首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
C4 protein variants were analyzed in 64 individuals, of which 51 were either homozygous or heterozygous for an extended major histocompatibility complex (MHC) haplotype (a fixed combination of MHC alleles). The relative amount of each C4 variant was measured by densitometric scanning of stained immunofixed electrophoretic patterns of neuraminidase- and carboxypeptidase-treated samples. The relative concentrations of C4 variants on any haplotype were stable and inherited in families. In five of the eight extended haplotypes investigated, the amount of one of the C4 variants relative to others in the same pattern was increased:[HLA-B8, SC01, DR3] and[HLA-B7, SC31, DR2] produced an approximately doubled amount of C4B1;[HLA-B18, S042, DR2] an increased amount of C4B2; and[HLA-B44, SC30, DR4] a double amount of C4A3. The extended haplotype[HLA-Bw57, SC61, DR7] gave rise to two to three times as much C4B1 as C4A6. In the extended haplotypes[HLA-B44, FC31, DR7] and[HLA-Bw62, SC33, DR4], the results did not clearly indicate differences in expression of the C4 isotypes. DNA analysis possibly supported an actual gene duplication only for the haplotype[HLA-B7, SC31, DR2]. The results suggest that, in addition to variation in the number of structural genes, other MHC-linked mechanisms may be involved in the regulation of the relative amounts of C4A or C4B protein specified by any haplotype.  相似文献   

2.
Genomic probes from the HLA-B region of the major histocompatibility complex (MHC) were used to study the association of restriction fragment length polymorphisms (RFLPs) with various MHC alleles, complotypes, and extended haplotypes. The two DNA probes, M20A and R5A, were derived from previously cloned cosmids and are located 38 and 110 kilobases (kb) centromeric to HLa-B, respectively. Five different RFLP variants occuring in five different haplotypic combinations were detected within a panel of 40 homozygous-typing cells and cells from 21 families using Bst EII. In two informative families with HLA-B/DR recombinations the inheritance of the RFLP variants was consistent with their mapping between HLA-B and complotypes. The R5A/M20A haplotypic pattern 6.5 kb/3.0 kb (A) had a normal Caucasian frequency of approximately 0.43 and was found in all independent examples of the extended haplotypes [HLA-B8,SC01,DR3], [HLA-B18,F1C30, DR3], [HLa-Bw62,SC33,Dr4], [HLa-B44,SC30,Dr4], and [HLA-Bw47,FC91,0DR7]. The patterns of 6.9 kb/ 3.0 kb (B), 6.5 kb/4.7 kb (C), 1.45 kb/3.0 kb (D), and 6.9 kb/4.7 kb (E) had normal Caucasian frequencies of approximately 0.23, 0.15, 0.15, and 0.04 and were found on all independent examples of [HLA-B38,SC21, DR4], [HLA-Bw57,SC61,DR7], [HLA-B7,SC31,DR2], and [HLA-B44,FC31,DR7], respectively. Individual complotypes or HLA-B alleles which were markers of extended haplotypes showed variable associations. For example, HLA-B7 and the complotype SC31 were associated with all R5A/M20A RFLP haplotypes except haplotype E, although [HLA-B7,SC31,DR7] was associated exclusively with haplotype D. HLA-B27, not known to be part of an extended haplotype, was suprisingly exclusively associated with the 6.5 kb/4.7 kb or C haplotypic pattern in all five instances tested. These findings support the concept of regional conservation of DNA on independent examples of extended haplotypes. The results also further characterize these haplotypes.  相似文献   

