首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Transient kinetic data of the hydrolysis of several nucleotides (TTP, CTP, UTP, GTP) by cardiac myosin subfragment 1 (S1) were analyzed to obtain values for the equilibrium constant for nucleotide binding and rate constants for the S1-nucleotide isomerization and the subsequent nucleotide hydrolysis as well as the magnitudes of the relative fluorescence enhancements of the myosin that occur upon isomerization and hydrolysis. These data are compared with data from a previous study with ATP. Nucleotide binding is found to be relatively insensitive to nucleotide ring structure, being affected most by the group at position C6. Isomerization and hydrolysis are more sensitive to nucleotide structure, being inhibited by the presence of a bulky group at position C2. Kinetic parameters decrease as follows: for binding, GTP greater than UTP approximately TTP greater than ATP greater than CTP; for isomerization, ATP greater than UTP approximately TTP approximately CTP greater than GTP; for hydrolysis, ATP greater than TTP greater than CTP approximately UTP greater than GTP. Fluorescence enhancements appear to be most dependent upon the relative values of the individual rate constants.  相似文献   

2.
Glutamine synthetase (Escherichia coli) was incubated with three different reagents that react with lysine residues, viz. pyridoxal phosphate, 5'-p-fluorosulfonylbenzoyladenosine, and thiourea dioxide. The latter reagent reacts with the epsilon-nitrogen of lysine to produce homoarginine as shown by amino acid analysis, nmr, and mass spectral analysis of the products. A variety of differential labeling experiments were conducted with the above three reagents to label specific lysine residues. Thus pyridoxal phosphate was found to modify 2 lysine residues leading to an alteration of catalytic activity. At least 1 lysine residue has been reported previously to be modified by pyridoxal phosphate at the active site of glutamine synthetase (Whitley, E. J., and Ginsburg, A. (1978) J. Biol. Chem. 253, 7017-7025). By varying the pH and buffer, one or both residues could be modified. One of these lysine residues was associated with approximately 81% loss in activity after modification while modification of the second lysine residue led to complete inactivation of the enzyme. This second lysine was found to be the residue which reacted specifically with the ATP affinity label 5'-p-fluorosulfonylbenzoyladenosine. Lys-47 has been previously identified as the residue that reacts with this reagent (Pinkofsky, H. B., Ginsburg, A., Reardon, I., Heinrikson, R. L. (1984) J. Biol. Chem. 259, 9616-9622; Foster, W. B., Griffith, M. J., and Kingdon, H. S. (1981) J. Biol. Chem. 256, 882-886). Thiourea dioxide inactivated glutamine synthetase with total loss of activity and concomitant modification of a single lysine residue. The modified amino acid was identified as homoarginine by amino acid analysis. The lysine residue modified by thiourea dioxide was established by differential labeling experiments to be the same residue associated with the 81% partial loss of activity upon pyridoxal phosphate inactivation. Inactivation with either thiourea dioxide or pyridoxal phosphate did not affect ATP binding but glutamate binding was weakened. The glutamate site was implicated as the site of thiourea dioxide modification based on protection against inactivation by saturating levels of glutamate. Glutamate also protected against pyridoxal phosphate labeling of the lysine consistent with this residue being the common site of reaction with thiourea dioxide and pyridoxal phosphate.  相似文献   

3.
The binding change model for the F(1)-ATPase predicts that its rotation is intimately correlated with the changes in the affinities of the three catalytic sites for nucleotides. If so, subtle differences in the nucleotide structure may have pronounced effects on rotation. Here we show by single-molecule imaging that purine nucleotides ATP, GTP, and ITP support rotation but pyrimidine nucleotides UTP and CTP do not, suggesting that the extra ring in purine is indispensable for proper operation of this molecular motor. Although the three purine nucleotides were bound to the enzyme at different rates, all showed similar rotational characteristics: counterclockwise rotation, 120 degrees steps each driven by hydrolysis of one nucleotide molecule, occasional back steps, rotary torque of approximately 40 piconewtons (pN).nm, and mechanical work done in a step of approximately 80 pN.nm. These latter characteristics are likely to be determined by the rotational mechanism built in the protein structure, which purine nucleotides can energize. With ATP and GTP, rotation was observed even when the free energy of hydrolysis was -80 pN.nm/molecule, indicating approximately 100% efficiency. Reconstituted F(o)F(1)-ATPase actively translocated protons by hydrolyzing ATP, GTP, and ITP, but CTP and UTP were not even hydrolyzed. Isolated F(1) very slowly hydrolyzed UTP (but not CTP), suggesting possible uncoupling from rotation.  相似文献   

