production of cytokines such as TNF-α and IL-1β. Here we report that human monocytes treated with SEA, SEB, or anti-MHC class II monoclonal antibodies up regulated MyD88 expression, induced activation of NF-kB, and increased expression of IL-1R1 accessory protein, TNF-α and IL-1β. MyD88 immunoprecipitated from cell extracts after SEB stimulation showed a greater proportion of MyD88 phosphorylation compared to unstimulated cells indicating that MyD88 was a component of intracellular signaling. MyD88 downstream proteins such as IRAK4 and TRAF6 were also up regulated in monocytes after SEB stimulation. In addition to monocytes, primary B cells up regulated MyD88 in response to SEA or SEB stimulation. Importantly, in contrast to primary B cells, MHC class II deficient T2 cells had no change of MyD88 after SEA or SEB stimulation, whereas MHC class II-independent activation of MyD88 was elicited by CpG or LPS. Collectively, these results demonstrate that MHC class II utilizes a MyD88-mediated signaling mechanism when in contact with ligands such as SEs to induce pro-inflammatory cytokines.  相似文献   

19.
We have analyzed the interaction of the hen egg-white lysozyme (HEL) peptide 107-116 with the MHC class II molecule I-Ek, using truncated and single residue substitution analogues to measure activation of I-Ek-restricted, 107-116-specific T cell hybridomas and competition for Ag presentation by I-Ek molecules. These results have been compared with previous findings on the interaction of the same peptide with the I-Ed molecule. Stimulation of T cell hybridomas by truncated peptides defines the sequence 108-116 as the minimum epitope necessary for activation of both I-Ek- and I-Ed-restricted T cell hybridomas. Substitution analysis pinpoints three residues (V109, A110, and K116) in the sequence 108-116 as being critical for binding to I-Ek molecules and demonstrates the involvement of most other residues in recognition by T cells. Results previously obtained for binding of HEL 107-116 to I-Ed molecules indicated that peptide residues R112, R114, and K116 were critical for interaction with I-Ed. Comparison of these results indicates a difference in the likely MHC contact residues between the HEL sequence 108-116 and I-Ed or I-Ek molecules, suggesting that the same HEL peptide assumes a different conformation in the binding site of these two MHC molecules. This in turn affects residues interacting with the specific T cell receptor. According to the hypothetical tridimensional structure predicted for class II molecules, the difference in MHC contact residues observed within the sequence 108-116 can be related to polymorphic amino acids in the binding site of I-Ek and I-Ed molecules. A search through published binding data for a common pattern in this and other I-Ek-binding peptides has permitted us to derive a possible motif for predicting peptide binding to I-Ek molecules. This putative motif was tested by determining binding to I-Ek of an unbiased panel of about 150 synthetic peptides. Binding data indeed demonstrate the presence of this motif in the majority of good binders to I-Ek molecules.  相似文献   

20.
Staphylococcal enterotoxin H (SEH) has been described as a superantigen by sequence homology with the SEA subfamily and briefly characterized for its in vivo activity. In this study, we demonstrate that SEH is a potent T cell mitogen and inducer of T cell cytotoxicity that possesses unique MHC class II-binding properties. The apparent affinity of SEH for MHC class II molecules is the highest affinity ever measured for a staphylococcal enterotoxin (Bmax1/2 approximately 0.5 nM for MHC class II expressed on Raji cells). An excess of SEA or SEAF47A, which has reduced binding to the MHC class II alpha-chain, is able to compete for binding of SEH to MHC class II, indicating an overlap in the binding sites at the MHC class II beta-chain. The binding of SEH to MHC class II is like SEA, SED, and SEE dependent on the presence of zinc ions. However, SEH, in contrast to SEA, binds to the alanine-substituted DR1 molecule, betaH81A, believed to have impaired zinc-bridging capacity. Furthermore, alanine substitution of residues D167, D203, and D208 in SEH decreases the affinity for MHC class II as well as its in vitro potency. Together, this indicates an MHC class II binding site on SEH with a different topology as compared with SEA. These unique binding properties will be beneficial for SEH to overcome MHC class II isotype variability and polymorphism as well as to allow an effective presentation on APCs also at low MHC class II surface expression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号