首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cell-surface processing of pro-ADAMTS9 by furin   总被引:3,自引:0,他引:3  
Processing of polypeptide precursors by proprotein convertases (PCs) such as furin typically occurs within the trans-Golgi network. Here, we show in a variety of cell types that the propeptide of ADAMTS9 is not excised intracellularly. Pulse-chase analysis in HEK293F cells indicated that the intact zymogen was secreted to the cell surface and was subsequently processed there before release into the medium. The processing occurred via a furin-dependent mechanism as shown using PC inhibitors, lack of processing in furin-deficient cells, and rescue by furin in these cells. Moreover, down-regulation of furin by small interference RNA reduced ADAMTS9 processing in HEK293F cells. PC5A could also process pro-ADAMTS9, but similarly to furin, processed forms were absent intracellularly. Cell-surface, furin-dependent processing of pro-ADAMTS9 creates a precedent for extracellular maturation of endogenously produced secreted proproteins. It also indicates the existence of a variety of mechanisms for processing of ADAMTS proteases.  相似文献   

2.
A member of the A disintegrin and metalloproteinase domain with thrombospondin type-1 motifs (ADAMTS-4) protease family can efficiently cleave aggrecan at several sites detected in joints of osteoarthritic patients. Although recent studies have shown that removal of the prodomain of ADAMTS4 is critical for its ability to degrade aggrecan, the cellular mechanisms for its processing and trafficking remain unclear. In this study, by using both furin-specific inhibitor and RNA interference technique, we demonstrate that furin plays an important role in the intracellular removal of ADAMTS4 prodomain. Further, we demonstrate that proADAMTS4 can be processed by means of multiple furin recognition sites: (206)RPRR(209), (209)RAKR(212), or (211)KR(212). The processing of proADAMTS4 was completely blocked by brefeldin A treatment, suggesting that processing occurs in the trans-Golgi network. Indeed, ADAMTS4 is co-localized with furin in trans-Golgi network. Interestingly, the pro form of ADAMTS4, not its mature one, co-precipitates with furin, suggesting that furin physically interacts with the prodomain of ADAMTS-4. In addition, our evidence suggests that a furin-independent pathway may also contribute to the activation of ADAMTS4. These results indicate that the activation mechanism for ADAMTS4 can be targeted for therapeutical intervention against this enzyme.  相似文献   

3.
ADAMTS9 is a secreted, cell-surface-binding metalloprotease that cleaves the proteoglycans versican and aggrecan. Unlike most precursor proteins, the ADAMTS9 zymogen (pro-ADAMTS9) is resistant to intracellular processing. Instead, pro-ADAMTS9 is processed by furin at the cell surface. Here, we investigated the role of the ADAMTS9 propeptide in regulating its secretion and proteolytic activity. Removal of the propeptide abrogated secretion of the ADAMTS9 catalytic domain, and secretion was inefficiently restored by expression of the propeptide in trans. Substitution of Ala for Asn residues within each of three consensus N-linked glycosylation sites in the propeptide abrogated ADAMTS9 secretion. Thus, the propeptide is an intramolecular chaperone whose glycosylation is critical for secretion of the mature enzyme. In addition to two previously identified furin-processing sites (Arg74 downward arrow and Arg287 downward arrow) the ADAMTS9 propeptide was also furin-processed at Arg209. Substitution of Ala for Arg74, Arg209, and Arg287 resulted in secretion of an unprocessed zymogen. Unexpectedly, versican incubated with cells expressing this pro-ADAMTS9 was processed to a greater extent than when incubated with cells expressing wild-type, furin-processable ADAMTS9. Moreover, cells and medium treated with the proprotein convertase inhibitor decanoyl-Arg-Val-Lys-Arg-chloromethyl ketone had greater versican-cleaving activity than untreated cells. Following furin processing of pro-ADAMTS9, propeptide fragments maintained a non-covalent association with the catalytic domain. Collectively, these observations suggest that, unlike other metalloproteases, furin processing of the ADAMTS9 propeptide reduces its catalytic activity. Thus, the propeptide is a key functional domain of ADAMTS9, mediating an unusual regulatory mechanism that may have evolved to ensure maximal activity of this protease at the cell surface.  相似文献   

