首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Although cytokinins (CKs) are widely thought to have a role in promoting shoot branching, there is little data supporting a causative or even a correlative relationship between endogenous CKs and timing of bud outgrowth. We previously showed that lateral bud CK content increased rapidly following shoot decapitation. However, it is not known whether roots are the source of this CK. Here, we have used shoot decapitation to instantaneously induce lateral bud release in chickpea seedlings. This treatment rapidly alters rate and direction of solvent and solute (including CK) trafficking, which may be a passive signalling mechanism central to initiation of lateral bud release. To evaluate changes in xylem transport, intact and decapitated plants were infiltrated with [3H]zeatin riboside ([3H]ZR), a water‐soluble blue dye or [3H]H2O by injection into the hypocotyl. All three tracers were recovered in virtually all parts of the shoot within 1 h of injection. In intact plants, solute accumulation in the lateral bud at node 1 was significantly less than in the adjacent stipule and nodal tissue. In decapitated plants, accumulation of [3H]ZR and of blue dye in the same bud position was increased 3‐ to 10‐fold relative to intact plants, whereas content of [3H]H2O was greatly reduced indicating an increased solvent throughput. The stipule and cut stem, predicted to have high evapotranspiration rates, also showed increased solute content accompanied by enhanced depletion of [3H]H2O. To assess whether metabolism modifies quantities of active CK reaching the buds, we followed the metabolic fate of [3H]ZR injected at physiological concentrations. Within 1 h, 80–95% of [3H]ZR was converted to other active CKs (mainly zeatin riboside‐5′phosphate (ZRMP) and zeatin (Z)), other significant, but unconfirmed metabolites some of which may be active (O‐acetylZR, O‐acetylZRMP and a compound correlated with sites of high CK‐concentrations) and inactive catabolites (adenosine, adenine, 5′AMP and water). Despite rapid metabolic degradation, the total active label, which was indicative of CK concentration in buds, increased rapidly following decapitation. It can be inferred that xylem sap CKs represent one source of active CKs appearing in lateral buds after shoot decapitation.  相似文献   

2.
Although the co-ordination of promotive root-sourced cytokinin (CK) and inhibitory shoot apex-sourced auxin (IAA) is central to all current models on lateral bud dormancy release, control by those hormones alone has appeared inadequate in many studies. Thus it was hypothesized that the IAA : CK model is the central control but that it must be considered within the relevant timeframe leading to lateral bud release and against a backdrop of interactions with other hormone groups. Therefore, IAA and a wide survey of cytokinins (CKs), were examined along with abscisic acid (ABA) and polyamines (PAs) in released buds, tissue surrounding buds and xylem sap at 1 and 4 h after apex removal, when lateral buds of chickpea are known to break dormancy. Three potential lateral bud growth inhibitors, IAA, ABA and cis -zeatin 9-riboside (ZR), declined sharply in the released buds and xylem following decapitation. This is in contrast to potential dormancy breaking CKs like trans -ZR and trans -zeantin 9-riboside 5'phosphate (ZRMP), which represented the strongest correlative changes by increasing 3.5-fold in xylem sap and 22-fold in buds. PAs had not changed significantly in buds or other tissues after 4 h, so they were not directly involved in the breaking of bud dormancy. Results from the xylem and surrounding tissues indicated that bud CK increases resulted from a combination synthesis in the bud and selective loading of CK nucleotides into the xylem from the root.  相似文献   

3.
It was postulated that the release of lateral buds from apical dominance is triggered by the immediate increase in apoplastic water potential (hydrostatic pressure) that is produced by shoot decapitation and that is rapidly transmitted throughout the plant. In experiments conducted to test this hypothesis the use of a strain gauge transducer capable of measuring bud growth with an accuracy of ± 0.1 μm, showed that growth of the inhibited lateral bud at the primary leaf node of Phaseolus vulgaris (L.) ev. Canadian Wonder was initiated within 1 to 5 s following shoot decapitation or excision of the primary leaves. When only the apical bud was excised the lateral bud showed a brief, transitory growth response of ca 1 min duration, but the axillary buds of the first and second trifoliate leaves were released from inhibition. Decapitation of the shoot just below the first trifoliate leaf induced a lateral bud response characterized by three distinct stages: a) a rapid initial growth response with a mean duration of 4.9 min b) a period of arrested growth, which varied in duration from 2 min to 4 h and c) the subsequent resumption of growth.
Excision of both primary leaves induced a rapid but transitory bud response of considerably greater duration than that induced by apical bud excision. Excision of the primary leaves prior to decapitation of the shoot eliminated the phase of arrested growth, which characterized the bud response to decapitation of the intact plant. The rapidity of the bud response to both shoot decapitation and leaf excision and the interaction between the effect of these two treatments are consistent with the hypothesis that competition for water plays a major role in the correlative inhibition of lateral buds.  相似文献   

