首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
We have shown that cutaneous cooling-sensitive receptors can work as thermostats of skin temperature against cooling. However, molecule of the thermostat is not known. Here, we studied whether cooling-sensitive TRPM8 channels act as thermostats. TRPM8 in HEK293 cells generated output (y) when temperature (T) was below threshold of 28.4°C. Output (y) is given by two equations: At T >28.4°C, y = 0; At T <28.4°C, y  =  -k(T – 28.4°C). These equations show that TRPM8 is directional comparator to elicits output (y) depending on negative value of thermal difference (ΔT  =  T – 28.4°C). If negative ΔT-dependent output of TRPM8 in the skin induces responses to warm the skin for minimizing ΔT recursively, TRPM8 acts as thermostats against cooling. With TRPM8-deficient mice, we explored whether TRPM8 induces responses to warm the skin against cooling. In behavioral regulation, when room temperature was 10°C, TRPM8 induced behavior to move to heated floor (35°C) for warming the sole skin. In autonomic regulation, TRPM8 induced activities of thermogenic brown adipose tissue (BAT) against cooling. When menthol was applied to the whole trunk skin at neutral room temperature (27°C), TRPM8 induced a rise in core temperature, which warmed the trunk skin slightly. In contrast, when room was cooled from 27 to 10°C, TRPM8 induced a small rise in core temperature, but skin temperature was severely reduced in both TRPM8-deficient and wild-type mice by a large heat leak to the surroundings. This shows that TRPM8-driven endothermic system is less effective for maintenance of skin temperature against cooling. In conclusion, we found that TRPM8 is molecule of thermostat of skin temperature against cooling.  相似文献   

4.
A TRP channel that senses cold stimuli and menthol   总被引:48,自引:0,他引:48  
A distinct subset of sensory neurons are thought to directly sense changes in thermal energy through their termini in the skin. Very little is known about the molecules that mediate thermoreception by these neurons. Vanilloid Receptor 1 (VR1), a member of the TRP family of channels, is activated by noxious heat. Here we describe the cloning and characterization of TRPM8, a distant relative of VR1. TRPM8 is specifically expressed in a subset of pain- and temperature-sensing neurons. Cells overexpressing the TRPM8 channel can be activated by cold temperatures and by a cooling agent, menthol. Our identification of a cold-sensing TRP channel in a distinct subpopulation of sensory neurons implicates an expanded role for this family of ion channels in somatic sensory detection.  相似文献   

5.
TRPM8, a nonselective cation channel activated by cold, voltage, and cooling compounds such as menthol, is the principal molecular detector of cold temperatures in primary sensory neurons of the somatosensory system. The N-terminal domain of TRPM8 consists of 693 amino acids, but little is known about its contribution to channel function. Here, we identified two distinct regions within the initial N terminus of TRPM8 that contribute differentially to channel activity and proper folding and assembly. Deletion or substitution of the first 40 residues yielded channels with augmented responses to cold and menthol. The thermal threshold of activation of these mutants was shifted 2 °C to higher temperatures, and the menthol dose-response curve was displaced to lower concentrations. Site-directed mutagenesis screening revealed that single point mutations at positions Ser-26 or Ser-27 by proline caused a comparable increase in the responses to cold and menthol. Electrophysiological analysis of the S27P mutant revealed that the enhanced sensitivity to agonists is related to a leftward shift in the voltage dependence of activation, increasing the probability of channel openings at physiological membrane potentials. In addition, we found that the region encompassing positions 40–60 is a key element in the proper folding and assembly of TRPM8. Different deletions and mutations within this region rendered channels with an impaired function that are retained within the endoplasmic reticulum. Our results suggest a critical contribution of the initial region of the N-terminal domain of TRPM8 to thermal and chemical sensitivity and the proper biogenesis of this polymodal ion channel.  相似文献   

6.
Cold allodynia is a common feature of neuropathic pain however the underlying mechanisms of this enhanced sensitivity to cold are not known. Recently the transient receptor potential (TRP) channels TRPM8 and TRPA1 have been identified and proposed to be molecular sensors for cold. Here we have investigated the expression of TRPM8 and TRPA1 mRNA in the dorsal root ganglia (DRG) and examined the cold sensitivity of peripheral sensory neurons in the chronic construction injury (CCI) model of neuropathic pain in mice.In behavioral experiments, chronic constriction injury (CCI) of the sciatic nerve induced a hypersensitivity to both cold and the TRPM8 agonist menthol that developed 2 days post injury and remained stable for at least 2 weeks. Using quantitative RT-PCR and in situ hybridization we examined the expression of TRPM8 and TRPA1 in DRG. Both channels displayed significantly reduced expression levels after injury with no change in their distribution pattern in identified neuronal subpopulations. Furthermore, in calcium imaging experiments, we detected no alterations in the number of cold or menthol responsive neurons in the DRG, or in the functional properties of cold transduction following injury. Intriguingly however, responses to the TRPA1 agonist mustard oil were strongly reduced.Our results indicate that injured sensory neurons do not develop abnormal cold sensitivity after chronic constriction injury and that alterations in the expression of TRPM8 and TRPA1 are unlikely to contribute directly to the pathogenesis of cold allodynia in this neuropathic pain model.  相似文献   

