首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
I Balan  A M Alarco    M Raymond 《Journal of bacteriology》1997,179(23):7210-7218
We report the cloning and functional analysis of a third member of the CDR gene family in Candida albicans, named CDR3. This gene codes for an ABC (ATP-binding cassette) transporter of 1,501 amino acids highly homologous to Cdr1p and Cdr2p (56 and 55% amino acid sequence identity, respectively), two transporters involved in fluconazole resistance in C. albicans. The predicted structure of Cdr3p is typical of the PDR/CDR family, with two similar halves, each comprising an N-terminal hydrophilic domain with consensus sequences for ATP binding and a C-terminal hydrophobic domain with six predicted transmembrane segments. Northern analysis showed that CDR3 expression is regulated in a cell-type-specific manner, with low levels of CDR3 mRNA in CAI4 yeast and hyphal cells, high levels in WO-1 opaque cells, and undetectable levels in WO-1 white cells. Disruption of both alleles of CDR3 in CAI4 resulted in no obvious changes in cell morphology, growth rate, or susceptibility to fluconazole. Overexpression of Cdr3p in C. albicans did not result in increased cellular resistance to fluconazole, cycloheximide, and 4-nitroquinoline-N-oxide, which are known substrates for different transporters of the PDR/CDR family. These results indicate that despite a high degree of sequence conservation with C. albicans Cdr1p and Cdr2p, Cdr3p does not appear to be involved in drug resistance, at least to the compounds tested which include the clinically relevant antifungal agent fluconazole. Rather, the high level of Cdr3p expression in WO-1 opaque cells suggests an opaque-phase-associated biological function which remains to be identified.  相似文献   

2.
The development of resistance to azole antifungals used in the treatment of fungal infections can be a serious medical problem. Here, we investigate the molecular mechanisms associated with reduced susceptibility to fluconazole in clinical isolates of Candida dubliniensis , showing evidence of the trailing growth phenomenon. The changes in membrane sterol composition were studied in the presence of subinhibitory fluconazole concentrations. Despite lanosterol and eburicol accumulating as the most prevalent sterols after fluconazole treatment, these ergosterol precursors still support growth of Candida isolates. The overexpression of ABC transporters was demonstrated by immunoblotting employing specific antibodies against Cdr1p and Cdr2p. The presence of a full-length 170?kDa protein Cdr1p was detected in two isolates, while a truncated form of Cdr1p with the molecular mass of 85?kDa was observed in isolate 966/3(2). Notably, Cdr2p was detected in this isolate, and the expression of this transporter was modulated by subinhibitory concentrations of fluconazole. These results suggest that C.?dubliniensis can display the trailing growth phenomenon, and such isolates express similar molecular mechanisms like that of fluconazole-resistant isolates and can therefore be associated with recurrent infections.  相似文献   

3.
Multidrug resistance may pose a serious problem to antifungal therapy. The Candida albicans Cdr2p is one of two ATP-binding cassette (ABC) transporters mediating antifungal resistance in vivo through increased drug efflux. Echinocandins such as caspofungin represent the newest class of antifungals that target cell wall synthesis. We show here by agar plate resistance assays that cross-resistant clinical isolates of C. albicans display high minimal inhibitory concentrations (MICs) to caspofungin when compared with a sensitive ATCC reference strain. Northern analysis and immunoblotting indicate that these isolates also show high levels of CDR1 and CDR2 expression. To determine a possible contribution of Cdr1p or Cdr2p to caspofungin resistance, we have functionally expressed Cdr1p and Cdr2p in appropriate recipient strains of the yeast Saccharomyces cerevisiae. Yeast cells expressing Cdr1p or Cdr2p exhibit cross-resistance to established antifungal drugs such as azoles and terbinafine. However, Cdr2p and, to a much lesser extent, Cdr1p confer caspofungin hyper-resistance when expressed in yeast. Likewise, Cdr2p confers caspofungin resistance when constitutively overexpressed in a drug-sensitive C. albicans strain. We therefore propose that Cdr2p may contribute to clinical candin resistance. Finally, our data suggest that cross-resistance phenotypes of clinical isolates are the consequence of distinct mechanisms that may operate simultaneously.  相似文献   

4.
Gsp1p is a small nuclear-located GTP binding protein from the yeast Saccharomyces cerevisiae. It is highly conserved among eucaryotic cells and is involved in numerous cellular processes, including nucleocytoplasmic trafficking of macromolecules. To learn more about the GSP1 structure/function, we have characterized its Candida albicans homologue. CaGsp1p is 214 amino acids long and displays 91% identity to the ScGsp1p. There is functional complementation in S. cerevisiae, and its mRNA is constitutively expressed in the diploid C. albicans grown under various physiological conditions. Disruption of both alleles was not possible, suggesting that it could be an essential gene, but heterozygous mutants exhibited genomic instability.  相似文献   