4.
This paper deals with apical dominance using a dicotylar model obtained after decapitation of pea seedlings with two shoots — one dominant and the other inhibited. When the dominant shoot was decapitated the inhibited one is released from inhibition and after 24 to 72 h begins to grow. However, the levels of trans-zeatin and production of ethylene increase within 4 and 6 hours respectively after release from inhibition, and within an interval of 72 h the levels of both phytohormones begin gradually to decrease. This indicates that also in this model, the release from apical dominance is associated with an increase in the level of cytokinin zeatin and, thereafter, also with an increased production of ethylene. If indolyl-3-acetic acid (IAA) is applied on the decapitated main stem after decapitation of the dominant shoot, the growth of the initially inhibited one is very strongly retarded; if, however, IAA is applied on the decapitated dominant shoot, this inhibition is significantly weaker. This means that the inhibiting effect of IAA on the inhibited shoot originates to a greater degree from the main stem rather than from the dominant shoot. The effect of benzyladenine (BA) is transferred equally from the decapitated main stem and from the decapitated dominant shoot because the initially inhibited shoot begins to grow as well as also other shoots from serial cotyledonary buds.  相似文献   

5.
The outgrowth of lateral buds is known to be controlled by theupper shoot tissues, which include the apex, the young leavesand the upper stem. An analysis of the influence of these plantparts on axillary bud elongation in Ipomoea nil was carriedout by various treatments on these specific tissues. A restriction of elongation in the main shoot due to eitherdecapitation or shoot inversion resulted in the release of apicaldominance A non-linear type of compensating growth relationshipwas observed between the 13 cm apical growing region of thestem and the lateral buds. It was determined by decapitation,defoliation and AgNO3 treatments that both the 13 cm stem-growthregion and the young leaves (1–5 cm in length) had a muchgreater inhibitory influence on the outgrowth of specified lateralbuds than did the stem apex (consisting of the terminal 0.5cm of the shoot). The specified lateral buds which were analyzedfor outgrowth were located a number of nodes below the shootapex. The intervening nodes were debudded. Although the importanceof young leaves in the control of apical dominance has beenpreviously recognized, the most significant result from thepresent study with Ipomoea was the strong influence of the 13cm apical growth region of the stem on the out growth of thelateral buds. Apical dominance, Ipomoea nil L., Pharbitis nil, growth region, lateral bud outgrowth, decapitation, defoliation, shoot inversion  相似文献   

6.
Intact and decapitated 6-node shoots of Hygrophila sp. weregrown aseptically immersed in liquid half-strength Knop's solutionwith microelements and 2% (w/v) sucrose (control medium), andin medium with 0.1 mg l–1 benzyladenine (BA). In intactshoots grown in control medium apical dominance suppressed outgrowthof the lateral buds; in decapitated shoots buds grew out atseveral of the most apical nodes, increasing in size acropetally.There was a lag in outgrowth of the bud at the most apical node,attributable to its initially smaller size. Lateral shoots grewout first at basal nodes of intact shoots in BA medium, decreasingin size acropetally; in decapitated shoots in BA medium lateralshoots of approximately equal size grew out at all nodes. Differentialeffects of decapitation and cytokinin treatment on lateral shootoutgrowth along the shoot could be interpreted by postulatinga basipetally decreasing gradient of endogenous auxin concentrationin the intact shoot. Application of 20 mg l–1 indoleaceticacid (IAA) in agar to decapitated shoots completely preventedbud outgrowth for at least 7 d in control medium, inhibitingit thereafter, and inhibited bud outgrowth in BA medium, thussupporting the hypothesis. Comparison of lateral shoot outgrowthin whole decapitated shoots and severed decapitated shoots (isolatednodes) lent no support to the alternative hypothesis that theremight be an acropetally decreasing concentration gradient ofa bud-promoting substance in the intact shoot, and demonstratedmuch greater lateral shoot growth in isolated nodes. The resultsemphasize important correlative relationships between the partsof a shoot with several nodes.  相似文献   

