首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.

Background

Antioxidants have been shown to enhance the proliferation of adipose-derived mesenchymal stem cells (ADMSCs) in vitro, although the detailed mechanism(s) and potential side effects are not fully understood.In this study, human ADMSCs cultured in ImF-A medium supplemented with antioxidants (N-acetyl-l-cysteine and ascorbic acid-2-phosphate) and fibroblast growth factor 2 (FGF-2) were compared with ADMSCs cultured with FGF-2 alone (ImF) or with FGF-2 under 5% pO2 conditions (ImF-H).

Results

During log-phase growth, exposure to ImF-A resulted in a higher percentage of ADMSCs in the S phase of the cell cycle and a smaller percentage in G0/G1 phase. This resulted in a significantly reduced cell-doubling time and increased number of cells in the antioxidant-supplemented cultures compared with those supplemented with FGF-2 alone, an approximately 225% higher cell density after 7 days. Western blotting showed that the levels of the CDK inhibitors p21 and p27 decreased after ImF-A treatment, whereas CDK2, CDK4, and CDC2 levels clearly increased. In addition, ImF-A resulted in significant reduction in the expression of CD29, CD90, and CD105, whereas relative telomere length, osteogenesis, adipogenesis, and chondrogenesis were enhanced. The results were similar for ADMSCs treated with antioxidants and those under hypoxic conditions.

Conclusion

Antioxidant treatment promotes entry of ADMSCs into the S phase by suppressing cyclin-dependent kinase inhibitors and results in rapid cell proliferation similar to that observed under hypoxic conditions.  相似文献   

4.
Adipose-derived stem cells (ASCs) are a set of multi potent stem cells potentially used in cartilage tissue engineering. We hypothesized that the effect of dynamic compression and co-culture with nucleus pulposus cells (NPCs) promotes ASC proliferation and chondrogenic differentiation. A controlled dynamic compression loading device was utilized to stimulate ASCs obtained from Sprague Dawley (SD) rats and identified by flow cytometry. The proliferation index was measured by carboxyfluorescein succinimidyl ester (CFSE) staining. Dynamic compression, as well as co-culture enhanced chondrogenic differentiation of ASCs as indicated by the expression of SOX-9, type-II collagen and aggrecan, which were measured by real-time PCR and Western blot. In our study, we found dynamic compression promoted the proliferation of ASCs and induced its differentiation into NP-like cells. Combination of dynamic compression and co-culture showed an additive effect on NP-like cell differentiation.  相似文献   

5.

Background

Wound healing is a complex biologic process that involves the integration of inflammation, mitosis, angiogenesis, synthesis, and remodeling of the extracellular matrix. However, some wounds fail to heal properly and become chronic. Although some simulated chronic wound models have been established, an efficient approach to treat chronic wounds in animal models has not been determined. The aim of this study was to develop a modified rat model simulating the chronic wounds caused by clinical radiation ulcers and examine the treatment of chronic wounds with adipose-derived stem cells.

Results

Sprague–Dawley rats were irradiated with an electron beam, and wounds were created. The rats received treatment with adipose-derived stem cells (ASCs), and a wound-healing assay was performed. The wound sizes after ASC treatment for 3 weeks were significantly smaller compared with the control condition (p < 0.01). Histological observations of the wound edge and immunoblot analysis of the re-epithelialization region both indicated that the treatment with ASCs was associated with the development of new blood vessels. Cell-tracking experiments showed that ASCs were colocalized with endothelial cell markers in ulcerated tissues.

Conclusions

We established a modified rat model of radiation-induced wounds and demonstrated that ASCs accelerate wound-healing.  相似文献   