7.
TRPM8 is required for cold sensation in mice   总被引:12,自引:0,他引:12  
ThermoTRPs, a subset of the Transient Receptor Potential (TRP) family of cation channels, have been implicated in sensing temperature. TRPM8 and TRPA1 are both activated by cooling; however, it is unclear whether either ion channel is required for thermosensation in vivo. We show that mice lacking TRPM8 have severe behavioral deficits in response to cold stimuli. In thermotaxis assays of temperature gradient and two-temperature choice assays, TRPM8-deficient mice exhibit strikingly reduced avoidance of cold temperatures. TRPM8-deficient mice also lack behavioral response to cold-inducing icilin application and display an attenuated response to acetone, an unpleasant cold stimulus. However, TRPM8-deficient mice have normal nociceptive-like responses to subzero centigrade temperatures, suggesting the presence of at least one additional noxious cold receptor. Finally, we show that TRPM8 mediates the analgesic effect of moderate cooling after administration of formalin, a painful stimulus. Therefore, depending on context, TRPM8 contributes to sensing unpleasant cold stimuli or mediating the effects of cold analgesia.  相似文献   

8.
Analgesia mediated by the TRPM8 cold receptor in chronic neuropathic pain   总被引:14,自引:0,他引:14  
BACKGROUND: Chronic established pain, especially that following nerve injury, is difficult to treat and represents a largely unmet therapeutic need. New insights are urgently required, and we reasoned that endogenous processes such as cooling-induced analgesia may point the way to novel strategies for intervention. Molecular receptors for cooling have been identified in sensory nerves, and we demonstrate here how activation of one of these, TRPM8, produces profound, mechanistically novel analgesia in chronic pain states. RESULTS: We show that activation of TRPM8 in a subpopulation of sensory afferents (by either cutaneous or intrathecal application of specific pharmacological agents or by modest cooling) elicits analgesia in neuropathic and other chronic pain models in rats, thereby inhibiting the characteristic sensitization of dorsal-horn neurons and behavioral-reflex facilitation. TRPM8 expression was increased in a subset of sensory neurons after nerve injury. The essential role of TRPM8 in suppression of sensitized pain responses was corroborated by specific knockdown of its expression after intrathecal application of an antisense oligonucleotide. We further show that the analgesic effect of TRPM8 activation is centrally mediated and relies on Group II/III metabotropic glutamate receptors (mGluRs), but not opioid receptors. We propose a scheme in which Group II/III mGluRs would respond to glutamate released from TRPM8-containing afferents to exert an inhibitory gate control over nociceptive inputs. CONCLUSIONS: TRPM8 and its central downstream mediators, as elements of endogenous-cooling-induced analgesia, represent a novel analgesic axis that can be exploited in chronic sensitized pain states.  相似文献   

9.
Willis DN  Liu B  Ha MA  Jordt SE  Morris JB 《FASEB journal》2011,25(12):4434-4444
Menthol, the cooling agent in peppermint, is added to almost all commercially available cigarettes. Menthol stimulates olfactory sensations, and interacts with transient receptor potential melastatin 8 (TRPM8) ion channels in cold-sensitive sensory neurons, and transient receptor potential ankyrin 1 (TRPA1), an irritant-sensing channel. It is highly controversial whether menthol in cigarette smoke exerts pharmacological actions affecting smoking behavior. Using plethysmography, we investigated the effects of menthol on the respiratory sensory irritation response in mice elicited by smoke irritants (acrolein, acetic acid, and cyclohexanone). Menthol, at a concentration (16 ppm) lower than in smoke of mentholated cigarettes, immediately abolished the irritation response to acrolein, an agonist of TRPA1, as did eucalyptol (460 ppm), another TRPM8 agonist. Menthol's effects were reversed by a TRPM8 antagonist, AMTB. Menthol's effects were not specific to acrolein, as menthol also attenuated irritation responses to acetic acid, and cyclohexanone, an agonist of the capsaicin receptor, TRPV1. Menthol was efficiently absorbed in the respiratory tract, reaching local concentrations sufficient for activation of sensory TRP channels. These experiments demonstrate that menthol and eucalyptol, through activation of TRPM8, act as potent counterirritants against a broad spectrum of smoke constituents. Through suppression of respiratory irritation, menthol may facilitate smoke inhalation and promote nicotine addiction and smoking-related morbidities.  相似文献   