7.
8.
Based on detection and quantitation by bioassay, endogenous gibberellin-like substances (GAs) and cytokinins (CKs) in Pinus radiata D. Don buds during sequential shoot initiation shift from less polar to more polar forms (GAs) and from conjugated to free forms (CKs). As the terminal bud moves from the production of “short shoots” (needle fascicles) to “long shoots” (lateral branches or female conebuds), a more polar GA appears while a glucoside-conjugate of zeatin riboside is reduced, and zeatin riboside levels increase markedly.  相似文献   

9.
It has previously been shown that boron (B) deficiency inhibits growth of the plant apex, which consequently results in a relatively weak apical dominance, and a subsequent sprouting of lateral buds. Auxin and cytokinins (CKs) are the two most important phytohormones involved in the regulation of apical dominance. In this study, the possible involvement of these two hormones in B-deficiency-induced changes in apical dominance was investigated by applying B or the synthetic CK CPPU to the shoot apex of pea plants grown in nutrient solution without B supply. Export of IAA out of the shoot apex, as well as the level of IAA, Z/ZR and isopentenyl-adenine/isopentenyl-adenosine (i-Ade/i-Ado) in the shoot apex were assayed. In addition, polar IAA transport capacity was measured in two internodes of different ages using 3H-IAA. In B-deficient plants, both the level of auxin and CKs were reduced, and the export of auxin from the shoot apex was considerably decreased relative to plants well supplied with B. Application of B to the shoot apex restored the endogenous Z/ZR and IAA level to control levels and increased the export of IAA from the shoot apex, as well as the 3H-IAA transport capacity in the newly developed internodes. Further, B application to the shoot apex inhibited lateral bud growth and stimulated lateral root formation, presumably by stimulated polar IAA transport. Applying CPPU to the shoot apex, a treatment that stimulates IAA export under adequate B supply, considerably reduced the endogenous Z/ZR concentration in the shoot apex, but had no stimulatory effect on IAA concentration and transport in B-deficient plants. A similar situation appeared to exist in lateral buds of B-deficient plants as, in contrast to plants well supplied with B, application of CKs to these plants did not stimulate lateral bud growth. In contrast to the changes of Z/ZR levels in the shoot apex, which occurred after application of B or CPPU, the levels of i-Ade/i-Ado stayed more or less constant. These results suggest that there is a complex interaction between B supply and plant hormones, with a B-deficiency-induced inhibition of IAA export from the shoot apex as one of the earliest measurable events.  相似文献   

10.
When the upper part of the main shoot of the Japanese morning glory (Pharbitis nil or Ipomoea nil) is bent down, the axillary bud situated on the uppermost node of the bending region is released from apical dominance and elongates. Here, we demonstrate that this release of axillary buds from apical dominance is gravity regulated. We utilized two agravitropic mutants of morning glory defective in gravisensing cell differentiation, weeping (we) and weeping2 (we2). Bending the main shoots of either we or we2 plants resulted in minimal elongation of their axillary buds. This aberration was genetically linked to the agravitropism phenotype of the mutants, which implied that shoot bending-induced release from apical dominance required gravisensing cells. Previous studies have shown that basipetal translocation of auxin from the apical bud inhibits axillary bud growth, whereas cytokinin promotes axillary bud outgrowth. We therefore compared the roles of auxin and cytokinin in bending- or decapitation-induced axillary bud growth. In the wild-type and we plants, decapitation increased cytokinin levels and reduced auxin response. In contrast, shoot bending did not cause significant changes in either cytokinin level or auxin response, suggesting that the mechanisms underlying gravity- and decapitation-regulated release from apical dominance are distinct and unique.  相似文献   

11.
Apical dominance is the control exerted by the shoot apex over lateral bud outgrowth. The concepts and terminology associated with apical dominance as used by various plant scientists sometimes differ, which may lead to significant misconceptions. Apical dominance and its release may be divided into four developmental stages: (I) lateral bud formation, (II) imposition of inhibition on lateral bud growth, (III) release of apical dominance following decapitation, and (IV) branch shoot development. Particular emphasis is given to discriminating between Stage III, which is accompanied by initial bud outgrowth during the first few hours of release and may be promoted by cytokinin and inhibited by auxin, and Stage IV, which is accompanied by subsequent bud outgrowth occurring days or weeks after decapitation and which may be promoted by auxin and gibberellin. The importance of not interpreting data measured in Stage IV on the basis of conditions and processes occurring in Stage III is discussed as well as the correlation between degree of branching and endogenous auxin content, branching mutants, the quantification of apical dominance in various species (including Arabidopsis ), and apical control in trees.  相似文献   