3.
Cosmid genomic DNA clones have been used as hybridization probes in genomic Southern blot analysis to define restriction fragment length polymorphisms (RFLPs) in the major histocompatibility complex (MHC). Using 14 different enzymes and three overlapping cosmid clones we have detected six RFLPs in a 100 kilobase (kb) segment of DNA in the class III region extending centromeric of theTNFA gene towardHLA-DR. Four of the five RFLPs, defined using the enzymesTaqI,Rsa I,Hinc II, andHind III, and detected by the cosmid clone cosM7B, map to a 29 kb segment of DNA that includes all of the recently described G2 (BAT2) gene and a large portion of the 3 end of the G3 (BAT3) gene. The different RFLP variants were established by analyzing the DNA from three informative families and a panel of 51HLA-homozygous typing cell lines. CosM7B detectsTaq I variants of 4.3 kb, and 2.9 kb or 2.8 kb, Rsa I variants of 2.9 kb or 2.4 kb,Hinc II variants of 5.8 kb or 3.8 kb and 1.4 kb, and aHind III variant of 4.8 kb, while cosOT2 detects Taq I variants of 4.5 kb or 4 kb. The distribution of theRsa 1, Hinc II and Taq I RFLPs detected by cosM7B, and theTaq I RFLP detected with cosOT2, within the panel of cell line DNAs was assessed by Southern blotting. The 4.3 kbTaq I variant was observed in only one cell line with the extended haplotypeHLA-A29, C-, B44, SC30, DR4. The other RFLPs, however, occurred much more frequently. The 2.8 kb Taq I variant was observed in 20 % of haplotypes, the 2.9 kbRsa I variant was observed in 42% of haplotypes, and the 5.8 kbHinc I variant was observed in 12 % of haplotypes analyzed. The 4.5 kbTaq I variant detected by the overlapping cosmid cosOT2 was present in 21 % of haplotypes. Analysis of the RFLP variants with each other revealed seven different haplotypic combinations. Three of the haplotypic combinations were each subdivided into two subsets on the basis of the Nco I RFLP variant they carried at theTNF-B locus. These haplotypic combinations potentially allow differentiation among different extended haplotypes such asHLA-B8, SC01, DR3, HLA-B18, F1 C30, DR3, andHLA-B44, FC31, DR7. The RFLPs detected by the cosmid clones thus provide new tools which will be useful in the further genetic analysis of the MHC class III region.  相似文献   

4.
We detected restriction fragment length polymorphisms that distinguish the extended haplotype HLA-B8,DR3,SCO1 from HLA-B18,DR3,F1C30 at the DR beta and DQ beta loci with five of seven restriction endonucleases used. One set of restriction fragments was always found on HLA-B8,DR3,SCO1 and associated with DRw52a, while the other was present on HLA-B18, DR3,F1C30 and correlated with DRw52b (the gene encoding the subtype of DRw52 associated with the BO1 or LB-Q1 antigen). Furthermore, using a full-length DQ beta gene probe, we found division in the DQw2 haplotype, in which DQw2a always associated with HLA-B8, DR3,SCO1, while DQw2b always occurred with HLA-B18,DR3,F1C3O. Our evidence thus indicates that serologically defined HLA-DR3, HLA-DRw52, and HLA-DQw2 are each produced by two structurally very different sets of genes, one set occurring in HLA-B8, DR3,SCO1, and the other in HLA-B18,DR3,F1C30.Abbreviations used in this paper BSA bovine serum albumin - MHC major histocompatibility complex - EDTA ethylenediaminetetraacetic acid - SDS sodium dodecyl sulfate  相似文献   

5.
The loci for BF, C2, C4A, and C4B are very closely linked to each other so that alleles of these plasma protein markers occur in populations in linkage disequilibrium and are inherited as single genetic units called complotypes. These complotypes are coded by a DNA region of the short arm of chromosome 6 embracing approximately 100 kilobases, which serve as a marker of the major histocompatibility complex. We have studied the complotypes of nine families with known HLA-B/DR crossovers. In seven families, the complotypes were inherited with HLA-DR, including in one family with a double recombination. The haplotype HLA-A28, Cw1, B27, FC3, 20, DR4 of JTr resulted from two recombinations between HLA-A2, Cwl, B27, SC42, DR7 and HLA-A28, Cwx or Cw1, B37, FC3, 20, DR4. In the remaining two families (Ro and Lo) the complotypes were inherited with HLA-B. The haplotype A2, Cw5, Bw44, SC30, DR3 of StLo resulted from paternal recombination between the haplotypes A2, Cw5, Bw44, SC30, DR4 and A24, B8, SC01, DR3, and the haplotype A24, Cw4, Bw35, SC31, DR3 of NaRo resulted from maternal recombination between A24, Cw4, Bw35, SC31, DR4 and A26, Bw41, FC31, DR3. Our data suggest that the complotype region maps closer to HLA-D than to HLA-B.  相似文献   