5.
Several mechanisms may be associated with Candida albicans resistance to azoles. Ibuprofen was described as being able to revert resistance related to efflux activity in Candida . The aim of this study was to uncover the molecular base of antifungal resistance in C. albicans clinical strains that could be reverted by ibuprofen. Sixty-two clinical isolates and five control strains of C. albicans were studied: the azole susceptibility phenotype was determined according to the Clinical Laboratory for Standards Institute, M27-A2 protocol and minimal inhibitory concentration values were recalculated with ibuprofen (100 μg mL−1); synergistic studies between fluconazole and FK506, a Cdr1p inhibitor, were performed using an agar disk diffusion assay and were compared with ibuprofen results. Gene expression was quantified by real-time PCR, with and without ibuprofen, regarding CDR1 , CDR2 , MDR1 , encoding for efflux pumps, and ERG11 , encoding for azole target protein. A correlation between susceptibility phenotype and resistance gene expression profiles was determined. Ibuprofen and FK506 showed a clear synergistic effect when combined with fluconazole. Resistant isolates reverting to susceptible after incubation with ibuprofen showed CDR1 and CDR2 overexpression especially of the latter. Conversely, strains that did not revert displayed a remarkable increase in ERG11 expression along with CDR genes. Ibuprofen did not alter resistance gene expression significantly ( P >0.05), probably acting as a Cdrp blocker.  相似文献   

6.
外阴阴道念珠菌病(vulvovaginal candidiasis,VVC)是女性的常见病。本研究收集了2018年1月-12月苏州地区VVC患者分离的289株念珠菌进行了病原学鉴定和包括棘白菌素类、新三唑类药物在内的9种抗真菌药物体外敏感性分析。本文采用核糖体RNA的D1/D2基因进行念珠菌菌种鉴定。参照M27-A3方法检测其对9种抗真菌药物(包括棘白菌素类及新三唑类药物)的体外敏感性。结果表明,289株VVC念珠菌菌株中,白念珠菌259株、光滑念珠菌14株、克柔念珠菌10株、热带念珠菌4株、近平滑念珠菌2株。259株VVC白念珠菌对棘白菌素类体外敏感性好,对米卡芬净敏感性高于另外两种棘白菌素类;对两性霉素B、5-氟胞嘧啶、氟康唑敏感性好;但对伊曲康唑、伏立康唑敏感性差;对泊沙康唑敏感性好。光滑念珠菌株和克柔念珠菌分离株对卡泊芬净敏感性差,但对米卡芬净、阿尼芬净敏感性好;光滑念珠菌株对两性霉素B、5-氟胞嘧啶体外敏感性好,对伊曲康唑敏感性差,对泊沙康唑敏感性好;伏立康唑对光滑念珠菌分离株MIC50/90为0.5/1μg/mL;克柔念珠菌对伊曲康唑、伏立康唑50%耐药;4株热带念珠菌对伊曲康唑50%耐药,对卡泊芬净、氟康唑、伏立康唑100%耐药,对其余5种抗真菌药物敏感。近平滑念珠菌对9种抗真菌药物均敏感。白念珠菌仍为苏州地区VVC的主要病原菌,其次是光滑念珠菌和克柔念珠菌,它们对临床常用药物伊曲康唑、伏立康唑、卡泊芬净敏感性差。研究结果提示对VVC病人常规进行分泌物培养、菌种鉴定,对苏州地区临床医生制定VVC治疗方案具有重要参考价值。尽管棘白菌素类、两性霉素B、5-氟胞嘧啶、新三唑类药物尚未应用到VVC的临床治疗中,但是这些药物对VVC病原体总体敏感性较好,未来有望成为氟康唑、咪唑类药物治疗失败患者的新选择。  相似文献   