12.
13.
F. Bangerth 《Planta》1994,194(3):439-442
When xylem exudate of previously untreated Phaseolus vulgaris plants was analysed for cytokinins by radioimmunoassay, a low concentration (about 5 ng · ml–1) was found. However, when the plants were decapitated about 16 h before the xylem exudate was collected, an almost 25-fold increase in cytokinin concentration was observed. Twenty-four hours after decapitation this increase even reached 4000 compared to control plants. Applying naphthaleneacetic acid (NAA) to the shoot of decapitated plants almost eliminated the effect of shoot tip removal on cytokinin concentration, suggesting that cytokinins in the xylem exudate of intact plants are under the control of the polar auxin transport system. Other xylem constituents, such as potassium or free amino acids did not show this strong increase after decapitation and did not respond to NAA application. It is concluded that the observed auxin/cytokinin interaction has an important regulatory role to play, not only in apical dominance but in many other correlative events as well.Abbreviations AD apical dominance - CKs cytokinin(s) - iAde/iAdo isopentenyladenine/iospentenyladenosine - NAA naphthaleneacetic acid - Z/ZR zeatin/zeatin riboside  相似文献   

14.
Excised shoot tips of Cuscuta reflexa Roxb. (dodder), a rootless and leafless angiospermic plant parasite, were cultured in vitro for the study of the control of lateral bud development by the apex. In a chemically defined medium lacking hormones, the basal bud alone developed into a shoot. The addition of coconut milk to the growth medium induced the activation of multiple lateral buds, but only a single bud developed further into a shoot. The decapitation of this shoot induced the development of another shoot and the process could be repeated. This showed the controlling effect of the apex in correlative control of bud development. Application of indole-3-acetic acid to the shoot tip explant delayed the development of the lateral bud. Gibberellic acid A3 induced a marked elongation growth of the explant and reinforced apical dominance. The direct application of cytokinin to an inhibited bud relieved it from apical dominance. A basipetally decreasing concentration gradient of auxin may prevail at the nodes. Bud outgrowth is probably stimulated by cytokinin produced locally in the bud.  相似文献   

15.
Cytokinin/Auxin Control of Apical Dominance in Ipomoea nil   总被引:3,自引:0,他引:3  
Although the concept of apical dominance control by the ratioof cytokinin to auxin is not new, recent experimentation withtransgenic plants has given this concept renewed attention.In the present study, it has been demonstrated that cytokinintreatments can partially reverse the inhibitory effect of auxinon lateral bud outgrowth in intact shoots of Ipomoea nil. Althoughless conclusive, this also appeared to occur in buds of isolatednodes. Auxin inhibited lateral bud outgrowth when applied eitherto the top of the stump of the decapitated shoot or directlyto the bud itself. However, the fact that cytokinin promotiveeffects on bud outgrowth are known to occur when cytokinin isapplied directly to the bud suggests different transport tissuesand/or sites of action for the two hormones. Cytokinin antagonistswere shown in some experiments to have a synergistic effectwith benzyladenine on the promotion of bud outgrowth. If theratio of cytokinin to auxin does control apical dominance, thenthe next critical question is how do these hormones interactin this correlative process? The hypothesis that shoot-derivedauxin inhibits lateral bud outgrowth indirectly by depletingcytokinin content in the shoots via inhibition of its productionin the roots was not supported in the present study which demonstratedthat the repressibility of lateral bud outgrowth by auxin treatmentsat various positions on the shoot was not correlated with proximityto the roots but rather with proximity to the buds. Resultsalso suggested that auxin in subtending mature leaves as wellas that in the shoot apex and adjacent small leaves may contributeto the apical dominance of a shoot. (Received September 24, 1996; Accepted March 16, 1997)  相似文献   

16.
Cytokinins (CKs) play essential roles in the regulation of plant growth and development. In the previous paper (Zhang et al. 2001), we reported the detection and identification of a wide spectrum of CKs, including several novel forms, in the buds of Pinus radiata D. Don. In this paper we examine the relationship between the CKs and buds from juvenile and adult trees of P. radiata. During development the morphology of buds alters significantly, from buds bearing primary needles during their juvenile phase to buds sealed in scales at the adult phase. The morphology of adult buds is a very stable character, as fascicle meristems released from apical dominance, or cultured in vitro, produced only secondary needles. However, exogenous CK causes the adult buds to revert to juvenile bud development in vitro . Analyses of the endogenous CKs revealed that juvenile buds had a relatively higher level of isopentenyladenine and isopentenyladenosine, extremely low levels of phosphorylated CKs and a relatively low level of novel CK glycosides. The adult buds contained lower levels of free base and riboside CKs but very high levels of phosphorylated CKs and novel CK glycosides. Possible roles for CKs in the regulation of bud development are discussed.  相似文献   