4.
A disintegrin-like and metalloprotease domain with thrombospondin type 1 motifs 9 (ADAMTS9) is a highly conserved metalloprotease that has been identified as a tumor suppressor gene and is required for normal mouse development. The secreted ADAMTS9 zymogen undergoes proteolytic excision of its N-terminal propeptide by the proprotein convertase furin. However, in contrast to other metalloproteases, propeptide excision occurs at the cell surface and leads to decreased activity of the zymogen. Here, we investigated the potential cellular mechanisms regulating ADAMTS9 biosynthesis and cell-surface processing by analysis of molecular complexes formed by a construct containing the propeptide and catalytic domain of pro-ADAMTS9 (Pro-Cat) in HEK293F cells. Cross-linking of cellular proteins bound to Pro-Cat followed by mass spectrometric analysis identified UDP-glucose:glycoprotein glucosyltransferase I, heat shock protein gp96 (GRP94), BiP (GRP78), and ERdj3 (Hsp40 homolog) as associated proteins. gp96 and BiP were present at the cell surface in an immunoprecipitable complex with pro-ADAMTS9 and furin. Treatment with geldanamycin, an inhibitor of the HSP90α family (including gp96), led to decreased furin processing of pro-ADAMTS9 and accumulation of the unprocessed pro-ADAMTS9 at the cell surface. gp96 siRNA down-regulated the levels of cell-surface pro-ADAMTS9 and furin, whereas the levels of cell-surface pro-ADAMTS9, but not of cell-surface furin, were decreased upon treatment with BiP siRNA. These data identify for the first time the cellular chaperones associated with secretion of an ADAMTS protease and suggest a role for gp96 in modulating pro-ADAMTS9 processing.  相似文献   

5.
ADAMTS13 belongs to the "a disintegrin and metalloprotease with thrombospondin repeats" family, and cleaves von Willebrand factor multimers into smaller forms. For several related proteases, normal folding and enzymatic latency depend on an NH2-terminal propeptide that is removed by proteolytic processing during biosynthesis. However, the ADAMTS13 propeptide is unusually short and poorly conserved, suggesting it may not perform these functions. ADAMTS13 was secreted from transfected HeLa cells with a half-time of 7 h and the rate-limiting step was exported from the endoplasmic reticulum. Deletion of the propeptide did not impair the secretion of active ADAMTS13, indicating that the propeptide is dispensable for folding. Furin was shown to be sufficient for ADAMTS13 propeptide processing in two ways. First, mutation of the furin consensus recognition site prevented propeptide cleavage in HeLa cells and resulted in secretion of pro-ADAMTS13. Second, furin-deficient LoVo cells secreted ADAMTS13 with the propeptide intact, and cotransfection with furin restored propeptide cleavage. In both cell lines, secreted pro-ADAMTS13 had normal proteolytic activity toward von Willebrand factor. In cells coexpressing both ADAMTS13 and von Willebrand factor, pro-ADAMTS13 cleaved pro-von Willebrand factor intracellularly. Therefore, the ADAMTS13 propeptide is not required for folding or secretion, and does not perform the common function of maintaining enzyme latency.  相似文献   

6.
The novel transmembrane aspartic protease BACE (for Beta-site APP Cleaving Enzyme) is the beta-secretase that cleaves amyloid precursor protein to initiate beta-amyloid formation. As such, BACE is a prime therapeutic target for the treatment of Alzheimer's disease. BACE, like other aspartic proteases, has a propeptide domain that is removed to form the mature enzyme. BACE propeptide cleavage occurs at the sequence RLPR downward arrowE, a potential furin recognition motif. Here, we explore the role of furin in BACE propeptide domain processing. BACE propeptide cleavage in cells does not appear to be autocatalytic, since an inactive D93A mutant of BACE is still cleaved appropriately. BACE and furin co-localize within the Golgi apparatus, and propeptide cleavage is inhibited by brefeldin A and monensin, drugs that disrupt trafficking through the Golgi. Treatment of cells with the calcium ionophore, leading to inhibition of calcium-dependent proteases including furin, or transfection with the alpha(1)-antitrypsin variant alpha(1)-PDX, a potent furin inhibitor, dramatically reduces cleavage of the BACE propeptide. Moreover, the BACE propeptide is not processed in the furin-deficient LoVo cell line; however, processing is restored upon furin transfection. Finally, in vitro digestion of recombinant soluble BACE with recombinant furin results in complete cleavage only at the established E46 site. Taken together, our results strongly suggest that furin, or a furin-like proprotein convertase, is responsible for cleaving the BACE propeptide domain to form the mature enzyme.  相似文献   