4.
Using we11-characterized mutant host cell lines, deficient in specific enzymes of energy and nucleotide metabolism, we addressed numerous questions regarding nucleotide metabolism in the obligate intracellular bacterium Chlamydia trachomatis. The results presented indicate that C. trachomatis: (i) does not absolutely depend on mitochondrial generated ATP for survival; (ii) does have a significant draw on host-cell NTP pools but does not have a detrimental effect on the ability of the host cell to maintain its energy charge; (iii) lacks the ability to synthesize purine and pyrimidine nucleotides de novo; (iv) is not capable of interconverting purine nucleotides; and (v) possesses the pyrimidine metabolic-pathway enzymes CTP synthetase and deoxycytidine nucleotide deaminase. In total our results indicate that C. trachomatis is auxotrophic for host-cell ATP, GTP and UTP. In contrast, CTP can be obtained from the host cell or it can be synthesized from UTP by the parasite.  相似文献   

5.
The regulatory role of the allosteric site of CTP synthetase on flux through the enzyme in situ and on pyrimidine nucleotide triphosphate (NTP) pool balance was investigated using a mutant mouse T lymphoblast (S49) cell line which contains a CTP synthetase refractory to complete inhibition by CTP. Measurements of [3H]uridine incorporation into cellular pyrimidine NTP pools as a function of time indicated that CTP synthesis in intact wild type cells was markedly inhibited in a cooperative fashion by small increases in CTP pools, whereas flux across the enzyme in mutant cells was much less affected by changes in CTP levels. The cooperativity of the allosteric inhibition of the enzyme was greater in situ than in vitro. Exogenous manipulation of levels of GTP, an activator of the enzyme, indicated that GTP had a moderate effect on enzyme activity in situ, and changes in pools of ATP, a substrate of the enzyme, had small effects on CTP synthetase activity. The consequences of incubation with actinomycin D, cycloheximide, dibutyryl cyclic AMP, and 6-azauridine on the flux across CTP synthetase and on NTP pools differed considerably between wild type and mutant cells. Under conditions of growth arrest, an intact binding site for CTP on CTP synthetase was required to maintain a balance between the CTP and UTP pools in wild type cells. Moreover, wild type cells failed to incorporate H14CO3- into pyrimidine pools following growth arrest. In contrast, mutant cells incorporated the radiolabel at a high rate indicating loss of a regulatory function. These results indicated that uridine nucleotides are important regulators of pyrimidine nucleotide synthesis in mouse S49 cells, and CTP regulates the balance between UTP and CTP pools.  相似文献   

6.
Simultaneous peptide and oligonucleotide formation was observed in reaction mixtures of amino acid, nucleoside triphosphate, imidazole, and MgCl2. At 70 degrees C in solutions that were evaporated to dryness the formation of peptide for phe and pro was greatest with CTP relative to ATP, GTP, and UTP. Lysine exhibited a preference for GTP and glycine for UTP. At ambient temperature insolution at pH 7.8, CTP was preferred by glycine, but at pH 8.7 UTP was preferred. The glycine nucleotide phosphoramidates were also detected and characterized in reactions at 40 degrees C. The glycine-reaction preference for CTP at pH 7.8 and UTP at 8.7 suggested that the basicity of the nucleoside triphosphate was involved in increasing the peptide yield. CTP near neutrality is the most basic nucleoside triphosphate and the basic anionic form UTP could facilitate peptide formation at pH 8.7. These data, together with information on the complexing of poly(C) by GTP, led to the experimentally approchable hypothesis that GTP, by forming a basic triplex between the cytosine residues adjacent to the peptidyl adenosine and aminoacyl adenosine at the termini of two proto-tRNAs, would promote peptide bond synthesis between the aminoacyl residue and peptidyl residue.  相似文献   