17.
The influence of the apical bud on the growth of the lateral buds on subterranean shoots was studied in Stachys sieboldiiMig. and Helianthus rigidus(Gass.) Desv. Removing and damaging the apical parts of subterranean shoots or their treatment with 2% chlorocholine chloride shoot enhanced shoot branching. The response to light of the apical bud was invariably negative: the stolons, which came out or were extracted from the soil, grew back into the ground (negative phototropism). The response to light of lateral buds was autonomous and depended on the conditions of their initiation. The lateral buds developed in darkness manifested negative phototropism when withdrawn from the soil and exposed to the light, whereas the buds developed in the light showed positive phototropism. The author concludes that the concept of apical dominance, thoroughly studied in aboveground shoots, is also valid for subterranean shoots. However, in contrast to the former, in the latter case, the apical bud does not control the growth orientation of the lateral buds.  相似文献   

18.
The classic Thimann-Skoog or auxin replacement apical dominance test of exogenous auxin repression of lateral bud outgrowth was successfully executed in both seedlings and older trees of white ash, green ash, and red oak under the following conditions: (1) decapitation of a twig apex and auxin replacement were carried out during spring flush, (2) the decapitation was in the previous season's overwintered wood, and (3) the point of decapitation was below the upper large irrepressible lateral buds but above the lower repressible lateral buds. Although it has been suggested that neither auxin, the terminal bud, nor apical dominance have control over the outgrowth of the irrepressible buds during spring flush, there is evidence in the present study that indicates that such control over the repressible buds exists. In seedlings, second-order branching, which resulted from decapitation of elongating current shoots, was also inhibited by exogenous auxin in the three species. Hence, the auxin replacement experiments did work on year-old proleptic buds (of branches of older trees) that would have entered the bud bank and also on current buds of seedlings. Cytokinin treatments were ineffectual in promoting bud growth.  相似文献   

19.
Terminal buds and successively subjacent lateral buds of the water fern, Marsilea drummondii, were examined to determine the pattern of hormone distribution in relation to apical dominance. Quantitative levels of indole-3-acetic acid (IAA), abscisic acid (ABA), zeatin and zeatin riboside (Z and ZR), and isopentenyladenosine (iPA) were determined by a solid-phase immunoassay using polycional antihormone antibodies. Enzyme-linked immunosorbent assay was used following a one-step HPLC purification procedure to obtain the free hormones. Active shoot apices contained the most IAA and Z-type cytokinins and inhibited buds the least. No significant differences in ABA levels were found leading to the conclusion that ABA did not play any role in apical dominance. The normal precedence of the most rapid outgrowth of the youngest inhibited bud as observed previously in decapitated plants was well correlated with its very high level of iPA observed in this study. The same phenomenon was observed in the median buds but with a weaker amplitude. The presence of this storage form could indicate that a bud at its entry into quiescence eventually looses the ability to hydroxylate iPA to Z-type cytokinins when it is fully inhibited. IAA and Z + ZR are concluded to be essential for lateral bud growth.  相似文献   

20.
Experiments with five caespitose grass species from temperateand tropical environments showed that the number of lateralshoots (tillers) which emerged following defoliation was notincreased by leaving a greater residual leaf area. Increasedavailability of photosynthate (and perhaps other resources)was effective, however, in increasing the rate of growth anddegree of flowering of new lateral shoots in one tropical species,Panicum maximum. In two temperate Agropyron tussock grasses, decapitation (apicalbud removal) did not stimulate lateral shoot growth. This indicatedthat apical dominance was not a factor preventing growth oflateral buds just prior to inflorescence emergence on the parenttillers. However, defoliation, where both terminal buds andfoliage were removed from the parent tillers stimulated lateralbud growth. Hormones other than those produced by the apicalbud or light quality or intensity may control lateral bud growthin these species. In contrast to the temperate species, lateralbud growth was stimulated by both decapitation and defoliationin the three tropical species. This response is consistent withthe model of correlative inhibition by apical dominance. Agropyron desertorum, Agropyron spicatum, Heteropogon contortus, Panicum maximum, Themeda triandra, crested wheatgrass, bluebunch wheatgrass, black speargrass, green panic grass kangaroo grass, apical dominance, tillering, regrowth, grazing, tussock grasses  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号