7.
熊延靖  吴艳红 《菌物学报》2020,39(2):343-351
生物被膜的形成是白色念珠菌产生耐药性的重要原因之一。本研究首先构建白色念珠菌体外生物被膜模型,通过倒置显微镜和甲基四氮盐(XTT)法检测大蒜素对白色念珠菌生物被膜形成的影响,同时采用实时荧光定量PCR法(qRT-PCR)对白色念珠菌生物被膜相关基因ALS1ALS3HWP1MP65SUN41的表达水平进行检测。结果显示,当大蒜素浓度≥12.5μg/mL时,白色念珠菌生物被膜的生长被抑制,并且在生物被膜形成的早期,大蒜素干预能有效抑制其形成;大蒜素能下调白色念珠菌生物被膜相关基因ALS1ALS3HWP1MP65SUN41的表达水平。研究结果提示,大蒜素可有效抑制体外白色念珠菌生物被膜的形成,可能与其下调生物被膜相关基因的表达有关。  相似文献   

8.
Drug-resistant pathogenic fungi use several families of membrane-embedded transporters to efflux antifungal drugs from the cells. The efflux pump Cdr1 (Candida drug resistance 1) belongs to the ATP-binding cassette (ABC) superfamily of transporters. Cdr1 is one of the most predominant mechanisms of multidrug resistance in azole-resistant (AR) clinical isolates of Candida albicans. Blocking drug efflux represents an attractive approach to combat the multidrug resistance of this opportunistic human pathogen. In this study, we rationally designed and synthesized transmembrane peptide mimics (TMPMs) of Cdr1 protein (Cdr1p) that correspond to each of the 12 transmembrane helices (TMHs) of the two transmembrane domains of the protein to target the primary structure of the Cdr1p. Several FITC-tagged TMPMs specifically bound to Cdr1p and blocked the efflux of entrapped fluorescent dyes from the AR (Gu5) isolate. These TMPMs did not affect the efflux of entrapped fluorescent dye from cells expressing the Cdr1p homologue Cdr2p or from cells expressing a non-ABC transporter Mdr1p. Notably, the time correlation of single photon counting fluorescence measurements confirmed the specific interaction of FITC-tagged TMPMs with their respective TMH. By using mutant variants of Cdr1p, we show that these TMPM antagonists contain the structural information necessary to target their respective TMHs of Cdr1p and specific binding sites that mediate the interactions between the mimics and its respective helix. Additionally, TMPMs that were devoid of any demonstrable hemolytic, cytotoxic, and antifungal activities chemosensitize AR clinical isolates and demonstrate synergy with drugs that further improved the therapeutic potential of fluconazole in vivo.  相似文献   

9.
Earlier, we have shown that the overexpression of an ABC transporter, CDR1, is involved in the emergence of multidrug resistance in Candida albicans. In this study, we checked its function in vivo by expressing it in different isogenic Saccharomyces cerevisiae erg mutants, which accumulated various intermediates of the ergosterol biosynthesis and thus altered the membrane fluidity. Functions like the accumulation of rhodamine 123, beta-estradiol, fluconazole and floppase activity associated with Cdr1p were measured to ascertain their responses to an altered membrane phase. The floppase activity appeared to be favoured by an enhanced membrane fluidity, while the effluxing of substrates and Cdr1p's ability to confer multidrug resistance were significantly reduced. We demonstrate that only some of the functions of Cdr1p were affected by an altered lipid environment.  相似文献   

10.
In the present study, we determined the sequence of group I self-splicing introns found in the large ribosomal RNA subunit of Candida albicans, Candida stellatoidea and the recently-described species Candida dubliniensis. It was found that both the intron and ribosomal RNA nucleotide sequences are almost perfectly identical between different C. albicans strains as well as between C. albicans and C. stellatoidea strains. Comparisons of ribosomal RNA sequences suggest that local isolates of atypical C. albicans from individuals infected with human immunodeficiency virus can be assigned to the C. dubliniensis species. C. dubliniensis strains also harbor a group I intron in their ribosomal RNA, as observed in about 40% of C. albicans strains and all C. stellatoidea strains. This novel C. dubliniensis group I intron is identical to the C. albicans and C. stellatoidea intron, except for two widely divergent stem-loop regions. Despite these differences, the C. dubliniensis intron possesses self-splicing ability in an in vitro assay. Taken together, these data support the idea that C. albicans and C. stellatoidea should be joined together as variants of the same species while C. dubliniensis is a distinct but closely related microorganism. To our knowledge, the C. albicans and C. dubliniensis introns are the first example of a pair of homologous group I introns differing only by the presence of apparently facultative sequences in some stem-loops suspected to be involved in stabilization of tertiary structure.  相似文献   

