首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Responses to a selective azaindole-based Rho kinase (ROCK) inhibitor (azaindole-1) were investigated in the rat. Intravenous injections of azaindole-1 (10-300 μg/kg), produced small decreases in pulmonary arterial pressure and larger decreases in systemic arterial pressure without changing cardiac output. Responses to azaindole-1 were slow in onset and long in duration. When baseline pulmonary vascular tone was increased with U46619 or L-NAME, the decreases in pulmonary arterial pressure in response to the ROCK inhibitor were increased. The ROCK inhibitor attenuated the increase in pulmonary arterial pressure in response to ventilatory hypoxia. Azaindole-1 decreased pulmonary and systemic arterial pressures in rats with monocrotaline-induced pulmonary hypertension. These results show that azaindole-1 has significant vasodilator activity in the pulmonary and systemic vascular beds and that responses are larger, slower in onset, and longer in duration when compared with the prototypical agent fasudil. Azaindole-1 reversed hypoxic pulmonary vasoconstriction and decreased pulmonary and systemic arterial pressures in a similar manner in rats with monocrotaline-induced pulmonary hypertension. These data suggest that ROCK is involved in regulating baseline tone in the pulmonary and systemic vascular beds, and that ROCK inhibition will promote vasodilation when tone is increased by diverse stimuli including treatment with monocrotaline.  相似文献   

2.
The small GTP-binding protein Rho and its downstream effector, Rho-kinase, are important regulators of vasoconstrictor tone. Rho-kinase is upregulated in experimental models of pulmonary hypertension, and Rho-kinase inhibitors decrease pulmonary arterial pressure in rodents with monocrotaline and chronic hypoxia-induced pulmonary hypertension. However, less is known about responses to fasudil when pulmonary vascular resistance is elevated on an acute basis by vasoconstrictor agents and ventilatory hypoxia. In the present study, intravenous injections of fasudil reversed pulmonary hypertensive responses to intravenous infusion of the thromboxane receptor agonist, U-46619 and ventilation with a 10% O(2) gas mixture and inhibited pulmonary vasoconstrictor responses to intravenous injections of angiotensin II, BAY K 8644, and U-46619 without prior exposure to agonists, which can upregulate Rho-kinase activity. The calcium channel blocker isradipine and fasudil had similar effects and in small doses had additive effects in blunting vasoconstrictor responses, suggesting parallel and series mechanisms in the lung. When pulmonary vascular resistance was increased with U-46619, fasudil produced similar decreases in pulmonary and systemic arterial pressure, whereas isradipine produced greater decreases in systemic arterial pressure. The hypoxic pressor response was enhanced by 5-10 mg/kg iv nitro-L-arginine methyl ester (L-NAME), and fasudil or isradipine reversed the pulmonary hypertensive response to hypoxia in control and in L-NAME-treated animals, suggesting that the response is mediated by Rho-kinase and L-type Ca(2+) channels. These results suggest that Rho-kinase is constitutively active in regulating baseline tone and vasoconstrictor responses in the lung under physiological conditions and that Rho-kinase inhibition attenuates pulmonary vasoconstrictor responses to agents that act by different mechanisms without prior exposure to the agonist.  相似文献   