6.
BACKGROUNDAdipose-derived stem cells (ASCs) have been increasingly explored for cell-based medicine because of their numerous advantages in terms of easy availability, high proliferation rate, multipotent differentiation ability and low immunogenicity. In this respect, they have been widely investigated in the last two decades to develop therapeutic strategies for a variety of human pathologies including eye disease. In ocular diseases involving the retina, various cell types may be affected, such as Müller cells, astrocytes, photoreceptors and retinal pigment epithelium (RPE), which plays a fundamental role in the homeostasis of retinal tissue, by secreting a variety of growth factors that support retinal cells.AIMTo test ASC neural differentiation using conditioned medium (CM) from an RPE cell line (ARPE-19).METHODSASCs were isolated from adipose tissue, harvested from the subcutaneous region of healthy donors undergoing liposuction procedures. Four ASC culture conditions were investigated: ASCs cultured in basal Dulbecco''s Modified Eagle Medium (DMEM); ASCs cultured in serum-free DMEM; ASCs cultured in serum-free DMEM/F12; and ASCs cultured in a CM from ARPE-19, a spontaneously arising cell line with a normal karyotype derived from a human RPE. Cell proliferation rate and viability were assessed by crystal violet and MTT assays at 1, 4 and 8 d of culture. At the same time points, ASC neural differentiation was evaluated by immunocytochemistry and western blot analysis for typical neuronal and glial markers: Nestin, neuronal specific enolase (NSE), protein gene product (PGP) 9.5, and glial fibrillary acidic protein (GFAP).RESULTSDepending on the culture medium, ASC proliferation rate and viability showed some significant differences. Overall, less dense populations were observed in serum-free cultures, except for ASCs cultured in ARPE-19 serum-free CM. Moreover, a different cell morphology was seen in these cultures after 8 d of treatment, with more elongated cells, often showing cytoplasmic ramifications. Immunofluorescence results and western blot analysis were indicative of ASC neural differentiation. In fact, basal levels of neural markers detected under control conditions significantly increased when cells were cultured in ARPE-19 CM. Specifically, neural marker overexpression was more marked at 8 d. The most evident increase was observed for NSE and GFAP, a modest increase was observed for nestin, and less relevant changes were observed for PGP9.5. CONCLUSIONThe presence of growth factors produced by ARPE-19 cells in tissue culture induces ASCs to express neural differentiation markers typical of the neuronal and glial cells of the retina.  相似文献   

7.
8.
9.
《Cytotherapy》2014,16(7):915-926
BackgroundThere is a growing interest in mesenchymal stem cells (MSCs) because they are regarded as good candidates for cell therapy. Adipose tissue represents an easily accessible source to derive mesenchymal stem cells (Ad-MSCs) non-invasively in large numbers. The aim of this study was to evaluate a defined serum-free medium for in vitro expansion of MSCs as a prerequisite for their clinical use.MethodsAdipose tissue was isolated from healthy donors. Cells were isolated and expanded for five passages in serum-free medium (Mesencult-XF) and Dulbecco's modified Eagle's medium supplemented with 10% fetal bovine serum (DMEM-FBS). MSC morphology, marker expression, viability, population doubling time and differentiation potential toward osteogenic and adipogenic lineages were evaluated. Bone marrow MSCs were included as controls.ResultsAd-MSCs cultured in Mesencult-XF had shorter population doubling time (33.3 ± 13.7 h) compared with those cultured in DMEM-FBS (54.3 ± 41.0 h, P < 0.05). Ad-MSCs cultured in Mesencult-XF displayed a stable morphology and surface marker expression and a higher differentiation potential in comparison to Ad-MSCs cultured in DMEM-FBS.ConclusionsThe defined serum-free and xeno-free Mesencult-XF media appear to be a good choice for Ad-MSCs, but it is not as good in supporting culture of bone marrow MSCs when the cells are to be used for clinical purposes.  相似文献   

10.
Radiation-induced intestinal injuries (RIII) commonly occur in patients who suffer from pelvic or abdominal cancer. However, current management of these injuries is ineffective. Recently, mesenchymal stem cells (MSCs) have been extensively used in regenerative medicine and have achieved a high level of efficacy. In the present study, we hypothesised that human adipose-derived mesenchymal stem cells (hAd-MSCs) could be used as potential tools to heal RIII. We observed that adult Sprague–Dawley rats that received whole-abdominal irradiation benefitted from hAd-MSC injection. hAd-MSCs had RIII-healing effects, including anti-inflammation, neovascularisation and maintenance of epithelium homeostasis, as indicated by elevated serum IL-10, upregulation of vascular endothelial growth factor, basic fibroblast growth factor and epidermal growth factor in irradiated intestine, mobilisation of CD31-positive haematopoietic stem cells or haematopoietic progenitor cells, and the prolonged presence of Bmi1-positive cells within crypts. Consequently, after hAd-MSC treatment, irradiated rats survived longer than non-treated animals. These results suggest that hAd-MSCs have therapeutic potential for RIII management.  相似文献   

11.
12.
Mesenchymal stem cells (MSCs) are multipotent cells capable of differentiating into a wide range of cell types and provide a potential to transfer therapeutic protein in vivo, making them valuable candidates for gene therapy and cell therapy. However, using MSCs in in vivo is limited due to the low rate of transfection and transduction efficacy. Therefore, developing methods to efficiently transfer genes into MSCs would provide a number of opportunities for using them in the clinic. Here, we introduce a simple and robust method for efficient transduction of human adipose-derived MSCs by modification under the culture condition of human embryonic kidney cells 293 (HEK293T) and MSCs. Moreover, as a transduction enhancer, polybrene was replaced with Lipofectamine, a cationic lipid. Therefore, we showed that transduction of primary cells can be increased efficiently by modifying the culture condition.  相似文献   