11.
12.
由念珠菌感染引起的侵袭性念珠菌病治疗困难、死亡率高,是临床一大难题。氟康唑是目前治疗该病的一线用药,但近年来耐药菌株逐渐增多,治疗困难。因此,开发新的有效抗真菌药物或发现可提高现有抗真菌药物活性的化合物十分必要。通过体外抗真菌药物敏感性试验,我们发现TOR通路抑制剂ridaforolimus具有抗念珠菌作用。随后我们通过纸片法及微量液基稀释法评价该化合物单独或与氟康唑联合对念珠菌的抗菌效果。结果表明ridaforolimus对念珠菌有杀伤作用,在与氟康唑联合时增强了氟康唑的抗念珠菌能力,逆转了白念珠菌对氟康唑的耐药,并将氟康唑由抑菌剂转化为杀菌剂。本研究为ridaforolimus作为新型抗真菌药及氟康唑增敏剂提供了一定理论基础。  相似文献   

13.
The expression and drug efflux activity of the ATP binding cassette transporters Cdr1p and Pdh1p are thought to have contributed to the recent increase in the number of fungal infections caused by Candida glabrata. The function of these transporters and their pumping characteristics, however, remain ill defined. We have evaluated the function of Cdr1p and Pdh1p through their heterologous hyperexpression in a Saccharomyces cerevisiae strain deleted in seven major drug efflux transporters to minimize the background drug efflux activity. Although both Cdr1p- and Pdh1p-expressing strains CDR1-AD and PDH1-AD acquired multiple resistances to structurally unrelated compounds, CDR1-AD showed, in most cases, higher levels of resistance than PDH1-AD. CDR1-AD also showed greater rhodamine 6G efflux and resistance to pump inhibitors, although plasma membrane fractions had comparable NTPase activities. These results indicate that Cdr1p makes a larger contribution than Phd1p to the reduced susceptibility of C. glabrata to xenobiotics. Both pump proteins were phosphorylated in a glucose-dependent manner. Whereas the phosphorylation of Cdr1p affected its NTPase activity, the protein kinase A-mediated phosphorylation of Pdh1p, which was necessary for drug efflux, did not. This suggests that phosphorylation of Pdh1p may be required for efficient coupling of NTPase activity with drug efflux.  相似文献   

14.
In this study, we describe the membrane lipid composition of eight clinical isolates (azole resistant and sensitive strains) of Candida albicans isolated from AIDS/ HIV patients. Interestingly, fluorescence polarization measurements of the clinical isolates displayed enhanced membrane fluidity in fluconazole resistant strains as compared to the sensitive ones. The increase in fluidity was reflected in the change of membrane order, which was considerably decreased (decrease in fluorescence polarization "p" value denotes higher membrane fluidity) in the resistant strains. The ergosterol content in azole susceptible isolates was greater, almost twice as compared to the resistant isolates. However, no significant alteration was observed in phospholipid and fatty acid composition of these isolates. Labeling experiments with fluorescamine dye revealed that the percentage of phosphatidylethanolamine exposed to the membrane's outer leaflet was higher in the resistant strains as compared to the sensitive strains, indicating increased floppase activity of the two major ABC drug efflux pumps, CDR1 and CDR2 possibly due to their overexpression in resistant strains. The results of the present study suggest that changes in the status of membrane lipid phase especially the ergosterol content and increased activity of drug efflux pumps by overexpression ofABC transporters, CDR1 and CDR2 might contribute to fluconazole resistance in C. albicans isolated from AIDS/HIV patients.  相似文献   

15.
Fungal ATP-binding cassette transporter regulation was investigated using Candida glabrata Cdr1p and Pdh1p expressed in Saccharomyces cerevisiae. Rephosphorylation of Pdh1p and Cdr1p was protein kinase A inhibitor-sensitive but responded differentially to Tpk isoforms, stressors, and glucose concentration. Cdr1p Ser(307), which borders the nucleotide binding domain 1 ABC signature motif, and Ser(484), near the membrane, were dephosphorylated on glucose depletion and independently rephosphorylated during glucose exposure or under stress. The S484A enzyme retained half the wild type ATPase activity without affecting azole resistance, but the S307A enzyme was unstable to plasma membrane isolation. Studies of pump function suggested conformational interaction between Ser(484) and Ser(307). An S307A/S484A double mutant, which failed to efflux the Cdr1p substrate rhodamine 6G, had a fluconazole susceptibility 4-fold greater than the Cdr1p expressing strain, twice that of the S307A mutant, but 64-fold less than the control null strain. Stable intragenic suppressors indicative of homodimer nucleotide binding domain 1-nucleotide binding domain 1 interactions partially restored rhodamine 6G pumping and increased fluconazole and rhodamine 6G resistance in the S307A/S484A mutant. Nucleotide binding domain 1 of Cdr1p is a sensor of important physiological stimuli.  相似文献   