7.
The prohormone convertases (PCs) are synthesized as zymogens whose propeptides contain several multibasic sites. In this study, we investigated the processing of the PC2 propeptide and its function in the regulation of PC2 activity. By using purified pro-PC2 and directed mutagenesis, we found that the propeptide is first cleaved at the multibasic site separating it from the catalytic domain (primary cleavage site); the intact propeptide thus generated is then sequentially processed at two internal sites. Unlike the mechanism described for furin, our mutagenesis studies show that internal cleavage of the propeptide is not required for activation of pro-PC2. In addition, we identified a point mutation in the primary cleavage site that does not prevent the folding nor the processing of the zymogen but nevertheless results in the generation of an inactive PC2 species. These data suggest that the propeptide cleavage site is directly involved in the folding of the catalytic site. By using synthetic peptides, we found that a PC2 propeptide fragment inhibits PC2 activity, and we identified the inhibitory site as the peptide sequence containing basic residues at the extreme carboxyl terminus of the primary cleavage site. Finally, our study supplies information concerning the intracellular fate of a convertase propeptide by providing evidence that the PC2 propeptide is generated and is internally processed within the secretory granules. In agreement with this localization, an internally cleaved propeptide fragment could be released by stimulated secretion.  相似文献   

8.
Together with seven ADAMTS-like proteins, the 19 mammalian ADAMTS proteases constitute a superfamily. ADAMTS proteases are secreted zinc metalloproteases whose hallmark is an ancillary domain containing one or more thrombospondin type 1 repeats. ADAMTS-like proteins resemble ADAMTS ancillary domains and lack proteolytic activity. Vertebrate expansion of the superfamily reflects emergence of new substrates, duplication of proteolytic activities in new contexts, and cooperative functions of the duplicated genes. ADAMTS proteases are involved in maturation of procollagen and von Willebrand factor, as well as in extracellular matrix proteolysis relating to morphogenesis, angiogenesis, ovulation, cancer, and arthritis. New insights into ADAMTS mechanisms indicate significant regulatory roles for ADAMTS ancillary domains, propeptide processing, and glycosylation. ADAMTS-like proteins appear to have regulatory roles in the extracellular matrix.  相似文献   

9.
The proteoglycanase clade of the ADAMTS superfamily shows preferred proteolytic activity toward the hyalectan/lectican proteoglycans as follows: aggrecan, brevican, neurocan, and versican. ADAMTS15, a member of this clade, was recently identified as a putative tumor suppressor gene in colorectal and breast cancer. However, its biosynthesis, substrate specificity, and tissue expression are poorly described. Therefore, we undertook a detailed study of this proteinase and its expression. We report propeptide processing of the ADAMTS15 zymogen by furin activity, identifying RAKR212↓ as a major furin cleavage site within the prodomain. ADAMTS15 was localized on the cell surface, activated extracellularly, and required propeptide processing before cleaving V1 versican at position 441E↓A442. In the mouse embryo, Adamts15 was expressed in the developing heart at E10.5 and E11.5 days post-coitum and in the musculoskeletal system from E13.5 to E15.5 days post-coitum, where it was co-localized with hyaluronan. Adamts15 was also highly expressed in several structures within the adult mouse colon. Our findings show overlapping sites of Adamts15 expression with other members of ADAMTS proteoglycanases during embryonic development, suggesting possible cooperative roles during embryogenesis, consistent with other ADAMTS proteoglycanase combinatorial knock-out mouse models. Collectively, these data suggest a role for ADAMTS15 in a wide range of biological processes that are potentially mediated through the processing of versican.  相似文献   