7.
Early studies showed that in addition to GTP, the pyrimidine nucleotides UTP and CTP support activation of the adenylyl cyclase (AC)-stimulating G(s) protein. The aim of this study was to elucidate the mechanism by which UTP and CTP support G(s) activation. As models, we used S49 wild-type lymphoma cells, representing a physiologically relevant system in which the beta(2)-adrenoreceptor (beta(2)AR) couples to G(s), and Sf9 insect cell membranes expressing beta(2)AR-Galpha(s) fusion proteins. Fusion proteins provide a higher sensitivity for the analysis of beta(2)AR-G(s) coupling than native systems. Nucleoside 5'-triphosphates (NTPs) supported agonist-stimulated AC activity in the two systems and basal AC activity in membranes from cholera toxin-treated S49 cells in the order of efficacy GTP > or = UTP > CTP > ATP (ineffective). NTPs disrupted high affinity agonist binding in beta(2)AR-Galpha(s) in the order of efficacy GTP > UTP > CTP > ATP (ineffective). In contrast, the order of efficacy of NTPs as substrates for nucleoside diphosphokinase, catalyzing the formation of GTP from GDP and NTP was ATP > or = UTP > or = CTP > or = GTP. NTPs inhibited beta(2)AR-Galpha(s)-catalyzed [gamma-(32)P]GTP hydrolysis in the order of potency GTP > UTP > CTP. Molecular dynamics simulations revealed that UTP is accommodated more easily within the binding pocket of Galpha(s) than CTP. Collectively, our data indicate that GTP, UTP, and CTP interact differentially with G(s) proteins and that transphosphorylation of GDP to GTP is not involved in this G protein activation. In certain cell systems, intracellular UTP and CTP concentrations reach approximately 10 nmol/mg of protein and are higher than intracellular GTP concentrations, indicating that G protein activation by UTP and CTP can occur physiologically. G protein activation by UTP and CTP could be of particular importance in pathological conditions such as cholera and Lesch-Nyhan syndrome.  相似文献   

8.
ATP stabilizes the unoccupied glucocorticoid receptor from brain at 12 degrees C, but only in the presence of a destabilizing microsomal factor. This stabilization is optimal at an ATP concentration of about 1 mM, higher concentrations resulting in an increase in the rate of heat inactivation. Other nucleotides, including CTP, GTP, UTP, ADP, cAMP and cGMP were ineffective in stabilizing receptors, although additions of some of these nucleotides actually resulted in further destabilization of the unoccupied glucocorticoid receptor.  相似文献   

9.
H+ transport into synaptosomal membrane vesicles of the rat brain was stimulated by ATP and to a lesser extent by GTP, but not by ITP, CTP, UTP, ADP, AMP or beta, gamma-methylene ATP. ATP at concentrations up to 200 mM concentration-dependently stimulated the rate of H+ transport with a Km value of 0.6 mM, but at higher concentrations of this nucleotide the rate decreased. Other nucleotides such as CTP, UTP, GTP and AMP, or products of ATP hydrolysis i.e. ADP and Pi also reduced the ATP-stimulated H+ transport. The inhibition by GTP and ADP was not affected by the ATP concentration. These findings suggest that plasma membranes of nerve endings transport H+ from inside to outside of the cells utilizing energy from ATP hydrolysis, and that this transport is regulated by the intracellular concentration of nucleotides and Pi on sites other than those involved in substrate binding.  相似文献   