10.
Mammals detect temperature with specialized neurons in the peripheral nervous system. Four TRPV-class channels have been implicated in sensing heat, and one TRPM-class channel in sensing cold. The combined range of temperatures that activate these channels covers a majority of the relevant physiological spectrum sensed by most mammals, with a significant gap in the noxious cold range. Here, we describe the characterization of ANKTM1, a cold-activated channel with a lower activation temperature compared to the cold and menthol receptor, TRPM8. ANKTM1 is a distant family member of TRP channels with very little amino acid similarity to TRPM8. It is found in a subset of nociceptive sensory neurons where it is coexpressed with TRPV1/VR1 (the capsaicin/heat receptor) but not TRPM8. Consistent with the expression of ANKTM1, we identify noxious cold-sensitive sensory neurons that also respond to capsaicin but not to menthol.  相似文献   

11.
Testosterone is a key steroid hormone in the development of male reproductive tissues and the regulation of the central nervous system. The rapid signaling mechanism induced by testosterone affects numerous behavioral traits, including sexual drive, aggressiveness, and fear conditioning. However, the currently identified testosterone receptor(s) is not believed to underlie the fast signaling, suggesting an orphan pathway. Here we report that an ion channel from the transient receptor potential family, TRPM8, commonly known as the cold and menthol receptor is the major component of testosterone-induced rapid actions. Using cultured and primary cell lines along with the purified TRPM8 protein, we demonstrate that testosterone directly activates TRPM8 channel at low picomolar range. Specifically, testosterone induced TRPM8 responses in primary human prostate cells, PC3 prostate cancer cells, dorsal root ganglion neurons, and hippocampal neurons. Picomolar concentrations of testosterone resulted in full openings of the purified TRPM8 channel in planar lipid bilayers. Furthermore, acute applications of testosterone on human skin elicited a cooling sensation. Our data conclusively demonstrate that testosterone is an endogenous and highly potent agonist of TRPM8, suggesting a role of TRPM8 channels well beyond their well established function in somatosensory neurons. This discovery may further imply TRPM8 channel function in testosterone-dependent behavioral traits.  相似文献   

12.
13.
TRPM8 is a member of the transient receptor potential ion channel superfamily, which is expressed in sensory neurons and is activated by cold and cooling compounds, such as menthol. Activation of TRPM8 by agonists takes place through shifts in its voltage activation curve, allowing channel opening at physiological membrane potentials. Here, we studied the role of the N-glycosylation occurring at the pore loop of TRPM8 on the function of the channel. Using heterologous expression of recombinant channels in HEK293 cells we found that the unglycosylated TRPM8 mutant (N934Q) displays marked functional differences compared with the wild type channel. These differences include a shift in the threshold of temperature activation and a reduced response to menthol and cold stimuli. Biophysical analysis indicated that these modifications are due to a shift in the voltage dependence of TRPM8 activation toward more positive potentials. By using tunicamycin, a drug that prevents N-glycosylation of proteins, we also evaluated the effect of the N-glycosylation on the responses of trigeminal sensory neurons expressing TRPM8. These experiments showed that the lack of N-glycosylation affects the function of native TRPM8 ion channels in a similar way to heterologously expressed ones, causing an important shift of the temperature threshold of cold-sensitive thermoreceptor neurons. Altogether, these results indicate that post-translational modification of TRPM8 is an important mechanism modulating cold thermoreceptor function, explaining the marked differences in temperature sensitivity observed between recombinant and native TRPM8 ion channels.  相似文献   

14.
Menthol, a naturally occurring compound from peppermint oil, binds and activates the TRPM8 Ca(2+)-permeable channel that exhibits abnormal expression patterns in prostate cancer, suggesting that TRPM8 links Ca(2+) transport pathways to tumor biology. We thus investigated the cellular responses of prostate cancer cells to menthol. Here we found that menthol increases [Ca(2+)](i) via Ca(2+) influx mechanism(s) independent of TRPM8 in PC-3 cells. We demonstrated that menthol induces cell death at supramillimolar concentrations in PC-3 cells and the cell death is not suppressed by low extracellular Ca(2+) condition which indicates that menthol-induced cell death is not associated with Ca(2+) influx pathways. In addition, we showed that menthol increases a phosphorylated form of c-jun N-terminal kinase (JNK) in PC-3 cells through TRPM8-independent mechanisms. Thus, our data indicate that there is an apparent lack of causality between TRPM8 activation and menthol-induced cell death and that menthol can regulate TRPM8-independent Ca(2+)-transport and cellular processes.  相似文献   