10.
The proprotein convertases (PCs) furin and proprotein convertase 1/3 (PC1) cleave substrates at dibasic residues along the eukaryotic secretory/endocytic pathway. PCs are evolutionarily related to bacterial subtilisin and are synthesized as zymogens. They contain N-terminal propeptides (PRO) that function as dedicated catalysts that facilitate folding and regulate activation of cognate proteases through multiple-ordered cleavages. Previous studies identified a histidine residue (His69) that functions as a pH sensor in the propeptide of furin (PRO(FUR)), which regulates furin activation at pH~6.5 within the trans-Golgi network. Although this residue is conserved in the PC1 propeptide (PRO(PC1)), PC1 nonetheless activates at pH~5.5 within the dense core secretory granules. Here, we analyze the mechanism by which PRO(FUR) regulates furin activation and examine why PRO(FUR) and PRO(PC1) differ in their pH-dependent activation. Sequence analyses establish that while both PRO(FUR) and PRO(PC1) are enriched in histidines when compared with cognate catalytic domains and prokaryotic orthologs, histidine content in PRO(FUR) is ~2-fold greater than that in PRO(PC1), which may augment its pH sensitivity. Spectroscopy and molecular dynamics establish that histidine protonation significantly unfolds PRO(FUR) when compared to PRO(PC1) to enhance autoproteolysis. We further demonstrate that PRO(FUR) and PRO(PC1) are sufficient to confer organelle sensing on folding and activation of their cognate proteases. Swapping propeptides between furin and PC1 transfers pH-dependent protease activation in a propeptide-dictated manner in vitro and in cells. Since prokaryotes lack organelles and eukaryotic PCs evolved from propeptide-dependent, not propeptide-independent prokaryotic subtilases, our results suggest that histidine enrichment may have enabled propeptides to evolve to exploit pH gradients to activate within specific organelles.  相似文献   

11.
ADAMTS proteases are complex secreted enzymes containing a prometalloprotease domain of the reprolysin type attached to an ancillary domain with a highly conserved structure that includes at least one thrombospondin type 1 repeat. Known functions of ADAMTS proteases include processing of procollagens and von Willebrand factor as well as catabolism of aggrecan, versican and brevican. They have been demonstrated to have important roles in connective tissue organization, coagulation, inflammation, arthritis, angiogenesis and cell migration. ADAMTS can be grouped into distinct clades within which there is conservation of modular organization, protein sequence, gene structure and possibly, of substrate preference. ADAMTS proteases are synthesized as zymogens, with constitutive proprotein convertase removal of the propeptide occurring prior to secretion. Their enzymatic specificity is heavily influenced by their ancillary domain, which plays a critical role in directing these enzymes to their substrates, the cell surface and the extracellular matrix.  相似文献   

12.
The propeptides of proprotein convertases (PCs) regulate activation of cognate protease domains by sensing pH of their organellar compartments as they transit the secretory pathway. Earlier experimental work identified a conserved histidine-encoded pH sensor within the propeptide of the canonical PC, furin. To date, whether protonation of this conserved histidine is solely responsible for PC activation has remained unclear because of the observation that various PC paralogues are activated at different organellar pH values. To ascertain additional determinants of PC activation, we analyzed PC1/3, a paralogue of furin that is activated at a pH of ∼5.4. Using biophysical, biochemical, and cell-based methods, we mimicked the protonation status of various histidines within the propeptide of PC1/3 and examined how such alterations can modulate pH-dependent protease activation. Our results indicate that whereas the conserved histidine plays a crucial role in pH sensing and activation of this protease an additional histidine acts as a “gatekeeper” that fine-tunes the sensitivity of the PC1/3 propeptide to facilitate the release inhibition at higher proton concentrations when compared with furin. Coupled with earlier analyses that highlighted the enrichment of the amino acid histidine within propeptides of secreted eukaryotic proteases, our work elucidates how secreted proteases have evolved to exploit the pH of the secretory pathway by altering the spatial juxtaposition of titratable groups to regulate their activity in a spatiotemporal fashion.  相似文献   

13.
We recently reported the isolation and sequencing of sortilin, a new putative sorting receptor that binds receptor-associated protein (RAP). The luminal N-terminus of sortilin comprises a consensus sequence for cleavage by furin, R41WRR44, which precedes a truncation originally found in sortilin isolated from human brain. We now show that the truncation results from cellular processing. Sortilin is synthesized as a proform which, in late Golgi compartments, is converted to the mature receptor by furin-mediated cleavage of a 44 residue N-terminal propeptide. We further demonstrate that the propeptide exhibits pH-dependent high affinity binding to fully processed sortilin, that the binding is competed for by RAP and the newly discovered sortilin ligand neurotensin, and that prevention of propeptide cleavage essentially prevents binding of RAP and neurotensin. The findings evidence that the propeptide sterically hinders ligands from gaining access to overlapping binding sites in prosortilin, and that cleavage and release of the propeptide preconditions sortilin for full functional activity. Although proteolytic processing is involved in the maturation of several receptors, the described exposure of previously concealed ligand-binding sites after furin-mediated cleavage of propeptide represents a novel mechanism in receptor activation.  相似文献   