3.
4-({(4-Carboxybutyl)[2-(5-fluoro-2-{[4'-(trifluoromethyl)biphenyl-4-yl]methoxy}phenyl)ethyl]amino}methyl)benzoic acid (BAY 60-2770) is a nitric oxide (NO)-independent activator of soluble guanylyl cyclase (sGC) that increases the catalytic activity of the heme-oxidized or heme-free form of the enzyme. In this study, responses to intravenous injections of the sGC activator BAY 60-2770 were investigated under baseline and elevated tone conditions induced by the thromboxane mimic U-46619 when NO synthesis was inhibited by N(ω)-nitro-L-arginine methyl ester hydrochloride (L-NAME), when sGC activity was inhibited by 1H-[1,2,4]-oxadizaolo[4,3]quinoxaline-1-one (ODQ), an agent that oxidizes sGC, and in animals with monocrotaline-induced pulmonary hypertension. The intravenous injections of BAY 60-2770 under baseline conditions caused small decreases in pulmonary arterial pressure, larger decreases in systemic arterial pressure, and no change or small increases in cardiac output. Under elevated tone conditions during infusion of U-46619, intravenous injections of BAY 60-2770 caused larger decreases in pulmonary arterial pressure, smaller decreases in systemic arterial pressure, and increases in cardiac output. Pulmonary vasodilator responses to BAY 60-2770 were enhanced by L-NAME or by ODQ in a dose that attenuated responses to the NO donor sodium nitroprusside. ODQ had no significant effect on baseline pressures and attenuated pulmonary and systemic vasodilator responses to the sGC stimulator BAY 41-8543 2-{1-[2-(fluorophenyl)methyl]-1H-pyrazolo[3,4-b]pyridin-3-yl}-5(4-morpholinyl)-4,6-pyrimidinediamine. BAY 60-2770 and sodium nitroprusside decreased pulmonary and systemic arterial pressures in monocrotaline-treated rats in a nonselective manner. The present data show that BAY 60-2770 has vasodilator activity in the pulmonary and systemic vascular beds that is enhanced by ODQ and NOS inhibition, suggesting that the heme-oxidized form of sGC can be activated in vivo in an NO-independent manner to promote vasodilation. These results show that BAY 60-2770 and sodium nitroprusside decreased pulmonary and systemic arterial pressures in monocrotaline-treated rats, suggesting that BAY 60-2770 does not have selective pulmonary vasodilator activity in animals with monocrotaline-induced pulmonary hypertension.  相似文献   

4.
Endothelin produces pulmonary vasoconstriction and systemic vasodilation   总被引:4,自引:0,他引:4  
Endothelin is a newly described polypeptide derived from endothelial cells. The effects of porcine endothelin on the pulmonary vascular bed and systemic vascular bed were investigated in the anesthetized, intact-chest cat under conditions of constant pulmonary blood flow and left atrial pressure. Intralobar bolus injections of porcine endothelin (100-1000 ng) produced a mild vasoconstrictor response in the pulmonary vascular bed. The pulmonary vasoconstrictor response to endothelin was not altered when pulmonary vasomotor tone was increased by infusion of U46619. In contrast to this mild pulmonary vasoconstrictor response, endothelin decreased systemic arterial pressure. Moreover, injections of porcine endothelin into the right and left atria produced similar reductions in aortic pressure as well as similar increases in cardiac output and decreases in systemic vascular resistance. The systemic vasodilator response to porcine endothelin was not affected by beta 2-adrenoceptor blockade. The present data suggest that endothelin does not undergo significant first-pass pulmonary metabolism. The pulmonary vasoconstrictor response to bolus injections of porcine endothelin is not altered by changes in pulmonary vasomotor tone. In contrast, endothelin markedly dilated the systemic vascular bed independently of activation of beta 2-adrenoceptors. The present study provides the first report of the activity of endothelin on pulmonary and systemic hemodynamics in vivo. Moreover, the potent vasodilator activity of endothelin in the systemic vascular bed and its weak effect on pulmonary vessels suggest that endothelin may be more important in the regulation of peripheral vasomotor tone than the pulmonary vascular bed.  相似文献   