6.
Homozygous typing cells from 13 normal HLA-A1, B8, Dw3, DR3 and five normal HLA-A26, Bw38, Dw10, DR4 individuals were typed for the following markers: HLA-SB, MB, MT; complement proteins BF, C2, C4A, C4B; and GLO. Ninety-one percent of A1, B8, Dw3, DR3 homozygous individuals (HI) tested were homozygous for BF * S, C2 * C, C4A * QO, and C4B *1 (SCO1 complotype), which indicates that the SCO1 complotype is in linkage disequilibrium with the A1, B8, DR3 haplotype in randomly selected normal populations. Sixty-seven percent of HLA-A1, B8, Dw3, DR3, SCO1 positive HI also expressed SB1; since the frequency of SB 1 in random Caucasian populations is 11.2%, this finding indicates that SB1 is in linkage disequilibrium with the A1, B8, DR3, SCO1 extended haplotype. All HI with the A26, Bw38, Dw10, DR4 haplotype were homozygous for both SC21 and SB4, suggesting that SC21 and SB4 should be included in the A26, Bw38, Dw10, DR4 extended haplotype. On the other hand, neither of the GLO markers were found in association with either haplotype. The results of this study indicate that HLA-SB is included in some extended haplotypes and may be important in these markers for diseases such as insulin-dependent diabetes mellitus. This study also demonstrated an apparent influence of HLA-SB on primary mixed lymphocyte culture (MLC) responses. The mean relative response of primary MLCs between individuals matched for HLA-A, B, D, DR, MB and MT but not SB was 40% of that for the MLCs with mismatched HLA-D, significantly higher than the MLCs matched for all HLA and complotypes.  相似文献   

7.
We have analyzed genomic DNA in a large number of independent examples of five HLA-DQw2-bearing extended haplotypes for their associated subtypes by restriction fragment length polymorphism (RFLP) using DRB, DQA, and DQB probes after Taq I and Pst I digestion and Southern blotting. In addition to three previously described HLA-DQw2 subtypes, DQw2a, DQw2b, and DQw2c, we observed a fourth subtype, HLA-DQw2d, characterized by 5.8 kilobase (kb) DRB/Taq I, 2.4, 2.3, and 1.8 kb DQB/Taq I, and 8.0 and 2.3 kb DQA/Pst I fragments. All 22 independent examples of the extended haplotype [HLA-B8,SCO1,DR3] carried DQw2a and all 11 independent examples of [HLA-B18,F1C30,DR3] carried DQw2b. In addition, all independent examples (21 and 4, respectively) of two DR7-carrying extended haplotypes, [HLA-B44,FC31,DR7] and [HLA-Bw47,FC91,0,DR7], carried DQw2c and all independent examples of [HLA-Bw57,SC61,DR7] carried DQw2d. Our results show that the DNA in the DR/DQ region of extended haplotypes is relatively fixed and that different DQw2 subtypes characterize different DQw2-bearing extended haplotypes.  相似文献   

8.
In North America and European Caucasoids with systemic lupus erythematosus (SLE) there is an increased frequency of aC4A, CYP21A gene deletion, largely associated with theHLA-B8,DR3,C4A * QO extended haplotype. There have been no consistent HLA associations reported for SLE in blacks, although an increased frequency of serologically determinedC4A null alleles has been reported in two studies. We studied 79 black American SLE patients and 68 black controls by restriction fragment length polymorphism analysis to dermine if aC4A gene deletion was a genetic risk factor for SLE. Moreover, the nature of the deletion and any HLA phenotypic associations were sought. Nineteen of 79 (24%) patients compared to 5 of 68 (7.4%) controls had a phenotypicC4A,CYP21A gene deletion (P=.005; RR=4). A homozygous deletion in four patients gave a genotypic frequency of 23/158 (14.5%) SLE patients vs 5/136 (3.7%) controls (P=.001; RR=4.5). The deletion was associated with HLA-DR2 (P=.03) and HLA-DR3 (P=.03). Moreover, all subjects with the deletion had HLA-DR2 or DR3 (P=7.7×10−6). HLA-B44 was also associated with the deletion (P=.02), and eight of the nine HLA-B44 positives also carried HLA-DR2. HLA-B8 approached significance (P=.08) and was always accompanied by HLA-DR3. Finally, this black population demonstrated a uniqueC4B gene size polymorphism with 80% C4B “short” as compared to the 40% C4B “short” frequency reported in whites. We conclude that a largeC4A,CYP21A gene deletion, particularly associated with theHLA-B44,-DR2, and-DR3 alleles, is the strongest genetic risk factor thus far identified for SLE susceptibility in black Americans. Furthermore, the unique preponderance of theC4B “short” gene form may be a factor in the actual formation of the deletion.  相似文献   