16.
In order to ascertain the molecular basis of ATP-mediated drug extrusion by Cdr1p, a multidrug transporter of Candida albicans, we recently have reported that the Walker A motif of the N-terminal nucleotide biding domain (NBD) of this protein contains an uncommon cysteine residue (C193; GXXGXGCS/T) which is indispensable for ATP hydrolysis. This residue is exceptionally conserved in N-terminal NBDs of fungal ABC transporters and hence makes these transporters an evolutionarily divergent group. However, the presence of a conventional lysine residue at a similar position in the Walker A motif of the C-terminal NBD warrants the individual contribution of both the NBDs in the ATP-driven efflux function of such transporters. In this study we have investigated the contribution of this divergent Walker A motif in the context of the full Cdr1p protein under in vivo conditions by swapping these two crucial amino acids (C193K in Walker A motif of N-terminal NBD and K901C in Walker A motif of C-terminal NBD) between the two NBDs. Both the native and the mutant variants of Cdr1p were integrated at the PDR5 locus as GFP-tagged fusion proteins and were hyper-expressed. Our study shows that both C193K- and K901C-expressing cells elicit a severe impairment of Cdr1p's ATPase function. However, both these mutations have distinct phenotypes with respect to other functional parameters such as substrate efflux and drug resistance profiles. In contrast to C193K, K901C mutant cells were substantially hypersensitive to the tested drugs (fluconazole, ansiomycin, miconazole and cycloheximide) and were unable to expel rhodamine 6G. Our results for the first time show that both NBDs influence the Cdr1p function asymmetrically, and that the positioning of the cysteine and lysine residues within the respective Walker A motifs is functionally not interchangeable.  相似文献   

17.
18.
《FEMS yeast research》2005,5(1):63-72
In order to ascertain the molecular basis of ATP-mediated drug extrusion by Cdr1p, a multidrug transporter of Candida albicans, we recently have reported that the Walker A motif of the N-terminal nucleotide biding domain (NBD) of this protein contains an uncommon cysteine residue (C193; GXXGXGCS/T) which is indispensable for ATP hydrolysis. This residue is exceptionally conserved in N-terminal NBDs of fungal ABC transporters and hence makes these transporters an evolutionarily divergent group. However, the presence of a conventional lysine residue at a similar position in the Walker A motif of the C-terminal NBD warrants the individual contribution of both the NBDs in the ATP-driven efflux function of such transporters. In this study we have investigated the contribution of this divergent Walker A motif in the context of the full Cdr1p protein under in vivo conditions by swapping these two crucial amino acids (C193K in Walker A motif of N-terminal NBD and K901C in Walker A motif of C-terminal NBD) between the two NBDs. Both the native and the mutant variants of Cdr1p were integrated at the PDR5 locus as GFP-tagged fusion proteins and were hyper-expressed. Our study shows that both C193K- and K901C-expressing cells elicit a severe impairment of Cdr1p’s ATPase function. However, both these mutations have distinct phenotypes with respect to other functional parameters such as substrate efflux and drug resistance profiles. In contrast to C193K, K901C mutant cells were substantially hypersensitive to the tested drugs (fluconazole, ansiomycin, miconazole and cycloheximide) and were unable to expel rhodamine 6G. Our results for the first time show that both NBDs influence the Cdr1p function asymmetrically, and that the positioning of the cysteine and lysine residues within the respective Walker A motifs is functionally not interchangeable.  相似文献   

19.
Candida albicans and the closely related species Candida stellatoidea are medically important diploid asexual yeasts. Clinical isolates frequently show variant electrophoretic karyotypes, apparently due largely to chromosomal translocations. These translocations seem to occur at hot spots characterized by the repeated DNA sequence RSP1. A programmed karyotypic rearrangement occurs in C. stellatoidea. Karyotypic rearrangement may serve as a source of genetic variation in these asexual yeasts.  相似文献   

20.
Systemic yeast infections are the leading cause of mortality and morbidity in immunocompromized patients. Candida albicans, being the most frequently isolated fungal pathogen in these patients, can be divided into three genotypes (genotypes A, B and C) by 25S intron analysis. In our study, we found that molecular sizes of genotype A C. albicans isolates were heterogeneous. In order to determine the molecular basis of this difference, HaeIII digestion was applied, and strains forming different band patterns were analyzed by automated sequence analysis. As a result of sequence analysis, eight different subtypes (a→h) were found among genotype A C. albicans strains and an easy differentiation scheme consisting of HaeIII and MspI digestions was constructed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号