首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
Regulatory mutants of the luminescent bacterium, Vibrio harveyi, have been isolated whose light emission can be stimulated by extracts of the growth media. Chloroform extracts of conditioned media in which V. harveyi has been grown can increase light emission in one of the dark mutants, D34, over 103-fold. An increase in the level of the mRNA and the enzymes associated with the lux system can also be demonstrated. Analysis of the expression of the lux system in Escherichia coli transformed with DNA from the D34 regulatory mutant demonstrates that the mutation resides outside the luciferase structural genes. The results suggest that the decrease in light emission in the regulatory mutants may be due to a mutation in synthesis of an autoinducer analogous to that found for the Vibrio fischeri lux system.  相似文献   

9.
The quorum‐sensing (QS) response of Vibrio fischeri involves a rapid switch between low and high induction states of the lux operon over a narrow concentration range of the autoinducer (AI) 3‐oxo‐hexanoyl‐L ‐homoserine lactone. In this system, LuxR is an AI‐dependent positive regulator of the lux operon, which encodes the AI synthase. This creates a positive feedback loop common in many bacterial species that exhibit QS‐controlled gene expression. Applying a combination of modeling and experimental analyses, we provide evidence for a LuxR autoregulatory feedback loop that allows LuxR to increase its concentration in the cell during the switch to full lux activation. Using synthetic lux gene fragments, with or without the AI synthase gene, we show that the buildup of LuxR provides more sensitivity to increasing AI, and promotes the induction process. Elevated LuxR levels buffer against spurious variations in AI levels ensuring a robust response that endows the system with enhanced hysteresis. LuxR autoregulation also allows for two distinct responses within the same cell population.  相似文献   

10.
Master quorum sensing (QS) regulator LuxR of Vibrio harveyi is a unique member of the TetR protein superfamily. Recent studies have demonstrated the contribution of thiazolidinedione analogues in blocking QS by decreasing the DNA-binding ability of LuxR. However, the precise mechanism of thiazolidinedione analogues binding to LuxR is still unclear. In the present study, molecular docking combined with molecular dynamics (MD) simulations was performed to understand the mechanism of ligand binding to the protein. The binding pattern of thiazolidinedione analogues showed strong hydrogen bonding interactions with the amine group (NH) of polar amino acid residue Asn133 and carbonyl (C=O) interaction with negatively charged amino acid residue Gln137 in the binding site of LuxR. The stability of the protein–ligand complexes was confirmed by running 50 ns of MD simulations. Further, the four-featured pharmacophore hypothesis (AHHD) consists of one acceptor (A), two hydrophobic regions (HH) and one donor (D) group was used to screen compounds from ChemBridge database. The identified hit molecules were shown to have excellent pharmacokinetic properties under the acceptable range. Based on the computational studies, ChemBridge_5343641 was selected for in vitro assays. The 1-(4-chlorophenoxy)-3-[(4,6-dimethyl-2-pyrimidinyl)thio]-2-propanol (ChemBridge_5343641) showed significant reduction in bioluminescence in a dose-dependent manner. In addition, ChemBridge_5343641 inhibits biofilm formation and motility in V. harveyi. The result from the study suggests that ChemBridge_5343641 could serve as an anti-QS molecule.  相似文献   

11.
The somatostatin upstream enhancer (SMS-UE) is a highly complex enhancer element. The distal A-element contains overlapping Pdx1 and Pbx binding sites. However, a point mutation in the A-element that abolishes both Pdxl and Pbx binding does not impair promoter activity. In contrast, a point mutation that selectively eliminates Pdx1 binding to a proximal B-element reduces the promoter activity. The B-element completely overlaps with a Pax6 binding site, the C-element. A point mutation in the C-element demonstrates that Pax6 binding is essential for promoter activity. Interestingly, a block mutation in the A-element reduces both Pax6 binding and promoter activity. In heterologous cells, Pdx1 potentiated Pax6 mediated activation of a somatostatin reporter. We conclude that the beta/delta-cell-specific activity of the SMS-UE is achieved through simultaneous binding of Pdx1 and Pax6 to the B- and C-elements, respectively. Furthermore, the A-element appears to stabilise Pax6 binding.  相似文献   

12.
13.
14.
15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号