14.
Group X secretory phospholipase A2 (GX sPLA2) hydrolyzes mammalian cell membranes, liberating free fatty acids and lysophospholipids. GX sPLA2 is produced as a pro-enzyme (pro-GX sPLA2) that contains an N-terminal 11-amino acid propeptide ending in a dibasic motif, suggesting cleavage by a furin-like proprotein convertase (PC). Although propeptide cleavage is clearly required for enzymatic activity, the protease(s) responsible for pro-GX sPLA2 activation have not been identified. We previously reported that GX sPLA2 negatively regulates adrenal glucocorticoid production, likely by suppressing liver X receptor-mediated activation of steroidogenic acute regulatory protein expression. In this study, using a FLAG epitope-tagged pro-GX sPLA2 expression construct (FLAG-pro-GX sPLA2), we determined that adrenocorticotropic hormone (ACTH) enhanced FLAG-pro-GX sPLA2 processing and phospholipase activity secreted by Y1 adrenal cells. ACTH increased the expression of furin and PCSK6, but not other members of the PC family, in Y1 cells. Overexpression of furin and PCSK6 in HEK 293 cells significantly enhanced FLAG-pro-GX sPLA2 processing, whereas siRNA-mediated knockdown of both PCs almost completely abolished FLAG-pro-GX sPLA2 processing in Y1 cells. Expression of either furin or PCSK6 enhanced the ability of GX sPLA2 to suppress liver X receptor reporter activity. The PC inhibitor decanoyl-Arg-Val-Lys-Arg-chloromethyl ketone significantly suppressed FLAG-pro-GX sPLA2 processing and sPLA2 activity in Y1 cells, and it significantly attenuated GX sPLA2-dependent inhibition of steroidogenic acute regulatory protein expression and progesterone production. These findings provide strong evidence that pro-GX sPLA2 is a substrate for furin and PCSK6 proteolytic processing and define a novel mechanism for regulating corticosteroid production in adrenal cells.  相似文献   

15.
16.
The proprotein convertase PC1/3 is synthesized as a large precursor that undergoes proteolytic processing of the signal peptide, the propeptide and ultimately the COOH-terminal tail, to generate the mature form. The propeptide is essential for protease folding, and, although cleaved by an autocatalytic process, it remains associated with the mature form acting as an auto-inhibitor of PC1/3. To further assess the role of certain residues in its interaction with its cognate enzyme, we performed an alanine scan on two PC1/3 propeptide potential cleavable sites ((50)RRSRR(54) and (61)KR(62)) and an acidic region (65)DDD(67) conserved among species. Upon incubation with PC1/3, the ensuing peptides exhibit equal inhibitory potency, lower potency, or higher potency than the wild-type propeptide. The K(i) values calculated varied between 0.15 and 16.5 nm. All but one mutant exhibited a tight binding behavior. To examine the specificity of mutants, we studied their reactivity toward furin, a closely related convertase. The mutation of certain residues also affects the inhibition behavior toward furin yielding propeptides exhibiting K(i) ranging from 0.2 to 24 nm. Mutant propeptides exhibited against each enzyme either different mode of inhibition, enhanced selectivity in the order of 40-fold for one enzyme, or high potency with no discrimination. Hence, we demonstrate through single amino acid substitution that it is feasible to modify the inhibitory behavior of propeptides toward convertases in such a way as to increase or decrease their potency, modify their inhibitory mechanisms, as well as increase their selectivity.  相似文献   

17.
ADAMTS1 is a secreted protein that belongs to the recently described ADAMTS (a disintegrin and metalloprotease with thrombospondin repeats) family of proteases. Evaluation of ADAMTS1 catalytic activity on a panel of extracellular matrix proteins showed a restrictive substrate specificity which includes some proteoglycans. Our results demonstrated that human ADAMTS1 cleaves aggrecan at a previously shown site by its mouse homolog, but we have also identified additional cleavage sites that ultimately confirm the classification of this protease as an 'aggrecanase'. Specificity of ADAMTS1 activity was further verified when a point mutation in the zinc-binding domain abolished its catalytic effects, and latency conferred by the prodomain was also demonstrated using a furin cleavage site mutant. Suppression of ADAMTS1 activity was accomplished with a specific monoclonal antibody and some metalloprotease inhibitors, including tissue inhibitor of metalloproteinases 2 and 3. Finally, we developed an activity assay using an artificial peptide substrate based on the interglobular domain cleavage site (E(373)-A) of rat aggrecan.  相似文献   