10.
Escherichia coli Lon, also known as protease La, is a serine protease that is activated by ATP and other purine or pyrimidine triphosphates. In this study, we examined the catalytic efficiency of peptide cleavage as well as intrinsic and peptide-stimulated nucleotide hydrolysis in the presence of hydrolyzable nucleoside triphosphates ATP, CTP, UTP, and GTP. We observed that the k(cat) of peptide cleavage decreases with the reduction in the nucleotide binding affinity of Lon in the following order: ATP > CTP > GTP approximately UTP. Compared to those of the other hydrolyzable nucleotide triphosphates, the ATPase activity of Lon is also the most sensitive to peptide stimulation. Collectively, our kinetic as well as tryptic digestion data suggest that both nucleotide binding and hydrolysis contribute to the peptidase turnover of Lon. The kinetic data that were obtained were further put into the context of the structural organization of Lon protease by probing the conformational change in Lon bound to the different nucleotides. Both adenine-containing nucleotides and CTP protect a 67 kDa fragment of Lon from tryptic digestion. Since this 67 kDa fragment contains the ATP binding pocket (also known as the alpha/beta domain), the substrate sensor and discriminatory (SSD) domain (also known as the alpha-helical domain), and the protease domain of Lon, we propose that the binding of ATP induces a conformational change in Lon that facilitates the coupling of nucleotide hydrolysis with peptide substrate delivery to the peptidase active site.  相似文献   

11.
CTP synthetase (CTPs) catalyzes the last step in CTP biosynthesis, in which ammonia generated at the glutaminase domain reacts with the ATP-phosphorylated UTP at the synthetase domain to give CTP. Glutamine hydrolysis is active in the presence of ATP and UTP and is stimulated by the addition of GTP. We report the crystal structures of Thermus thermophilus HB8 CTPs alone, CTPs with 3SO4(2-), and CTPs with glutamine. The enzyme is folded into a homotetramer with a cross-shaped structure. Based on the binding mode of sulfate anions to the synthetase site, ATP and UTP are computer modeled into CTPs with a geometry favorable for the reaction. Glutamine bound to the glutaminase domain is situated next to the triad of Glu-His-Cys as a catalyst and a water molecule. Structural information provides an insight into the conformational changes associated with the binding of ATP and UTP and the formation of the GTP binding site.  相似文献   

12.
(i) The steady-state kinetic data obtained with purified gizzard and uterus smooth muscle myosins indicated the presence of a plateau region on the substrate-saturation curves. Hill plots of these data provided evidence for mixed positive and negative cooperative interactions. In contrast, when gizzard myosin was prepared according to the method of A. Sobieszek and R.D. Bremel (1975, Eur. J. Biochem.55, 49–60), the saturation curve in the presence of CaATP was hyperbolic and no cooperativity of the binding site(s) was discerned. However, in the presence of MgATP although the curve appeared hyperbolic the Hill plot of the data was biphasic with negative cooperativity at low MgATP concentration, (ii) When thiophosphorylated gizzard myosin was used for kinetic analysis, the plateau region in the presence of MnATP was eliminated from the saturation curve and this curve became hyperbolic. However, in the presence of MgATP, although the plateau was almost eliminated, the saturation curve was still biphasic with either no or greatly reduced negative cooperativity of binding sites at low MgATP concentrations but positive cooperativity of binding at high MgATP concentrations. In addition, the thiophosphorylation of myosin also increased the Km and V of MgATP and MnATP, thus indicating weaker affinity for these substrates with thiophosphorylated myosin. (iii) Gizzard myosin also hydrolyzed other nucleotides (the order of rates being CTP = ITP > ATP = UTP > GTP), therefore saturation kinetics using different nucleotides as substrates was also carried out. The saturation curves with each nucleotide were different i.e., hyperbolic with CTP, sigmoid with GTP, hyperbolic with biphasic Hill plot with ITP, and possessing plateau with UTP. In addition, it was observed that the kinetic pattern with each nucleotide was very sensitive to temperature and pH.  相似文献   