9.
We investigated T-cell-defined HLA-B7 subtypes using cDNA sequencing, analysis of bound peptides, and reactivity with a panel of alloreactive cytotoxic T-lymphocyte (CTL) clones. Three subtypes (HLA-B*0702, HLA-B*0703, and HLA-B*0705) differ in nucleotide and predicted amino acid sequence. CTL reactivity and pooled peptide sequencing show that these three HLA-B7 subtypes bind distinct but overlapping sets of peptides. In particular B*0702 expresses D pocket residue Asp 114 and binds peptides with P3 Arg, whereas B*0705 expresses D pocket residue Asn 114 and binds peptides with P3 Ala, Leu, and Met. Consistent with different peptide-binding specificities, three alloreactive CTL differentiate between cells expressing B*0702, B*0703, and B*0705 by detecting specific peptide/HLA-B7 complexes. In contrast, three other T-cell-defined HLA-B7 subtypes are identical to HLA-B*0702. The B*0702-expressing cell lines are differentiated by two of ten CTL clones. One CTL clone differentiates B*0702-expressing cells by their ability to present peptide antigen. Thus differences in peptide presentation can explain differential CTL recognition of cell lines expressing structurally identical and variant HLA-B7.  相似文献   

10.
The B18 C4A3 C4BQ0 BfF1 DR3 haplotype was found to be ideal for determining the order of C4 and Bf relative to HLA-B and DR by the haplotype method. All the copies of this haplotype are assumed to be derived from a single ancestral haplotype. Sixteen of the twenty-six BfFl-containing haplotypes carried all of the alleles from this ancestral haplotype. Most of the other BfFl-containing haplotypes could be derived from the ancestral haplotype by a single crossover event for one of the two possible gene orders. This suggests that B18 C4A3 C4BQ0 BfFl DR3 is the sole source of the BfFl allele. The uncommon C4 type on B18 C4A3 C4BQ0 BfFl DR3 facilitates recognition of the BfFl-containing products of recombination between Bf and C4. One such recombinant haplotype was found which shows that the orientation of the class III genes is as follows: C4 is closest to HLA-B and Bf is closest to HLA-DR. This gene order is supported by all the earlier unequivocal results obtained using the haplotype method (Olaisen et al. 1983, Marshall et al. 1984a). Combining these results with the information on class III genes obtained from overlapping cosmid clones (Carroll et al. 1984) and earlier mapping studies (Robson and Lamm 1984) shows that HLA-B is telomeric to 21B. C4B, 21A, C4A, Bf and C2 then follow 21B in that order covering 120 kb. HLA-DR is located further toward the centromere.  相似文献   

11.
Summary C2 typing is performed by immunofixation with anti-C2 antiserum instead of by a hemolytic overlay. This method gives sharp band definition, is less cumbersome than the hemolytic overlay, gel files are easily made, and it also enables one to describe putative new nonhemolytic variants. C2 allele frequencies were studied in a sample of the normal Spanish population and were found to be similar to other Caucasoids. HLA-Bw62,-Cw3, and-DR4 were significantly associated with C2 B. Concordantly, the only C2*B extended HLA haplotype found in family material was Bw62-Cw3-Bw6-(DR4)-Bf*S-C2*B-C4A*3 B*2-(GLO*1). C4A*4 B*2 and C4A*4 B*4 are not found within the same haplotype together with C2*B and Bw62 or Bw22 respectively, nor do other C2*B haplotypes occur with common HLA-B alleles. These results may favour the hypothesis that the Bw62-C2*B haplotype is produced by one mutation arising in the Bw62-C2*C haplotype and that subsequent crossovers can explain other C2*B haplotypes (including Bw22-C2*B).  相似文献   

12.
Two hundred subjects with insulin-dependent (type I) diabetes mellitus (IDDM) were typed for HLA-B, HLA-DR, and properdin factor B (Bf). HLA and Bf antigen and haplotype frequencies in subjects were compared with control frequencies derived from the 8th HLA Workshop. Frequencies of extended haplotypes (defined by B-Bf-DR alleles on a chromosome) were also contrasted with control frequencies. Significant positive associations between IDDM and HLA-B8, DR3, DR4, BfS, and BfF1 were confirmed, as were significant negative associations between IDDM and HLA-B7, DR2, DR5, DR7, and BfF. One haplotype (B7-BfS-DR2) exhibited significant negative association, while five haplotypes (B8-BfS-DR3, B8-BfS-DR4, B15-BfS-DR4, B18-BfF1-DR3, and B40-BfS-DR4) exhibited significant positive associations with IDDM. In this sample, 64% of all probands carried at least one of the high-risk haplotypes. In conclusion, the occurrence of five "high-risk" haplotypes associated with IDDM provides evidence for previously undocumented genetic heterogeneity and suggests that possibly more than two HLA-region genes may be involved in IDDM susceptibility.  相似文献   