18.
Bone morphogenetic protein 10 (BMP10) is a member of the TGF-β superfamily and plays a critical role in heart development. In the postnatal heart, BMP10 is restricted to the right atrium. The inactive pro-BMP10 (~60 kDa) is processed into active BMP10 (~14 kDa) by an unknown protease. Proteolytic cleavage occurs at the RIRR(316)↓ site (human), suggesting the involvement of proprotein convertase(s) (PCs). In vitro digestion of a 12-mer peptide encompassing the predicted cleavage site with furin, PACE4, PC5/6, and PC7, showed that furin cleaves the best, whereas PC7 is inactive on this peptide. Ex vivo studies in COS-1 cells, a cell line lacking PC5/6, revealed efficient processing of pro-BMP10 by endogenous PCs other than PC5/6. The lack of processing of overexpressed pro-BMP10 in the furin- and PACE4-deficient cell line, CHO-FD11, and in furin-deficient LoVo cells, was restored by stable (CHO-FD11/Fur cells) or transient (LoVo cells) expression of furin. Use of cell-permeable and cell surface inhibitors suggested that endogenous PCs process pro-BMP10 mostly intracellularly, but also at the cell surface. Ex vivo experiments in mouse primary hepatocytes (wild type, PC5/6 knock-out, and furin knock-out) corroborated the above findings that pro-BMP10 is a substrate for endogenous furin. Western blot analyses of heart right atria extracts from wild type and PACE4 knock-out adult mice showed no significant difference in the processing of pro-BMP10, implying no in vivo role of PACE4. Overall, our in vitro, ex vivo, and in vivo data suggest that furin is the major convertase responsible for the generation of BMP10.  相似文献   

19.
Tumor necrosis factor-alpha converting enzyme (TACE or ADAM17) is a member of the ADAM (a disintegrin and metalloproteinase) family of type I membrane proteins and mediates the ectodomain shedding of various membrane-anchored signaling and adhesion proteins. TACE is synthesized as an inactive zymogen, which is subsequently proteolytically processed to the catalytically active form. We have identified the proprotein-convertases PC7 and furin to be involved in maturation of TACE. This maturation is negatively influenced by the phorbol ester phorbol-12-myristate-13-acetate (PMA), which decreases the cellular amount of the mature form of TACE in PMA-treated HEK293 and SH-SY5Y cells. Furthermore, we found that stimulation of protein kinase C or protein kinase A signaling pathways did not influence long-term degradation of mature TACE. Interestingly, PMA treatment of furin-deficient LoVo cells did not affect the degradation of mature TACE. By examination of furin reconstituted LoVo cells we were able to exclude the possibility that PMA modulates furin activity. Moreover, the PMA dependent decrease of the mature enzyme form is specific for TACE, as the amount of mature ADAM10 was unaffected in PMA-treated HEK293 and SH-SY5Y cells. Our results indicate that the activation of TACE by the proprotein-convertases PC7 and furin is very similar to the maturation of ADAM10 although there is a significant difference in the cellular stability of the mature enzyme forms after phorbol ester treatment.  相似文献   

20.
Among the proprotein-processing subtilisin-related endoproteases, furin has been a leading candidate for the enzyme that activates the hemagglutinin (HA) of virulent avian influenza viruses. In the present study, we examined the cleavage activity of two other recently isolated ubiquitous subtilisin-related proteases, PACE4 and PC6, using wild-type HA of A/turkey/Ireland/1378/83 (H5N8) and a series of its mutant HAs. Vaccinia virus-expressed wild-type HA was not cleaved in human colon adenocarcinoma LoVo cells, which lack active furin. This processing defect was corrected by the expression of furin and PC6 but not of PACE4 and a control wild-type vaccinia virus. PC6 showed a sequence specificity similar to that with the endogenous proteases in cultured cells. When LoVo cells were infected with a virulent avian virus, A/turkey/Ontario/7732/66 (H5N9), only noninfectious virions were produced because of the lack of HA cleavage. However, when the cells were coinfected with vaccinia virus that expressed either furin or PC6, the avian virus underwent multiple cycles of replication, indicating that both furin and PC6 specifically cleave the virulent virus HA at the authentic site. These data suggest that PC6, as well as furin, can activate virulent avian influenza viruses in vivo, implying the presence of multiple HA cleavage enzymes in animals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号