15.
Recent cloning of a cold/menthol-sensitive TRPM8 channel (transient receptor potential melastatine family member 8) from rodent sensory neurons has provided the molecular basis for the cold sensation. Surprisingly, the human orthologue of rodent TRPM8 also appears to be strongly expressed in the prostate and in the prostate cancer-derived epithelial cell line, LNCaP. In this study, we show that despite such expression, LNCaP cells respond to cold/menthol stimulus by membrane current (I(cold/menthol)) that shows inward rectification and high Ca(2+) selectivity, which are dramatically different properties from "classical" TRPM8-mediated I(cold/menthol). Yet, silencing of endogenous TRPM8 mRNA by either antisense or siRNA strategies suppresses both I(cold/menthol) and TRPM8 protein in LNCaP cells. We demonstrate that these puzzling results arise from TRPM8 localization not in the plasma, but in the endoplasmic reticulum (ER) membrane of LNCaP cells, where it supports cold/menthol/icilin-induced Ca(2+) release from the ER with concomitant activation of plasma membrane (PM) store-operated channels (SOC). In contrast, GFP-tagged TRPM8 heterologously expressed in HEK-293 cells target the PM. We also demonstrate that TRPM8 expression and the magnitude of SOC current associated with it are androgen-dependent. Our results suggest that the TRPM8 may be an important new ER Ca(2+) release channel, potentially involved in a number of Ca(2+)- and store-dependent processes in prostate cancer epithelial cells, including those that are important for prostate carcinogenesis, such as proliferation and apoptosis.  相似文献   

16.
One of the best-studied temperature-gated channels is transient receptor potential melastatin 8 (TRPM8), which is activated by cold and cooling agents, such as menthol. Besides inducing a cooling sensation in sensory neurons, TRPM8 channel activation also plays a major role in physiopathology. Indeed, TRPMP8 expression increases in early stages of prostate cancer and its involvement in prostate cell apoptosis has recently been demonstrated. Thus, as TRPM8 is a tumor marker with significant potential use in diagnosis, as well as a target for cancer therapy, there is a need for new TRPM8-specific ligands. In this study, we investigated the action of "WS" compounds on TRPM8 channels. We compared the affinity of these molecules to that of menthol and icilin. This enabled us to identify new TRPM8 agonists. The menthol analog with the highest affinity, WS-12, had an EC(50) value about 2000 times lower than that of menthol and is, therefore, the highest-affinity TRPM8 ligand known to date. Finally, incorporating a fluorine atom in the WS-12 retained 75% of the activity of the parent compound. The high affinity of this new TRPM8 ligand and the possibility of incorporating a radiohalogen could thus be useful for diagnosis, monitoring and, perhaps, even therapy of prostate cancer.  相似文献   

17.
Zhang XB  Jiang P  Gong N  Hu XL  Fei D  Xiong ZQ  Xu L  Xu TL 《PloS one》2008,3(10):e3386
Menthol is a widely-used cooling and flavoring agent derived from mint leaves. In the peripheral nervous system, menthol regulates sensory transduction by activating TRPM8 channels residing specifically in primary sensory neurons. Although behavioral studies have implicated menthol actions in the brain, no direct central target of menthol has been identified. Here we show that menthol reduces the excitation of rat hippocampal neurons in culture and suppresses the epileptic activity induced by pentylenetetrazole injection and electrical kindling in vivo. We found menthol not only enhanced the currents induced by low concentrations of GABA but also directly activated GABA(A) receptor (GABA(A)R) in hippocampal neurons in culture. Furthermore, in the CA1 region of rat hippocampal slices, menthol enhanced tonic GABAergic inhibition although phasic GABAergic inhibition was unaffected. Finally, the structure-effect relationship of menthol indicated that hydroxyl plays a critical role in menthol enhancement of tonic GABA(A)R. Our results thus reveal a novel cellular mechanism that may underlie the ambivalent perception and psychophysical effects of menthol and underscore the importance of tonic inhibition by GABA(A)Rs in regulating neuronal activity.  相似文献   