13.
E E Biswas 《Biochemistry》2001,40(28):8181-8187
Members of the ATP binding cassette (ABC) superfamily are transmembrane proteins that are found in a variety of tissues which transport substances across cell membranes in an energy-dependent manner. The retina-specific ABC protein (ABCR) has been linked through genetic studies to a number of inherited visual disorders, including Stargardt macular degeneration and age-related macular degeneration (ARMD). Like other ABC transporters, ABCR is characterized by two nucleotide binding domains and two transmembrane domains. We have cloned and expressed the 522-amino acid (aa) N-terminal cytoplasmic region (aa 854-1375) of ABCR containing nucleotide binding domain 1 (NBD1) with a purification tag at its amino terminus. The expressed recombinant protein was found to be soluble and was purified using single-step affinity chromatography. The purified protein migrated as a 66 kDa protein on SDS-PAGE. Analysis of the ATP binding and hydrolysis properties of the NBD1 polypeptide demonstrated significant differences between NBD1 and NBD2 [Biswas, E. E., and Biswas, S. B. (2000) Biochemistry 39, 15879-15886]. NBD1 was active as an ATPase, and nucleotide inhibition studies suggested that nucleotide binding was not specific for ATP and all four ribonucleotides can compete for binding. Further analysis demonstrated that NBD1 is a general nucleotidase capable of hydrolysis of ATP, CTP, GTP, and UTP. In contrast, NBD2 is specific for adenosine nucleotides (ATP and dATP). NBD1 bound ATP with a higher affinity than NBD2 (K(mNBD1) = 200 microm vs K(mNBD2) = 631 microm) but was less efficient as an ATPase (V(maxNBD1) = 28.9 nmol min(-)(1) mg(-)(1) vs V(maxNBD2) = 144 nmol min(-)(1) mg(-)(1)). The binding efficiencies for CTP and GTP were comparable to that observed for ATP (K(mCTP) = 155 microm vs K(mGTP) = 183 microm), while that observed for UTP was decreased 2-fold (K(mUTP) = 436 microm). Thus, the nucleotide binding preference of NBD1 is as follows: CTP > GTP > ATP > UTP. These studies demonstrate that NBD1 of ABCR is a general nucleotidase, whereas NBD2 is a specific ATPase.  相似文献   

14.
Interactions of several amino acids and nucleotides with valyl-tRNA synthetase [EC 6.1.1.9] (VRS) from Bacillus stearothermophilus were investigated using as a probe the ligand-induced quenching of protein fluorescence (lambda ex = 295 nm, lambda em = 340 nm) of VRS. L-Valine, L-threonine, L-isoleucine, L-glutamic acid, L-leucine, and D-valine caused fluorescence quenching. Among them, L-threonine had a Kd value comparable to that for the cognate substrate, L-valine, but the other amino acids were bound more weakly as estimated by the fluorescence titration method. L-Alanine, L-histidine, and L-serine did not cause any fluorescence change. Among the nucleotides tested (ATP, ADP, AMP, GTP, ITP, CTP, and UTP), only ATP caused the fluorescence change. In the presence of an excess amount of ATP, only L-valine and L-threonine, among the tested amino acids, induced the fluorescence quenching, and the binding of L-valine was greatly favored under this condition. This is consistent with the results of the ATP-PP1 exchange reaction by VRS, in which only L-valine and L-threonine, of these 9 amino acids tested, could serve as substrates, and the Km value for L-valine was much smaller than that for L-threonine. Thus the binding of ATP to VRS enhances the substrate specificity of VRS towards amino acids.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
Yoshida T  Kawaguchi R  Maruyama T 《FEBS letters》2002,514(2-3):269-274
The archaeal chaperonin-mediated folding of green fluorescent protein (GFP) was examined in the presence of various nucleotides. The recombinant alpha- and beta-subunit homo-oligomers and natural chaperonin oligomer from Thermococcus strain KS-1 exhibited folding activity with not only ATP but also with CTP, GTP, or UTP. The ADP-bound form of both recombinant and natural chaperonin had the ability to capture non-native GFP, but could not refold it in the presence of CTP, GTP or UTP until ATP was supplied. The archaeal chaperonin thus utilized ATP, but could not use other nucleoside triphosphates in the cytoplasm where ADP was present.  相似文献   