13.
Cellular senescence is the permanent arrest of cell cycle, physiologically related to aging and aging-associated diseases. Senescence is also recognized as a mechanism for limiting the regenerative potential of stem cells and to protect cells from cancer development. The senescence program is realized through autocrine/paracrine pathways based on the activation of a peculiar senescence-associated secretory phenotype (SASP). We show here that conditioned media (CM) of senescent mesenchymal stem cells (MSCs) contain a set of secreted factors that are able to induce a full senescence response in young cells. To delineate a hallmark of stem cells SASP, we have characterized the factors secreted by senescent MSC identifying insulin-like growth factor binding proteins 4 and 7 (IGFBP4 and IGFBP7) as key components needed for triggering senescence in young MSC. The pro-senescent effects of IGFBP4 and IGFBP7 are reversed by single or simultaneous immunodepletion of either proteins from senescent-CM. The blocking of IGFBP4/7 also reduces apoptosis and promotes cell growth, suggesting that they may have a pleiotropic effect on MSC biology. Furthermore, the simultaneous addition of rIGFBP4/7 increased senescence and induced apoptosis in young MSC. Collectively, these results suggest the occurrence of novel-secreted factors regulating MSC cellular senescence of potential importance for regenerative medicine and cancer therapy.  相似文献   

14.
Adult stem cells have a great potential to treat various diseases. For these cell-based therapies, adipose-derived stem cells (ADSCs) are one of the most promising stem cell types, including embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs). ESCs and iPSCs have taken center stage due to their pluripotency. However, ESCs and iPSCs have limitations in ethical issues and in identification of characteristics, respectively. Unlike ESCs and iPSCs, ADSCs do not have such limitations and are not only easily obtained but also uniquely expandable. ADSCs can differentiate into adipocytes, osteoblasts, chondrocytes, myocytes and neurons under specific differentiation conditions, and these kinds of differentiation potential of ADSCs could be applied in regenerative medicine e.g., skin reconstruction, bone and cartilage formation, etc. In this review, the current status of ADSC isolation, differentiation and their therapeutic applications are discussed.  相似文献   

15.
Adult stem cells have a great potential to treat various diseases. For these cell-based therapies, adipose-derived stem cells(ADSCs) are one of the most promising stem cell types, including embryonic stem cells(ESCs) and induced pluripotent stem cells(iPSCs). ESCs and iPSCs have taken center stage due to their pluripotency. However, ESCs and iPSCs have limitations in ethical issues and in identification of characteristics, respectively. Unlike ESCs and iPSCs, ADSCs do not have such limitations and are not only easily obtained but also uniquely expandable. ADSCs can differentiate into adipocytes, osteoblasts, chondrocytes, myocytes and neurons under specific differentiation conditions, and these kinds of differentiation potential of ADSCs could be applied in regenerative medicine e.g., skin reconstruction, bone and cartilage formation, etc. In this review, the current status of ADSC isolation, differentiation and their therapeutic applications are discussed.  相似文献   

16.
目的探讨PDMSCs向肝细胞增殖和分化的体外培养条件及方法。方法孕20 d的大鼠无菌条件下取胎盘,经胶原酶消化、密度离心、贴壁筛选法分离培养胎盘源间充质干细胞,并对其表面抗原进行鉴定。在体外培养体系中加入胎肝滤液,模拟体内肝脏微环境,诱导PDMSCs向肝细胞定向分化,以免疫细胞化学检测干细胞标志物;PAS检测糖原表达。结果在体外培养条件下,PDMSCs贴壁生长为成纤维样细胞,CD44表面标志物检测阳性;PDMSCs经胎肝滤液诱导14d时细胞呈现圆形、卵圆形的特征性改变,AFP、CK19表达阳性。结论胎肝滤液能够诱导PDMSCs定向分化为肝细胞样细胞。  相似文献   