5.
The role of endogenous nitric oxide (NO) on vascular and respiratory smooth muscle basal tone was evaluated in six anaesthetized, paralysed, mechanically ventilated pigs. The involvement of endogenous NO in PAF-induced shock and airway hyperresponsiveness was also studied. PAF (50 ng/kg, i.v.) was administered before and after pretreatment with N(G)-nitro-L-arginine methyl ester (L-NAME, 10 mg/kg, i.v.), an NO synthesis inhibitor. PAF was also administered to three of these pigs after indomethacin infusion (3 mg/kg, i.v.). In normal pigs, L-NAME increased systemic and pulmonary vascular resistances, caused pulmonary hypertension and reduced cardiac output and stroke volume. The pulmonary vascular responses were correlated with the increase in static and dynamic lung elastances, without changing lung resistance. Inhibition of NO synthesis enhanced the PAF-dependent increase in total, intrinsic and viscoelastic lung resistances, without affecting lung elastances or cardiac activity. The systemic hypotensive effect of PAF was not abolished by pretreatment with L-NAME or indomethacin. This indicates that systemic hypotension is not correlated with the release of endogenous NO or prostacyclines. Indomethacin completely abolished the PAF-dependent respiratory effects.  相似文献   

6.
This study investigated the hypothesis that atrial natriuretic peptide (ANP) responses are mediated by particulate guanylate cyclase in the pulmonary vascular bed of the cat. When tone in the pulmonary vascular bed was raised to a high steady level with the thromboxane mimic U-46619, injections of ANP caused dose-related decreases in lobar arterial pressure. After administration of HS-142-1, an ANP-A- and ANP-B-receptor antagonist, vasodilator responses to ANP were reduced. The nitric oxide (NO) synthase inhibitor N(omega)-nitro-L-arginine methyl ester (L-NAME) enhanced ANP vasodilator responses, suggesting that inhibition of NO modulates ANP responses. L-NAME administration with constant 8-bromo-cGMP infusion attenuated the increased vasodilator response to ANP, suggesting that supersensitivity to ANP occurs upstream to activation of a cGMP-dependent protein kinase. In pulmonary arterial rings, ANP produced concentration-related vasorelaxant responses with and without endothelium. Methylene blue, L-NAME, or N(omega)-monomethyl-L-arginine did not alter ANP vasorelaxant responses. These data show that ANP supersensitivity observed in the intact pulmonary vascular bed is not seen in isolated pulmonary arterial segments, suggesting that it may only occur in resistance vessel elements. These results suggest that ANP responses occur through activation of ANP-A and/or -B receptors in an endothelium-independent manner and are modulated by NO in resistance vessel elements in the pulmonary vascular bed of the cat.  相似文献   

7.
The influence of nisoldipine, a dihydropyridine calcium entry antagonist, on vascular resistance and vasoconstrictor responses was investigated in the feline pulmonary vascular bed under conditions of controlled blood flow. The calcium channel blocking agent caused a small reduction in lobar vascular resistance and blocked pulmonary vasoconstrictor responses to BAY K 8644, an agent which promotes calcium entry. The calcium entry blocking agent also reduced pulmonary vasoconstrictor responses to methoxamine and to BHT 933, alpha 1- and alpha 2-adrenoceptor agonists, and to U 46619, an agent which mimics the actions of thromboxane A2. Although there was a marked difference in vasoconstrictor potency in the pulmonary vascular bed, responses to the thromboxane mimic and to the alpha 1- and alpha 2-adrenoceptor agonists were reduced by approximately the same extent. The increases in systemic arterial pressure in response to BAY K 8644, methoxamine, and BHT 933 were also reduced by nisoldipine, and the calcium entry antagonist reduced systemic arterial pressure and systemic vascular resistance. The results of the present study suggest that an extracellular source of calcium is required for the maintenance of vascular tone and for the expression of vasoconstrictor responses, resulting from activation of alpha 1- and postjunctional alpha 2-adrenoceptors and thromboxane receptors in the feline pulmonary vascular bed.  相似文献   