13.
A new mouse monoclonal antibody (MoAb) 4E, which detects an epitope shared by HLA-B locus antigens, together with the MoAb W6/32, detecting a common HLA, B, C, determinant, and the MoAb 4B, detecting HLA-A2 and A28, were used to isolate HLA-A and -B antigens in sequential immunoprecipitation. The HLA antigens obtained from metabolically labeled cell extracts of B-lymphoblastoid cell lines or from phytohemagglutinin (PHA) activated peripheral blood lymphocytes were compared by one-dimensional isoelectric focusing (1D-IEF). The IEF banding patterns obtained with native HLA antigens segregated in a family with HLA. Neuraminidase treatment of isolated antigens reduced the number of bands to one or two, simplifying the analysis of characteristic patterns. Thus, we have cataloged IEF banding patterns for the majority of the serologically recognized HLA-A and -B allotypes obtained from 57 unrelated American Caucasians. While no HLA-A locus or HLA-B locus specific banding patterns were observed, the HLA-A antigens had, in general, slightly higher pl values than the HLA-B antigens. HLA-C antigens could not be detected in this assay system. The polymorphism detected by IEF banding patterns was as extensive as the serologically detected polymorphism identified by classical HLA serology. Moreover, variants for some HLA allotypes could be detected by this method. In addition to previously recognized A2 variants, new variants were identified for HLA-A1, A26, and Bw44. Each A1 and Bw44 variant was associated with particular haplotypes. The HLA-A2 antigens occurred on 43 HLA haplotypes in the unrelated Caucasian population. Only one of each A2 variants was identified in this population.  相似文献   

14.
We investigated the Nco I restriction fragment length polymorphism (RFLP) of the tumor necrosis factor beta (TNFB) gene in 173 patients with systemic lupus erythematosus (SLE), 192 unrelated healthy controls, and eleven panel families, all of German origin. The phenotype frequency of the TNFB*1 allele was significantly increased in patients compared to controls (63.6% vs 47.1%, RR = 1.96, p <0.002). The results of a two-point haplotype statistical analysis between TNFB and HLA alleles show that there is linkage disequilibrium between TNFB*1 and HLA-A1, Cw7, B8, DR3, DQ2, and C4A DE. The frequency of TNFB*1 was compared in SLE patients and controls in the presence or absence of each of these alleles. TNFB*1 is increased in patients over controls only in the presence of the mentioned alleles. Therefore, the whole haplotype A1, Cw7, B8, TNFB*1, C4A DE, DR3, DQ2 is increased in patients and it cannot be determined which of the genes carried by this haplotype is responsible for the susceptibility to SLE. In addition, two-locus associations were analyzed in 192 unrelated healthy controls for TNFB and class I alleles typed by serology, and for TNFB and class II alleles typed by polymerase chain reaction/oligonucleotide probes. We found positive linkage disequilibrium between TNFB*1 and the following alleles: HLA-A24, HLA-B8, DRB1*0301, DRB1*1104, DRB1*1302, DQA1*0501, DQB1*0201, DQB1*0604, and DPB1*0101. TNFB*2 is associated with HLA-B7, DRB1*1501, and DQB1*0602.This study was supported by grants from the Federal Ministry of Research and Technology (BMFT/DFVLR, 01 VM 8608/9), the German Academic Exchange Service (DAAD, 322/501/014/0), and SFB (217).This work is part of the doctoral thesis of M. P. Bettinotti.  相似文献   

15.
Five sets of cytotoxic effector cells were generated, using haploidentical, first degree relatives in five different families, against the HLA-A3; B7 serological determinants combined with different DR antigens. When tested against a panel of cells bearing combinations of the HLA-A, -B and -DR antigens it was shown that the HLA-B7 antigen was as strong a CML target determinant alone as it was in the presence of HLA-A3. The strength of the HLA-A3 antigen as target determinant varied. With effector cells primed to the HLA-A3; B7; DR2 haplotype, the A3 antigen alone behaved as a weak target determinant. When the same target cells were tested with the effector cells generated against HLA-A3; B7 without DR2, the A3 antigen behaved as a strong target determinant. A number of target cells lacking the serologically detectable HLA determinants present on the sensitizing HLA haplotype were identified as being killed by specific effector cells. These data suggest either a number of new CML target determinants controlled by different loci or the presence of a single, new locus with multiple alleles controlling CML targets.  相似文献   

