首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
Saccharomyces cerevisiae expresses two forms of superoxide dismutase (SOD): MnSOD, encoded by SOD2, which is located within the mitochondrial matrix, and CuZnSOD, encoded by SOD1, which is located in both the cytosol and the mitochondrial intermembrane space. Because two different SOD enzymes are located in the mitochondrion, we examined the relative roles of each in protecting mitochondria against oxidative stress. Using protein carbonylation as a measure of oxidative stress, we have found no correlation between overall levels of respiration and the level of oxidative mitochondrial protein damage in either wild type or sod mutant strains. Moreover, mitochondrial protein carbonylation levels in sod1, sod2, and sod1sod2 mutants are not elevated in cells harvested from mid-logarithmic and early stationary phases, suggesting that neither MnSOD nor CuZnSOD is required for protecting the majority of mitochondrial proteins from oxidative damage during these early phases of growth. During late stationary phase, mitochondrial protein carbonylation increases in all strains, particularly in sod1 and sod1sod2 mutants. By using matrix-assisted laser desorption ionization time-of-flight mass spectrometry, we have found that specific proteins become carbonylated in sod1 and sod2 mutants. We identified six mitochondrial protein spots representing five unique proteins that become carbonylated in a sod1 mutant and 19 mitochondrial protein spots representing 11 unique proteins that become carbonylated in a sod2 mutant. Although some of the same proteins are carbonylated in both mutants, other proteins are not. These findings indicate that MnSOD and CuZnSOD have both unique and overlapping functions in the mitochondrion.  相似文献   

3.
A gene (sod) encoding superoxide dismutase (SOD) was cloned from Streptococcus mutans in Escherichia coli, and its nucleotide sequence was determined. The presumptive amino acid sequence of its product revealed that the SOD is basically of Mn type. Insertional inactivation of the sod gene resulted in the loss of SOD activity in crude extracts, indicating that the gene represents the only functional gene for SOD in S. mutans. Moreover, Southern blot analysis indicated that the S. mutans chromosome had no additional gene which was hybridizable with an oligonucleotide probe specific for an SOD motif. The SOD-deficient mutants were able to grow aerobically, albeit more slowly than the parent strains.  相似文献   

4.
Superoxide dismutases (SOD) serve as an important antioxidant defense mechanism in aerobic organisms, and deletion of these genes shortens the replicative life span in the budding yeast Saccharomyces cerevisiae. Even though involvement of superoxide dismutase enzymes in ROS scavenging and the aging process has been studied extensively in different organisms, analyses of DNA damages has not been performed for replicatively old superoxide dismutase deficient cells. In this study, we investigated the roles of SOD1, SOD2 and CCS1 genes in preserving genomic integrity in replicatively old yeast cells using the single cell comet assay. We observed that extend of DNA damage was not significantly different among the young cells of wild type, sod1Δ and sod2Δ strains. However, ccs1Δ mutants showed a 60% higher amount of DNA damage in the young stage compared to that of the wild type cells. The aging process increased the DNA damage rates 3-fold in the wild type and more than 5-fold in sod1Δ, sod2Δ, and ccs1Δ mutant cells. Furthermore, ROS levels of these strains showed a similar pattern to their DNA damage contents. Thus, our results confirm that cells accumulate DNA damages during the aging process and reveal that superoxide dismutase enzymes play a substantial role in preserving the genomic integrity in this process.  相似文献   