8.
The present study was undertaken to investigate the effects of intravenous (i.v.) administration of rat hemopressin (rHP), 30-1000 microg/kg, on systemic arterial pressure (SAP), cardiac output (CO) and systemic vascular resistance (SVR) in the anesthetized rat. Bolus i.v. injections of rHP produced mild decreases in SAP that were dose-dependent. Since CO was not altered, the decreases in SAP reflect reductions in SVR. The systemic vasodilator response to rHP was not subject to tachyphylaxis. The systemic vasodilator response to rHP was abolished by L-nitro-arginine methylester (L-NAME) but was not altered by meclofenamate. In addition, rHP lacked direct contractile and relaxant activity on isolated rat aortic rings (AA) and pulmonary arterial rings (PA). The present data suggest rHP dilates the rat systemic vascular bed through the endogenous release of nitric oxide (NO) independent of the formation of cyclooxygenase products including prostacyclin. It is possible rHP acts as an endogenous vasodilator substance to regulate local blood flow during clinical states of altered red cell turnover, microvascular disease and hemolysis.  相似文献   

9.
Mechanisms that maintain high pulmonary vascular resistance (PVR) in the fetal lung are poorly understood. Activation of the Rho kinase signal transduction pathway, which promotes actin-myosin interaction in vascular smooth muscle cells, is increased in the pulmonary circulation of adult animals with experimental pulmonary hypertension. However, the role of Rho kinase has not been studied in the fetal lung. We hypothesized that activation of Rho kinase contributes to elevated PVR in the fetus. To address this hypothesis, we studied the pulmonary hemodynamic effects of brief (10 min) intrapulmonary infusions of two specific Rho kinase inhibitors, Y-27632 (15-500 microg) and HA-1077 (500 microg), in chronically prepared late-gestation fetal lambs (n = 9). Y-27632 caused potent, dose-dependent pulmonary vasodilation, lowering PVR from 0.67 +/- 0.18 to 0.16 +/- 0.02 mmHg x ml(-1) x min(-1) (P < 0.01) at the highest dose tested without lowering systemic arterial pressure. Despite brief infusions, Y-27632-induced pulmonary vasodilation was sustained for 50 min. HA-1077 caused a similar fall in PVR, from 0.39 +/- 0.03 to 0.19 +/- 0.03 (P < 0.05). To study nitric oxide (NO)-Rho kinase interactions in the fetal lung, we tested the effect of Rho kinase inhibition on pulmonary vasoconstriction caused by inhibition of endogenous NO production with nitro-L-arginine (L-NA; 15-30 mg), a selective NO synthase antagonist. L-NA increased PVR by 127 +/- 73% above baseline under control conditions, but this vasoconstrictor response was completely prevented by treatment with Y-27632 (P < 0.05). We conclude that the Rho kinase signal transduction pathway maintains high PVR in the normal fetal lung and that activation of the Rho kinase pathway mediates pulmonary vasoconstriction after NO synthase inhibition. We speculate that Rho kinase plays an essential role in the normal fetal pulmonary circulation and that Rho kinase inhibitors may provide novel therapy for neonatal pulmonary hypertension.  相似文献   

10.
11.
Our objective was to determine the role of the Rho-associated kinase (ROK) for the regulation of FBF (FBF) and to unmask a potential role of ROK for the regulation of endothelium-derived nitric oxide (NO). Moreover, the effect of fasudil on the constrictor response to endothelin-1 was recorded. Regarding background, phosphorylation of the myosin light chain (MLC) determines the calcium sensitivity of the contractile apparatus. MLC phosphorylation depends on the activity of the MLC kinase and the MLC phosphatase. The latter enzyme is inhibited through phosphorylation by ROK. ROK has been suggested to inhibit NO generation, possibly via the inhibition of the Akt pathway. In this study, the effect of intra-arterial infusion of the ROK inhibitor fasudil on FBF in 12 healthy volunteers was examined by venous occlusion plethysmography. To unmask the role of NO, fasudil was infused during NO clamp. As a result, fasudil markedly increased FBF in a dose-dependent manner from 2.34 +/- 0.21 to 6.96 +/- 0.93 ml/100 ml forearm volume at 80 mug/min (P < 0.001). At 1,600 mug/min, fasudil reduced systolic, diastolic, and mean arterial pressure while increasing heart rate. Fasudil abolished the vasoconstrictor effect of endothelin-1. The vascular response to fasudil (80 mumol/min) was blunted during NO clamp (104 +/- 18% vs. 244 +/- 48% for NO clamp + fasudil vs. fasudil alone; data as ratio between infused and noninfused arm with baseline = 0%, P < 0.05). In conclusion, 1) basal peripheral and systemic vascular tone depends on ROK; 2) a significant portion of fasudil-induced vasodilation is mediated by NO, suggesting that vascular bioavailable NO is negatively regulated by ROK; and 3) the constrictor response to endothelin involves the activation of ROK.  相似文献   