17.
18.
目的评价脐带间充质干细胞(hUC-MSCs)对内毒素血症诱发的大鼠急性肝功能损伤的影响及其与凋亡机制的关系。 方法6周龄雄性SD大鼠18只,随机分为3组,分别是对照组(C组)、内毒素血症组(M组)和内毒素血症+hUC-MSCs治疗组(M+cells组),每组6只。大鼠腹腔注射5 mg/kg脂多糖(LPS)诱导内毒素血症模型,并经尾静脉注射含20×106个hUC- MSCs。4 h时检测血清谷草转氨酶(AST)和谷丙转氨酶(ALT),ELISA方法检测肿瘤坏死因子(TNF-α)、白细胞介素6(IL-6),HE常规染色鉴定肝脏组织病理,Western Blot法检测肝脏组织抗凋亡蛋白Bcl-2、促凋亡蛋白Bax、凋亡信号调节激酶1(ASK1)、应激活化蛋白激酶即JUN氨基末端激酶(JNK)蛋白的表达。多组间比较采用单因素方差分析,相关分析选用pearson。 结果(1)C组AST、ALT、TNF-α和IL-6浓度分别为(74.66±6.39)U/ L、(40.07±6.07)U/ L、(37.74±3.08)ng/L和(0.42±0.07)ng/L;与M组比较(310.75±9.13)U/L、(107.04±10.04)U/ L、(160.32±4.88)ng/L和(0.90±0.09)ng/L,差异具有统计学意义(P均 < 0.05),M组AST、ALT、TNF-α、IL-6浓度分别为(310.75±9.13)U/L、(107.04±10.04)U/ L、(160.32±4.88)ng/ L和(0.90±0.09)ng/L,与M+cells组比较(204.49±15.36)U/L、(71.24± 7.34)U/ L、(117.61±9.37)ng/ L和(0.60±0.10)ng/L,差异具有统计学意义(P均 < 0.05)。(2)C组大鼠肝细胞形态正常,可见肝小叶结构清晰,肝汇管区无炎性细胞浸润,M组大鼠肝小叶散在点状坏死肝细胞伴炎性浸润,肝细胞间隙散布增生的Kuffer细胞,M+cells组大鼠肝小叶炎性细胞浸润及肝细胞间隙Kuffer细胞浸润改善。(3)与C组比较,M组大鼠肝脏组织JUN、ASK1和Bax蛋白表达均增高(P均 < 0.05),Bcl-2蛋白表达降低(P < 0.05);与M组比较,M+cells组大鼠肝脏组织JUN、ASK1和Bax蛋白表达降低(P均 < 0.05),Bcl-2蛋白增加(P < 0.05)。(4)单因素相关分析显示大鼠血清ALT、AST与TNF-a指数呈正相关(r值分别为0.9580、0.9865,P均< 0.05),大鼠血清ALT、AST与IL-6指数呈正相关(r值分别为0.9892、0.9630,P均 < 0.05),大鼠血清ALT、AST分别与BAX、ASK1、JNK指数均呈正相关(r值分别为0.9993、0.9851、0.7901、0.9864、0.9557、0.7128,P均 < 0.05),大鼠血清ALT、AST分别与BCL-2指数均呈负相关(r值分别为-0.8824、-0.9338,P均 < 0.05),大鼠血清TNF-α分别与BAX、ASK1、JNK指数均呈正相关(r值分别为0.9466、0.8958、0.6025,P均< 0.05),大鼠血清TNF-α与BCL-2指数呈负相关(r = -0.6025,P均 < 0.05),大鼠血清IL-6分别与BAX、ASK1、JNK指数均呈正相关(r值分别为0.9941、0.9997、0.8679,P均< 0.05),大鼠血清IL-6与BCL-2指数呈负相关(r = -0.8078,P均 < 0.05)。 结论hUC-MSCs具有减轻内毒素血症大鼠急性肝功能损伤的作用,其机制与抑制肝脏细胞凋亡相关。  相似文献   

19.
Developing bone is subject to the control of a broad variety of influences in vivo. For bone repair applications, in vitro osteogenic assays are routinely used to test the responses of bone-forming cells to drugs, hormones, and biomaterials. Results of these assays are used to predict the behavior of bone-forming cells in vivo. Stem cell research has shown promise for enhancing bone repair. In vitro osteogenic assays to test the bone-forming response of stem cells typically use chemical solutions. Stem cell in vitro osteogenic assays often neglect important biophysical cues, such as the forces associated with regular weight-bearing exercise, which promote bone formation. Incorporating more biophysical cues that promote bone formation would improve in vitro osteogenic assays for stem cells. Improved in vitro osteogenic stimulation opens opportunities for “pre-conditioning” cells to differentiate towards the desired lineage. In this review, we explore the role of select biophysical factors—growth surfaces, tensile strain, fluid flow and electromagnetic stimulation—in promoting osteogenic differentiation of stem cells from human adipose. Emphasis is placed on the potential for physical microenvironment manipulation to translate tissue engineering and stem cell research into widespread clinical usage.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号