5.
We studied superoxide dismutases (SODs) in the encapsulated yeast Cryptococcus neoformans (Cn) variety gattii to analyse the role of mitochondrial MnSOD (SOD2) in fungal biology and virulence. SOD2 was cloned from a Cn cosmid library, sod2 mutant and sod2 + SOD2 reconstituted strains were constructed by homologous recombination, and two sod1sod2 double mutants were constructed by replacing SOD2 in the sod1 mutant with the sod2::HYG allele. The SOD2 protein (SOD2p) encoded 225 amino acids, with 36-66% identity with other fungal SOD2ps. SOD2 deletion rendered Cn highly growth-defective at 37 degrees C in 19-20% oxygen (normal air), and this defect was reversed by limiting oxygen to 1.3% as well in the presence of antioxidant, ascorbic acid. The sod2 mutant accumulated significantly more reactive oxygen species (ROS) at 37 degrees C as well at 30 degrees C in the presence of antimycin A, suggesting that SOD2p is the primary defence of Cn against the superoxide anion (O(2) (.-)) in the mitochondria. The sod2 was also highly susceptible to redox-cycling agents, high salt and nutrient limitations. The sod2 mutant was avirulent in intranasally infected mice and markedly attenuated in its virulence in intravenously infected mice. The virulence defect of sod2 mutant appeared related to its growth defects in high oxygen environment, but not resulting from increased sensitivity to oxidative killing by phagocytes. The sod1sod2 double mutants were avirulent in mice. Additionally, sod1sod2 double mutants showed a marked reduction in the activities of other known Cn virulence factors; and they were more susceptible to PMN killing than was the sod2 single mutant. Previously, we reported that the attenuation of sod1 mutant in mice was resulting from enhanced susceptibility to phagocyte killing, combined with a reduction in the activities of a number of virulence factors. Thus, SOD1p and SOD2p play distinct roles in the biology and virulence of Cn var. gattii via independent modes of action.  相似文献   

6.
Mourad G  King J 《Plant physiology》1995,107(1):43-52
Threonine dehydratase/deaminase (TD), the first enzyme in the isoleucine biosynthetic pathway, is feedback inhibited by isoleucine. By screening M2 populations of ethyl methane sulfonate-treated Arabidopsis thaliana Columbia wild-type seeds, we isolated five independent mutants that were resistant to L-O-methylthreonine, an isoleucine structural analog. Growth in the mutants was 50- to 600-fold more resistant to L-O-methylthreonine than in the wild type. The resistance was due to a single, dominant nuclear gene that was denoted omr1 and was mapped to chromosome 3 in GM11b, the mutant line exhibiting the highest level of resistance. Biochemical characteristics (specific activities, Km, Vmax, and pH optimum) of TD in extracts from the wild type and GM11b were similar except for the inhibition constant of isoleucine, which was 50-fold higher in GM11b than in the wild type. Levels of free isoleucine were 20-fold higher in extracts from GM11b than in extracts from wild type. Therefore, isoleucine feedback insensitivity in GM11b is due to a mutant form of the TD enzyme encoded by omr1. The mutant allele omr1 of the line GM11b could provide a new selectable marker for plant genetic transformation.  相似文献   

7.
Here we report that deletion of SOD1, the Cu,Zn-superoxide dismutase in Saccharomyces cerevisiae is sensitive to cell wall-perturbing agents, such as Calcofluor white and Congo red. The sensitivity was restored by retransformation with wild type SOD1 or the addition of N-acetylcysteine or reduced glutathione to the medium. Additionally, the accumulation of reactive oxygen species was observed in sod1Δ mutant in the presence of Calcofluor white or Congo red. Cell wall analysis indicated an increase of cell wall chitin and cell wall thickness in sod1Δ mutant compared to wild type. These results indicate a novel direct connection between antioxidative functions and cell wall homeostasis.  相似文献   

8.
9.
Three Cu,Zn superoxide dismutase (SOD-1)-deficient Saccharomyces cerevisiae mutants do not grow in 100% O2 in rich medium and require Met and Lys when grown in air (Bilinski, T., Krawiec, Z., Liczmanski, A., and Litwinska, J. (1985) Biochem. Biophys. Res. Commun. 130, 533-539). We show herein that medium manganese (II) accumulated by the mutants rescues these O2-sensitive phenotypes; 2 mM medium Mn2+ represented the threshold required for cell growth. The accumulation of Mn2+ was not oxygen-inducible since mutants grown aerobically and anaerobically accumulated the same amount of Mn2+. Mn2+ accumulation is not unique to these mutants since wild type accumulated almost twice as much Mn2+ as did mutant. ESR spectra of the cell extracts and whole cells loaded with Mn2+ were typical of free Mn(II) ion. These spectra could not account quantitatively for the total cellular Mn2+, however. A screen for soluble antioxidant activities in the Mn2+-supplemented cells detected O2- (superoxide) scavenging activity, with no change in catalase or peroxidase activities. This O2- scavenging activity was CN- and heat-resistant. No achromatic bands were revealed in nondenaturing gels of Mn2+- containing cell extracts stained for O2- scavenging activity. The Mn2+-dependent O2- scavenging activity in the cell extracts was quenched by EDTA and dialyzable. More than 60% of both the intracellular Mn2+ and the O2- scavenging activity was removed by 2-h dialysis. Dialyzed cells were not viable in air unless resupplemented with either Met or Mn2+. Although Mn2+ supported the aerobic growth of these mutants, excess Mn2+, which correlated with an elevated O2- scavenging activity, was toxic to both mutant and wild type. The results indicate that free or loosely bound Mn2+ ion protects the mutants against oxygen stress by providing an intracellular, presumably cytosolic, O2- scavenging activity which replaces the absent SOD-1.  相似文献   