12.
Responses to pituitary adenylate cyclase-activating polypeptide (PACAP), a novel peptide derived from ovine hypothalamus with 68% sequence homology with vasoactive intestinal polypeptide (VIP), were investigated in the pulmonary and hindquarters vascular beds of the anesthetized cat under conditions of controlled blood flow. Injection of the peptide into the perfused lung lobe under elevated tone conditions produced dose-dependent decreases in lobar arterial pressure that were accompanied by biphasic changes in systemic arterial pressure characterized by an initial decrease followed by a secondary increase in pressure. When compared with other vasodilator agents in the pulmonary vascular bed, the relative order of potency was isoproterenol greater than PACAP greater than acetylcholine greater than calcitonin gene-related peptide greater than VIP. In the hindquarters vascular bed, intra-arterial injections of PACAP produced biphasic changes in hindquarters perfusion pressure characterized by initial decreases followed by secondary increases, which were accompanied by biphasic changes in systemic arterial pressure. In terms of relative vasodilator activity in the hindlimb, the order of relative potency was isoproterenol greater than acetylcholine greater than calcitonin gene-related peptide greater than VIP greater than PACAP. PACAP was the only agent that caused a secondary vasoconstrictor response in the hindlimb and produced biphasic changes in systemic arterial pressure. D-Phe2-VIP, a VIP receptor antagonist, blocked the hindquarters vasodilation in response to VIP but had no effect on responses to PACAP. The present investigation shows that PACAP produces pulmonary vasodilation, as well as dilation, and vasoconstriction in the systemic (hindlimb) vascular bed.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
The effects of python neuropeptide gamma (NPgamma) on hemodynamic parameters have been investigated in the anesthetized ball python (Python regius). Bolus intra-arterial injections of synthetic python NPgamma (1-300 pmol kg-1) produced a dose-dependent decrease in systemic arterial blood pressure (Psys) concomitant with increases in systemic vascular conductance (Gsys), total cardiac output and stroke volume, but only minor effects on heart rate. The peptide had no significant effect on pulmonary arterial blood pressure (Ppul) and caused only a small increase in pulmonary conductance (Gpul) at the highest dose. In the systemic circulation, the potency of the NK1 receptor-selective agonist [Sar9,Met(0(2))11] substance P was >100-fold greater than the NK2 receptor-selective agonist [betaAla8] neurokinin A-(4-10)-peptide suggesting that the python cardiovascular system is associated with a receptor that resembles the mammalian NK1 receptor more closely than the NK2 receptor. Administration of the inhibitor of nitric oxide synthesis, L-nitro-arginine-methylester (L-NAME; 150 mg kg-1), resulted in a significant (P<0.05) increase in Psys as well as a decrease in Gsys, but no effect on Ppul and Gpul. Conversely, the nitric oxide donor, sodium nitroprusside (SNP; 60 microg kg-1) produced a significant (P<0.05) decrease in Psys along with an increase in Gsys and pulmonary blood flow. However, neither L-NAME nor indomethacin (10 mg kg-1) reduced the cardiovascular responses to NPgamma. Thus, nitric oxide is involved in regulation of basal vascular tone in the python, but neither nitric oxide nor prostaglandins mediate the vasodilatory action of NPgamma.  相似文献   