16.
TheC4 and21-OH loci of the class III HLA have been studied by specific DNA probes and the restriction enzymeTaq I in 24 unrelated Sardinian individuals selected from completely HLA-typed families. All 24 individuals had theHLA extended haplotypeA30,Cw5,B18, BfF1,DR3,DRw52,DQw2, named “Sardinian” in the present paper because of its frquency of 15% in the Sardinian population. Eighteen of these were homozygous for the entire haplotype, and six were heterozygous at theA locus and blank (or homozygous) at all the other loci. In all completely homozygous cells and in four heterozygous cells at theA locus, the restriction fragments of the21-OHA (3.2 kb) andC4B (5.8 kb or 5.4 kb) genes were absent, and the fragments of theC4A (7.0 kb) and21-OHB (3.7 kb) genes were present. It is suggested that the “Sardinian” haplotype is an ancestral haplotype without duplication of theC4 and21-OH genes, practically always identical in its structure, also in unrelated individuals. The diversity of this haplotype in the class III region (about 30 kb less) may be at least partially responsible for its misalignment with most haplotypes, which have duplicatedC4 and21-OH genes, and therefore also for its decreased probability to recombine. This can help explain its high stability and frequency in the Sardinian population. The same conclusion can be suggested for the Caucasian extended haplotypeA1,B8,DR3 that always seems to lack theC4A and21-OHA genes.  相似文献   

17.
We previously reported that the complement C4B null allele appears to be associated with infantile autism. Since the C4B null allele is known to be part of the extended or ancestral haplotype [B44-SC30-Dr4], we investigated the incidence of [B44-Sc30-DR4] in 21 autistic children and their parents. This extended haplotype was increased by almost six-fold in the autistic subjects as compared with healthy controls. Moreover, the total number of extended haplotypes expressed on chromosomes of autistic subjects was significantly increased as compared with those expressed on chromosomes of healthy subjects. We conclude that a gene related to, or included in, the extended major histocompatibility complex may be associated with autism.  相似文献   

18.
Summary A C4 variant found in about 5% of the population is described. The fast-moving part of this variant is governed by an allele (F x) codominant to F. The F x allele is in very strong linkage disequilibrium with HLA-B17 as the linkage disequilibrium parameter accounted for nearly 100% of the haplotype frequency of B17, F x. The strong association is also evidenced by the study of 11 families segregating for the F x allele. There was no instance of recombination between C4 and HLA in 36 informative meioses.  相似文献   

19.
Twenty-three individuals from various disease groups and normal controls were identified by immunofixation with anti-C4, C4-dependent lysis, determination of Rg (Rodgers) and Ch (Chido) phenotypes, and immunoblotting with C4-specific mouse monoclonal antibody. We found that one haplotype predominates with the C4B * 5 allele, HLA-A11, B22(55), Cw3, Bf * S, C4A * 4B * 5, which also carries the Ch 1,–2, 3 haplotype. The B5 allotype was also found with HLA-1360, HLA-1335 in Caucasoids, and HLA-B18 in non-Caucasoids; these carried the Ch –1, –2, –3 haplotype. Our results are in accord with an earlier report of two B5 subtypes, B5Rg+ and B5Rg (Roos et al. 1984). The specificity of the mouse monoclonal antibodies IC4 and 21312 had been previously related to C4A and C4B, respectively, but our results suggest that they relate more closely to Rg and Ch determinants.  相似文献   

20.
The MT3 specificity is closely associated with the HLA-DR4, DR7, and DRw9, and is a supertypic specificity. To determine whether the MT3 specificity resides on a novel class II antigen, the MT3 antigen, DR antigen and the DC-like antigen from the DR4-, DR7- and DRw9-homozygous B lymphoid cell lines were identified and compared with one another by two-dimensional gel electrophoresis using alloantisera. The analysis revealed that each of the three antigens exists as a structurally distinct class II antigen in each cell line. The light chains of the MT3, DR and DC-like antigens are different in charge from one another. The molecular weight of the heavy chains of the MT3 and DR antigens is higher than that of the DC-like antigen. On the other hand, no electrophoretic differences are observed between the heavy chains of the MT3 and DR antigens. These results strongly suggest that the MT3 specificity resides on a light chain of a novel class II antigen distinct from the DR antigen and the DC-like antigen. These observations also support our previous proposition that the MT3 antigen belongs to the fourth group of the human class II antigens.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号