10.
Superoxide dismutases, both cytosolic Cu, Zn-SOD encoded by SOD1 and mitochondrial Mn-SOD encoded by SOD2, serve Saccharomyces cerevisiae cells for defense against the superoxide radical but the phenotypes of sod1A and sod2delta mutant strains are different. Compared with the parent strain and the sod1delta mutant, the sod2delta mutant shows a much more severe growth defect at elevated salt concentrations, which is partially rescued by 2 mmol/L glutathione. The growth of all three strains is reduced at 37 degrees C, the sod2delta showing the highest sensitivity, especially when cultured in air. Addition of 1 mmol/L glutathione to the medium restores aerobic growth of the sod1delta mutant but has only a minor effect on the growth of the sod2delta strain at 37 degrees C. The sod2delta strain is also sensitive to AsIIl and AsV and its sensitivity is much more pronounced under aerobic conditions. These results suggest that, unlike the Sodlp protein, whose major role is oxidative stress defense, Sod2p also plays a role in protecting S. cerevisiae cells against other stresses--high osmolarity, heat and metalloid stress.  相似文献   

11.
Yeast contain two nontandemly repeated enolase structural genes which have been isolated on bacterial plasmids designated peno46 and peno8 (Holland, M. J., Holland, J. P., Thill, G. P., and Jackson, K. A. (1981) J. Biol. Chem. 256, 1385-1395). In order to study the expression of the enolase genes in vivo, the resident enolase gene in a wild type yeast strain corresponding to the gene isolated on peno46 was replaced with a deletion, constructed in vitro, which lacks 90% of the enolase coding sequences. Three catalytically active enolases are resolved differ DEAE-Sephadex chromatography of wild type cellular extracts. As expected, a single form of enolase was resolved from extracts of the mutant cell. Immunological and electrophoretic analyses of the multiple forms of enolase confirm that two enolase genes are expressed in wild type cells and that isozymes are formed in the cell by random assortment of the two polypeptides into three active enolase dimers. The yeast enolase loci have been designated ENO1 and ENO2. The deletion mutant lacks the enolase 1 polypeptide confirming that this polypeptide is encoded by the gene isolated on peno46. The intracellular steady state concentrations of the two polypeptides are dependent on the carbon source used to propagate the cells. Log phase cells grown on glucose contain 20-fold more enolase 2 polypeptide than enolase 1 polypeptide, whereas cells grown on ethanol or glycerol plus lactate contain similar amounts of the two polypeptides. The 20-fold higher than in cells grown on the nonfermentable carbon sources. In vitro translation of total cellular RNA suggests that the steady state concentrations of the two enolase mRNAs in cells grown on different carbon sources are proportional to the steady state concentrations of the respective enolase polypeptides.  相似文献   