14.
The effects of N omega-nitro-L-arginine methyl ester (L-NAME), an inhibitor of endothelium-derived relaxing factor (EDRF) production, on vascular tone and responses were investigated in the pulmonary vascular bed of the intact-chest cat under conditions of controlled blood flow and constant left atrial pressure. When pulmonary vascular tone was elevated with U-46619, intralobar injections of acetylcholine, bradykinin, sodium nitroprusside, isoproterenol, prostaglandin E1 (PGE1), lemakalim, and 8-bromo-guanosine 3',5'-cyclic monophosphate (8-bromo-cGMP) dilated the pulmonary vascular bed. Intravenous administration of L-NAME elevated lobar arterial and systemic arterial pressures without altering left atrial pressure. When U-46619 was infused after L-NAME to raise lobar arterial pressure to levels similar to those attained during the control period, vasodilator responses to acetylcholine and bradykinin were reduced significantly, whereas responses to PGE1, lemakalim, and 8-bromo-cGMP were not altered, and responses to nitroprusside were increased. There was a small effect on the response to the highest dose of isoproterenol, and pressor responses to BAY K 8644 and angiotensin II were not altered. These results are consistent with the hypothesis that EDRF production may involve the formation of nitric oxide or a nitroso compound from L-arginine and that EDRF production may have a role in the regulation of tone and in the mediation of responses to acetylcholine and bradykinin in the pulmonary vascular bed of the cat.  相似文献   

15.
Cardiovascular and sympathoadrenal responses to a reproducible mental stress test were investigated in eight healthy young men before and during intravenous infusion of the nitric oxide (NO) synthesis inhibitor N-monomethyl-L-arginine (L-NMMA). Before L-NMMA, stress responses included significant increases in heart rate, mean arterial pressure, and cardiac output (CO) and decreases in systemic and forearm vascular resistance. Arterial plasma norepinephrine (NE) increased. At rest after 30 min of infusion of L-NMMA (0.3 mg.kg(-1).min(-1) iv), mean arterial pressure increased from 98 +/- 4 to 108 +/- 3 mmHg (P <0.001) because of an increase in systemic vascular resistance from 12.9 +/- 0.5 to 18.5 +/- 0.9 units (P <0.001). CO decreased from 7.7 +/- 0.4 to 5.9 +/- 0.3 l/min (P <0.01). Arterial plasma NE decreased from 2.08 +/- 0.16 to 1.47 +/- 0.14 nmol/l. Repeated mental stress during continued infusion of L-NMMA (0.15 mg.kg(-1).min(-1)) induced qualitatively similar cardiovascular responses, but there was a marked attenuation of the increase in mean arterial blood pressure, resulting in similar "steady-state" blood pressures during mental stress without and with NO blockade. Increases in heart rate and CO were attenuated, but stress-induced decreases in systemic and forearm vascular resistance were essentially unchanged. Arterial plasma NE increased less than during the first stress test. Thus the increased arterial tone at rest during L-NMMA infusion is compensated for by attenuated increases in blood pressure during mental stress, mainly through a markedly attenuated CO response and suppressed sympathetic nerve activity.  相似文献   