18.
Transient receptor potential ion channel melastatin subtype 8 (TRPM8) is activated by cold temperature and cooling agents, such as menthol and icilin. Compounds containing peppermint are reported to reduce symptoms of environmental cold stress such as cold allodynia in dorsal root ganglion (DRG) neuron; however, the underlying mechanisms of action are unclear. We tested the effects of physiological heat (37°C), anthralic acid (ACA and 0.025 mM), 2-aminoethyl diphenylborinate (2-APB and 0.05) on noxious cold (10°C) and menthol (0.1 mM)-induced TRPM8 cation channel currents in the DRG neurons of rats. DRG neurons were freshly isolated from rats. In whole-cell patch clamp experiments, TRPM8 currents were consistently induced by noxious cold or menthol. TRPM8 channels current densities of the neurons were higher in cold and menthol groups than in control. When the physiological heat is introduced by chamber TRPM8 channel currents were inhibited by the heat. Noxious cold-induced Ca2+ gates were blocked by the ACA although menthol-induced TRPM8 currents were not blocked by ACA and 2-APB. In conclusion, the results suggested that activation of TRPM8 either by menthol or nociceptive cold can activate TRPM8 channels although we observed the protective role of heat, ACA and 2-APB through a TRPM8 channel in nociceptive cold-activated DRG neurons. Since cold allodynia is a common feature of neuropathic pain and diseases of sensory neuron, our findings are relevant to the etiology of neuropathology in DRG neurons.  相似文献   

19.
Menthol, a secondary alcohol produced by the peppermint herb, Mentha piperita, is widely used in the food and pharmaceutical industries as a cooling/soothing compound and odorant. It induces Ca2+ influx in a subset of sensory neurons from dorsal root and trigeminal ganglia, due to activation of TRPM8, a Ca2+-permeable, cold-activated member of the TRP superfamily of cation channels. Menthol also induces Ca2+ release from intracellular stores in several TRPM8-expressing cell types, which has led to the suggestion that TRPM8 can function as an intracellular Ca2+-release channel. Here we show that menthol induces Ca2+ release from intracellular stores in four widely used cell lines (HEK293, lymph node carcinoma of the prostate (LNCaP), Chinese hamster ovary (CHO), and COS), and provide several lines of evidence indicating that this release pathway is TRPM8-independent: 1) menthol-induced Ca2+ release was potentiated at higher temperatures, which contrasts to the cold activation of TRPM8; 2) overexpression of TRPM8 did not enhance the menthol-induced Ca2+) release; 3) menthol-induced Ca2+ release was mimicked by geraniol and linalool, which are structurally related to menthol, but not by the more potent TRPM8 agonists icilin or eucalyptol; and 4) TRPM8 expression in HEK293 cells was undetectable at the protein and mRNA levels. Moreover, using a novel TRPM8-specific antibody we demonstrate that both heterologously expressed TRPM8 (in HEK293 cells) and endogenous TRPM8 (in LNCaP cells) are mainly localized in the plasma membrane, which contrast to previous localization studies using commercial anti-TRPM8 antibodies. Finally, aequorin-based measurements demonstrate that the TRPM8-independent menthol-induced Ca2+ release originates from both endoplasmic reticulum and Golgi compartments.  相似文献   

20.
TRPA1 and TRPM8 are transient receptor potential (TRP) channels involved in sensory perception. TRPA1 is a non‐selective calcium permeable channel activated by irritants and proalgesic agents. TRPM8 reacts to chemical cooling agents such as menthol. The human neuroblastoma cell line IMR‐32 undergoes a remarkable differentiation in response to treatment with 5‐bromo‐2‐deoxyuridine. The cells acquire a neuronal morphology with increased expression of N‐type voltage gated calcium channels and neurotransmitters. Here we show using RT‐PCR, that mRNA for TRPA1 and TRPM8 are strongly upregulated in differentiating IMR‐32 cells. Using whole cell patch clamp recordings, we demonstrate that activators of these channels, wasabi, allyl‐isothiocyanate (AITC) and menthol activate membrane currents in differentiated cells. Calcium imaging experiments demonstrated that AITC mediated elevation of intracellular calcium levels were attenuated by ruthenium red, spermine, and HC‐030031 as well as by siRNA directed against the channel. This indicates that the detected mRNA level correlate with the presence of functional channels of both types in the membrane of differentiated cells. Although the differentiated IMR‐32 cells responded to cooling many of the cells showing this response did not respond to TRPA1/TRPM8 channel activators (60% and 90% for AITC and menthol respectively). Conversely many of the cells responding to these activators did not respond to cooling (30%). This suggests that these channels have also other functions than cold perception in these cells. Furthermore, our results suggest that IMR‐32 cells have sensory characteristics and can be used to study native TRPA1 and TRPM8 channel function as well as developmental expression. J. Cell. Physiol. 221: 67–74, 2009. © 2009 Wiley‐Liss, Inc  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号