12.
The functional and structural significance of the intrasubunit disulfide bond in copper-zinc superoxide dismutase (SOD1) was studied by characterizing mutant forms of human SOD1 (hSOD) and yeast SOD1 lacking the disulfide bond. We determined x-ray crystal structures of metal-bound and metal-deficient hC57S SOD1. C57S hSOD1 isolated from yeast contained four zinc ions per protein dimer and was structurally very similar to wild type. The addition of copper to this four-zinc protein gave properly reconstituted 2Cu,2Zn C57S hSOD, and its spectroscopic properties indicated that the coordination geometry of the copper was remarkably similar to that of holo wild type hSOD1. In contrast, the addition of copper and zinc ions to apo C57S human SOD1 failed to give proper reconstitution. Using pulse radiolysis, we determined SOD activities of yeast and human SOD1s lacking disulfide bonds and found that they were enzymatically active at ∼10% of the wild type rate. These results are contrary to earlier reports that the intrasubunit disulfide bonds in SOD1 are essential for SOD activity. Kinetic studies revealed further that the yeast mutant SOD1 had less ionic attraction for superoxide, possibly explaining the lower rates. Saccharomyces cerevisiae cells lacking the sod1 gene do not grow aerobically in the absence of lysine, but expression of C57S SOD1 increased growth to 30–50% of the growth of cells expressing wild type SOD1, supporting that C57S SOD1 retained a significant amount of activity.  相似文献   

13.
The LYS7 gene in Saccharomyces cerevisiae encodes a protein (yCCS) that delivers copper to the active site of copper-zinc superoxide dismutase (CuZn-SOD, a product of the SOD1 gene). In yeast lacking Lys7 (lys7Delta), the SOD1 polypeptide is present but inactive. Mutants lacking the SOD1 polypeptide (sod1Delta) and lys7Delta yeast show very similar phenotypes, namely poor growth in air and aerobic auxotrophies for lysine and methionine. Here, we demonstrate certain phenotypic differences between these strains: 1) lys7Delta cells are slightly less sensitive to paraquat than sod1Delta cells, 2) EPR-detectable or "free" iron is dramatically elevated in sod1Delta mutants but not in lys7Delta yeast, and 3) although sod1Delta mutants show increased sensitivity to extracellular zinc, the lys7Delta strain is as resistant as wild type. To restore the SOD catalytic activity but not the zinc-binding capability of the SOD1 polypeptide, we overexpressed Mn-SOD from Bacillus stearothermophilus in the cytoplasm of sod1Delta yeast. Paraquat resistance was restored to wild-type levels, but zinc was not. Conversely, expression of a mutant CuZn-SOD that binds zinc but has no SOD activity (H46C) restored zinc resistance but not paraquat resistance. Taken together, these results strongly suggest that CuZn-SOD, in addition to its antioxidant properties, plays a role in zinc homeostasis.  相似文献   

14.
Proteinacious intracellular aggregates in motor neurons are a key feature of both sporadic and familial amyotrophic lateral sclerosis (ALS). These inclusion bodies are often immunoreactive for Cu,Zn-superoxide dismutase (SOD1) and are implicated in the pathology of ALS. On the basis of this and a similar clinical presentation of symptoms in the familial (fALS) and sporadic forms of ALS, we sought to investigate the possibility that there exists a common disease-related aggregation pathway for fALS-associated mutant SODs and wild type SOD1. We have previously shown that oxidation of fALS-associated mutant SODs produces aggregates that have the same morphological, structural, and tinctorial features as those found in SOD1 inclusion bodies in ALS. Here, we show that oxidative damage of wild type SOD at physiological concentrations ( approximately 40 microm) results in destabilization and aggregation in vitro. Oxidation of either mutant or wild type SOD1 causes the enzyme to dissociate to monomers prior to aggregation. Only small changes in secondary and tertiary structure are associated with monomer formation. These results indicate a common aggregation prone monomeric intermediate for wild type and fALS-associated mutant SODs and provides a link between sporadic and familial ALS.  相似文献   

15.
The isozyme pattern of superoxide dismutase (SOD) in tomato consists of two Cu,Zn isozymes located, respectively, in the chloroplast and in the cytosol, as well as additional isozymes of the Mn or Fe SOD type. We have shown that SOD-1 is the chloroplastic Cu,Zn SOD and is related to cDNA clone T10. Restriction fragment length polymorphism (RFLP) analysis was performed with two cDNA clones representing tomato Cu,Zn-superoxide dismutases. T10, coding for the chloroplast isozyme, was thus mapped to chromosome 11, between marker TG46 and TG108, while clone P31, coding for the cytosolic Cu,Zn SOD isozyme, was mapped to chromosome 1 between TG24 and TG81. SOD is associated with the response of plants to various environmental stresses; the mapping information presented here would permit the demonstration of this association by genetic analysis.  相似文献   