16.
The effects of an increase in base-line tone on pulmonary vascular responses to acetylcholine were investigated in the pulmonary vascular bed of the intact-chest cat. Under conditions of controlled blood flow and constant left atrial pressure, intralobar injections of acetylcholine under low-tone base-line conditions increased lobar arterial pressure in a dose-related manner. When tone was increased moderately by alveolar hypoxia, acetylcholine elicited dose-dependent decreases in lobar arterial pressure, and at the highest dose studied, acetylcholine produced a biphasic response. When tone was raised to a high steady level with the prostaglandin analogue, U46619, acetylcholine elicited marked dose-related decreases in lobar arterial pressure. Atropine blocked both vasoconstrictor responses at low tone and vasodilator responses at high tone, whereas meclofenamate and BW 755C had no effect on responses to acetylcholine at low or high tone. The vasoconstrictor response at low tone was blocked by pirenzepine (20 and 50 micrograms/kg iv) but not gallamine (10 mg/kg iv). The vasodilator response at high tone was not blocked by pirenzepine (50 micrograms/kg iv) or gallamine or pancuronium (10 mg/kg iv). The present data support the concept that pulmonary vascular responses to acetylcholine are tone dependent and suggest that the vasoconstrictor response under low-tone conditions is mediated by a high-affinity muscarinic (M1)-type receptor. These data also suggest that vasodilator responses under high-tone conditions are mediated by muscarinic receptors that are neither M1 nor M2 low-affinity muscarinic-type receptor and that responses to acetylcholine are not dependent on the release of cyclooxygenase or lipoxygenase products.  相似文献   

17.
The effects of two isoforms of human endothelin (ET) on the pulmonary and systemic vascular beds were compared in the anesthetized intact-chest rabbit under conditions of constant pulmonary blood flow and left atrial pressure. Intralobar bolus injections of ET-1 (0.1-1 micrograms) and ET-3 (1-3 micrograms) produced modest vasoconstriction in the pulmonary vascular bed, whereas both peptides decreased systemic arterial pressure. The pulmonary vasoconstrictor response to ET-1 and ET-3 was inhibited by intralobar infusion of nitrendipine but was not altered by indomethacin. In contrast to the small effects of ET-1 and ET-3 on intact pulmonary resistance vessels, both peptides markedly contracted isolated pulmonary conductance vessels, with greater activity on venous than on arterial segments. Intravenous bolus injection of ET-1 (0.1-0.3 micrograms) or ET-3 (0.3-1 microgram) decreased systemic arterial pressure, increased cardiac output, and markedly decreased systemic vascular resistance. Higher doses of ET-1 produce a biphasic systemic vascular response with a prominent secondary pressor component. The present data suggest that the pulmonary vasoconstrictor activity of ET-1 is greater than that of ET-3 and their pressor activity depends on an extracellular source of calcium. The pulmonary and systemic hemodynamic effects of ET-1 and ET-3 in the rabbit do not depend on cyclooxygenase products. The systemic vasodilator response to ET-1 is not altered by first-pass lung transit. Furthermore the systemic vasodilator response to both peptides occurs independent of activation of muscarinic, beta 2-adrenergic, and platelet-activating factor receptors. Although ET-1 and ET-3 were initially reported as vasoconstrictor peptides, the present data suggest that, by having unique and potent systemic vasodilator activity, ET-1 and ET-3 act differently in the systemic and pulmonary vascular beds under resting conditions in the rabbit.  相似文献   

18.
Five chronically instrumented healthy dogs were exposed to a 5-day period of breathing 10% oxygen in a chamber. The response to hypoxia was found to be time dependent. During the first 24 h of hypoxia the circulatory response was characterized by increases in cardiac output, heart rate, pulmonary and systemic arterial blood pressures, and pulmonary vascular resistance. Systemic vascular resistance increased; left atrial pressure decreased. During the early part of hypoxia the animals became hypocapnic; the arterial blood pH rose significantly. During the rest of the hypoxic period cardiac output, heart rate, and arterial blood pH returned to the control values; pulmonary and systemic arterial pressures and pulmonary vascular resistance remained significantly elevated. Systemic vascular resistance rose; left atrial pressure remained below control. This response to hypoxia was not substantially modified when the experiment was repeated during the administration of the antihistamine promethazine, an H1-receptor blocking agent, in a dose which blocked the pulmonary vasoconstrictor response to small doses of exogenous histamine. The circulatory response to acute hypoxia in five anesthetized dogs was not modified by intravenous administration of metiamide, an H2-receptor blocking agent.  相似文献   