16.
Pappas A  Park TS  Carman GM 《Biochemistry》1999,38(50):16671-16677
CTP synthetase [EC 6.3.4.2, UTP:ammonia ligase (ADP-forming)] from the yeast Saccharomyces cerevisiae catalyzes the ATP-dependent transfer of the amide nitrogen from glutamine to the C-4 position of UTP to form CTP. In this work, we demonstrated that CTP synthetase utilized dUTP as a substrate to synthesize dCTP. The dUTP-dependent activity was linear with time and with enzyme concentration. Maximum dUTP-dependent activity was dependent on MgCl(2) (4 mM) and GTP (K(a) = 14 microM) at a pH optimum of 8.0. The apparent K(m) values for dUTP, ATP, and glutamine were 0.18, 0.25, and 0.41 mM, respectively. dUTP promoted the tetramerization of CTP synthetase, and the extent of enzyme tetramerization correlated with dUTP-dependent activity. dCTP was a poor inhibitor of dUTP-dependent activity, whereas CTP was a potent inhibitor of this activity. The enzyme catalyzed the synthesis of dCTP and CTP when dUTP and UTP were used as substrates together. CTP was the major product synthesized when dUTP and UTP were present at saturating concentrations. When dUTP and UTP were present at concentrations near their K(m) values, the synthesis of dCTP increased relative to that of CTP. The synthesis of dCTP was favored over the synthesis of CTP when UTP was present at a concentration near its K(m) value and dUTP was varied from subsaturating to saturating concentrations. These data suggested that the dUTP-dependent synthesis of dCTP by CTP synthetase activity may be physiologically relevant.  相似文献   

17.
In all previous kinetics studies of calf liver CTP synthetase, simple Michaelis-Menten hyperbolic plots were obtained. In this study it was shown that calf liver CTP synthetase could generate sigmoidal kinetic plots as a function of the substrate UTP when in the presence of the product of the reaction, CTP. The Hill number was estimated to be 2.8. The enzyme did not generate sigmoidal plots as a function of the other substrates (L-glutamine and ATP) either in the presence or absence of CTP. Thus, CTP apparently induced changes in the liver enzyme which altered the binding of UTP to the enzyme by acting at a site distinct from the UTP binding site (allosteric site). This concept was further strengthened by the fact that 3-deazaUTP, a known competitive inhibitor of the liver enzyme, did not induce sigmoidal kinetic plots. It was also shown that CTP had no effect upon the dimerization of the enzyme, thus ruling out monomer to dimer transitions as a potential mechanism for the observed sigmoidal kinetics.  相似文献   

18.
19.
Substrate specificity of CTP synthetase from Escherichia coli   总被引:1,自引:0,他引:1  
The stoichiometry of the enzymatic reaction catalyzed by CTP synthetase from Escherichia coli was analyzed by high-performance liquid chromatography. The results revealed that for every mole of UTP transformed to CTP, one mole of ATP was converted to ADP. The substrate specificity of CTP synthetase from E. coli was investigated by means of UTP analogs. Chemical modification of UTP involved either the uracil, ribose or 5'-triphosphate part. None of the UTP analogs studied proved to be a substrate. The capacity of the UTP analogs to inhibit CTP synthetase was investigated. From the UTP derivatives employed only 2-thiouridine 5'-triphosphate was found to inhibit the enzyme competitively with reasonable affinity: Ki/Km(UTP) = 1. This study indicated that the three main structural elements of the UTP molecule: uracil, ribose and 5'-triphosphate moiety, contribute to substrate specificity. The behaviour of a limited number of CTP analogs as product-like inhibitors supported this view.  相似文献   

20.
The concentrations of glycolytic intermediates, including 2,3-diphosphoglycerate, were similar in rat reticulocytes and erythrocytes. There were striking differences, however, in the content and kind of water-soluble nucleotides. Reticulocytes contained much higher concentrations of ATP, GTP, UTP and CTP and had nucleotides not detected in the mature cell including UDP-acetylhexosamine, guanosine diphosphomannose and an unidentified cytidine compound. A large fraction of the total GTP found in the reticulocyte was in the form of a 1:1 complex of ferric iron with GTP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号