16.
Sod2 is the Na+/H+ exchanger of the fission yeast Schizosaccharomyces pombe that is principally responsible for salt tolerance. We examined the role of nine polar, membrane associated amino acids in the ability of the protein to confer salt tolerance in S. pombe. Wild type sod2 protein with a C-terminal GFP tag effectively rescued salt tolerance in S. pombe with deleted endogenous sod2. Sod2 protein with the mutations P163A, P183A, D298N, D389N, E390Q, E392Q and E397Q also conveyed salt tolerance as effectively as the wild type sod2 protein. In contrast, the mutation P146A resulted in a protein that did not convey salt tolerance nearly as effectively as the wild type and did not extrude Na+ as well as the wild type. Mutation of Pro146 to Ser, Asp or Lys had an intermediate effect. Mutation of Thr142 to Ser resulted in a slightly defective protein. Western blot analysis showed that all mutant proteins were expressed at similar levels as wild type sod2 protein. Examination of the localization of the proteins showed that wild type and most sod2 mutants were present in the plasma membrane while the P146A mutant had an intracellular localization. Limited tryptic digestion suggested that the P146A sod2 protein had a change in conformation in comparison to the wild type protein. The results suggest that Pro146 is an amino acid critical to sod2 structure, function and localization.  相似文献   

17.
The mechanism of histidinol (HST)-induced heat protection was investigated to test the hypothesis that the cessation of protein synthesis itself is one of the events involved in heat protection. For this study, we isolated three HST-resistant mutant strains. HST (5 mM), which inhibited protein synthesis by 88% in the wild type, caused only 0, 9, and 25% inhibition in three mutants, respectively. The drug, which afforded heat protection, (i.e., a 125-fold increase in survival from 4 x 10(-3) to 5 x 10(-1) after 2 hr at 43 degrees C in wild type), did not protect mutant cells from heat killing. In contrast, cycloheximide (10 micrograms/ml) which inhibited protein synthesis by 95% in both wild type and mutant cell types, protected both cell types from heat killing. Therefore, these results suggest that the cessation of protein synthesis, per se, preventing synthesis of nascent polypeptides, is a major event leading to heat protection.  相似文献   

18.
A new acetate-requiring mutant strain of Neurospora crassa, ace-9, has been isolated. The mutant gene was mapped between nuc-2 and arg-12 on the right arm of the second linkage group. The ace-9 mutant strain shows very weak activity of pyruvate dehydrogenase complex (PDHC). Three strains that show no activity of PDHC had already been found, i.e., ace-2, ace-3, and ace-4. Thus the ace-9 is the fourth gene that causes the deficiency in PDHC activity by a mutation. Deficiency of PDHC activity in ace-9 strain seems to be due to defective E1 component, because (1) the activity of E1 component enzyme is very weak in ace-9 mutant strain, and (2) normal PDHC activity was resumed when a preparation of ace-9 was mixed with E1-E2 fraction of wild type or with E1 component of wild type E. coli. Difference in thermostability of both E1 component enzyme and PDHC between ace-9 and the wild type strains supports this conclusion.  相似文献   

19.
20.
Porphyromonas gingivalis, an obligate anaerobe, exhibits a relatively high degree of aerotolerance and possesses superoxide dismutase (SOD) which is induced by exposure to air. To clarify roles for SOD in this organism, the gene encoding SOD (sod) on the P. gingivalis chromosome was disrupted in a gene-directed way by use of a suicide plasmid containing a mutated sod. A sod mutant thus obtained showed no SOD activity in crude extracts and exhibited a rapid viability loss immediately after exposure to air, whereas the wild-type parent showed no decrease in viability for at least 5 h under aerobic conditions. These results clearly indicate that SOD is essential for aerotolerance in P. gingivalis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号