19.
Alterations in the nitric oxide (NO) pathway have been implicated in the pathogenesis of chronic hypoxia-induced pulmonary hypertension. Chronic hypoxia can either suppress the NO pathway, causing pulmonary hypertension, or increase NO release in order to counteract elevated pulmonary arterial pressure. We determined the effect of NO synthase inhibitor on hemodynamic responses to acute hypoxia (10% O(2)) in anesthetized rats following chronic exposure to hypobaric hypoxia (0.5 atm, air). In rats raised under normoxic conditions, acute hypoxia caused profound systemic hypotension and slight pulmonary hypertension without altering cardiac output. The total systemic vascular resistance (SVR) decreased by 41 +/- 5%, whereas the pulmonary vascular resistance (PVR) increased by 25 +/- 6% during acute hypoxia. Pretreatment with N(omega)-nitro-L-arginine methyl ester (L-NAME; 25 mg/kg) attenuated systemic vasodilatation and enhanced pulmonary vasoconstriction. In rats with prior exposure to chronic hypobaric hypoxia, the baseline values of mean pulmonary and systemic arterial pressure were significantly higher than those in the normoxic group. Chronic hypoxia caused right ventricular hypertrophy, as evidenced by a greater weight ratio of the right ventricle to the left ventricle and the interventricular septum compared to the normoxic group (46 +/- 4 vs. 28 +/- 3%). In rats which were previously exposed to chronic hypoxia (half room air for 15 days), acute hypoxia reduced SVR by 14 +/- 6% and increased PVR by 17 +/- 4%. Pretreatment with L-NAME further inhibited the systemic vasodilatation effect of acute hypoxia, but did not enhance pulmonary vasoconstriction. Our results suggest that the release of NO counteracts pulmonary vasoconstriction but lowers systemic vasodilatation on exposure to acute hypoxia, and these responses are attenuated following adaptation to chronic hypoxia.  相似文献   

20.
The purpose of the present study was to determine the influence of NG-nitro-L-arginine methyl ester (L-NAME) on pulmonary vascular responses to endothelium-dependent relaxing factor- (EDRF) dependent and EDRF-independent substances in the pulmonary vascular bed of the anesthetized cat. Because pulmonary blood flow and left atrial pressure were kept constant, changes in lobar arterial pressure directly reflect changes in pulmonary vascular resistance. When pulmonary vasomotor tone was actively increased by intralobar infusion of U-46619, intralobar bolus injections of acetylcholine, bradykinin, serotonin, and 5-carboxyamidotryptamine (a serotonin1A receptor agonist) decreased lobar arterial pressure in a dose-related manner. The pulmonary vasodilator response to serotonin, but not to 5-carboxyamidotryptamine, acetylcholine, and bradykinin, was significantly decreased by L-NAME (100 mg/kg i.v.). Administration of ritanserin (0.5 mg/kg i.v.), but not L-arginine (1 g/kg i.v. with 60 mg.kg-1 x min-1 i.v. infusion), reversed the inhibitory effects of L-NAME on the pulmonary vasodilator response to serotonin and abolished the enhanced pulmonary vasoconstrictor response to (+-)-1-(2,5-dimethoxy-4-iodophenyl)-2-aminoproprane hydrochloride (a serotonin2 receptor agonist) after L-NAME administration. In conclusion, the present experiments suggest that L-NAME inhibits the pulmonary vasodilator response to serotonin by increasing the sensitivity of serotonin2 receptor-mediated vasoconstriction and not by inhibiting EDRF formation. Because the pulmonary vasodilator responses to bolus administration of acetylcholine and bradykinin were not inhibited by L-NAME, these data suggest that L-NAME does not appear to be an adequate probe to study the role of endogenous EDRF in the adult feline pulmonary vascular bed in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号