首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Nanotechnology is currently gaining immense attention to combat food borne bacteria, and biofilm. Diabetes is a common metabolic disease affecting majority of people. A better therapy relies on phytomediated nanoparticle synthesis. In this study, W. somnifera leaf extract-assisted ZnO NPs (Ws-ZnO NPs) was synthesized and characterized. From HR-TEM analysis, it has been found that the hexagonal wurtzite particle is 15.6 nm in size and − 12.14 mV of zeta potential. A greater antibacterial effect of Ws-ZnO NPs was noticed against E. faecalis and S. aureus at 100 µg mL−1. Also, the biofilm of E. faecalis and S. aureus was greatly inhibited at 100 µg mL−1 compared to E. coli and P. aeruginosa. The activity of α-amylase and α-glucosidase enzyme was inhibited at 100 µg mL−1 demonstrating its antidiabetic potential. The larval and pupal development was delayed at 25 µg mL−1 of Ws-ZnO NPs. A complete mortality (100%) was recorded at 25 µg mL−1. Ws-ZnO NPs showed least LC50 value (9.65 µg mL−1) compared to the uncoated ZnO NPs (38.8 µg mL−1) and leaf extract (13.06 µg mL−1). Therefore, it is concluded that Ws-ZnO NPs are promising to be used as effective antimicrobials, antidiabetic and insecticides to combat storage pests.

  相似文献   

2.
Leaf-level net photosynthesis (An) estimates and associated photosynthetic parameters are crucial for accurately parameterizing photosynthesis models. For tropical forests, such data are poorly available and collected at variable light conditions. To avoid over- or underestimation of modeled photosynthesis, it is critical to know at which photosynthetic photon flux density (PPFD) photosynthesis becomes light-saturated. We studied the dependence of An on PPFD in two tropical forests in French Guiana. We estimated the light saturation range, including the lowest PPFD level at which Asat (An at light saturation) is reached, as well as the PPFD range at which Asat remained unaltered. The light saturation range was derived from photosynthetic light-response curves, and within-canopy and interspecific differences were studied. We observed wide light saturation ranges of An. Light saturation ranges differed among canopy heights, but a PPFD level of 1,000 µmol m−2 s−1 was common across all heights, except for pioneer trees species that did not reach light saturation below 2,000 µmol m−2 s−1. A light intensity of 1,000 µmol m−2 s−1 sufficed for measuring Asat of climax species at our study sites, independent of the species or the canopy height. Because of the wide light saturation ranges, results from studies measuring Asat at higher PPFD levels (for upper canopy leaves up to 1,600 µmol m−2 s−1) are comparable with studies measuring at 1,000 µmol m−2 s−1.  相似文献   

3.
Summary Bundle-sheath cells isolated by the grinding and filtration procedure of Edwards and Black (1971b) from species of plants having the C4-dicarboxylic acid pathway of photosynthesis were tested for the decarboxylation of malate from the C4-carboxyl position. The bundle-sheath cells, which showed high malic enzyme activity in extracts, decarboxylated 4[14C]malate at rates sufficient to be involved in photosynthesis. The malate decarboxylation is dependent on the addition of magnesium or manganese and NADP+. The activity was increased by raising the temperature from 30 to 50°. The evidence supports the idea that malate may be a carboxyl donor to the reductive pentose-phosphate cycle in bundle-sheath cells in certain C4-dicarboxylic acid pathway plants such as Zea mays L., Sorghum bicolor L., and Digitaria sanguinalis (L.) Scop.Abbreviations C4 pathway C4-dicarboxylic acid pathway - RPP pathway reductive pentose phosphate pathway - C4 plants plants having the C4 and the RPP pathways - C3 plants plants having only the RPP pathway - R5P ribose-5-phosphate - HEPES N-2-hydroxyethylpiperazine-N-2-ethanesulfonic acid - Tricine N-tris-(hydroxymethyl)methylglycine  相似文献   

4.
Photosynthesis and dark respiration rates were measured in water and in air, and the capacity to recover photosynthetic activity from emersion stress was examined for two species of intertidal, epiphytic macroalgae—Bostrychia calliptera (Montagne) Montagne and Caloglossa leprieurii (Montagne) J. Agardh—collected on prop roots of the red mangrove Rhizophora mangle L. in Buenaventura Bay, Pacific coast of Colombia. In both species, net photosynthetic rates were significantly higher under submersed conditions. Maximum photosynthetic rates (Pmax) in water and in air were highest in B. calliptera, 126 ± 4 versus 52 ± 9 μmol O2·mg chl a−1·h−1, respectively. In C. leprieurii, Pmax of submerged plants in water and in air were 98 ± 9 versus 30 ± 11 μmol O2·mg chla−1·h−1. The photoinhibition model of Platt et al. (1980) was used to fit the experimental data in both water and air for both species. Photoinhibition occurred at irradiance as low as 200 μmol·m−2·s−1. The photosynthesis–light response curves demonstrated an adaptation to shaded habitats for both species, as light compensation points in water and air for both species were below 17 ± 5 μmol·m−2·s−1. The rate of dehydration was significantly lower in thalli of B. calliptera compared to C. leprieurii. An increase of photosynthetic activity in B. calliptera was evident between 5% and 15% water loss, but rates decreased thereafter with declining water content. In C. leprieurii, desiccation negatively influenced photosynthetic rates that significantly decreased linearly with declining water content. In B. calliptera, net photosynthesis reached zero only at a water content between 29% and 35%, whereas in C. leprieurii no net photosynthesis occurred in plants containing less than about 50% of their relative water content. Resubmerged plants ofB. calliptera exhibited 100% photosynthetic recovery after 45 min, whereas C. leprieurii recovered 100% at about 120 min. On the basis of the comparison of rates of light-saturated net photosynthesis for B. calliptera in air versus in water, aerial photosynthetic activity ranged from 35% to 42% of that in water, whereas the emersed photosynthetic capacity of C. leprieurii ranged from 24% to 29% of that in water. Using tidal predictions and the emersed photosynthetic rates, a carbon balance model was constructed for both species over a single daylight period. The calculations indicated that emersed photosynthesis increased average daily carbon production of B. calliptera by 17% and C. leprieuri by 12%. The physiological responses to desiccation stress and the photosynthetic recovery capacities between species correlated with, and may determine, their vertical distribution in the mangrove habitats of Buenaventura Bay.  相似文献   

5.
The biochemical basis for photosynthetic plasticity in tropical trees of the genus Clusia was investigated in three species that were from contrasting habitats and showed marked differences in their capacity for crassulacean acid metabolism (CAM). Physiological, anatomical and biochemical measurements were used to relate changes in the activities/amounts of key enzymes of C3 and C4 carboxylation to physiological performance under severe drought stress. On the basis of gas-exchange measurements and day/night patterns of organic acid turnover, the species were categorised as weak CAM-inducible (C.aripoensis Britt.), C3-CAM intermediate (C. minor L.) and constitutive CAM (C.␣rosea Jacq. 9.). The categories reflect genotypic differences in physiological response to drought stress in terms of net carbon gain; in C. aripoensis net carbon gain was reduced by over 80% in drought-stressed plants whilst carbon gain was relatively unaffected after 10 d without water in C. rosea. In turn, genotypic differences in the capacity for CAM appeared to be directly related to the capacities/amounts of phosphoenolpyruvate carboxylase (PEPCase) and phosphoenolpyruvate carboxykinase (PEPCK) which increased in response to drought in both young and mature leaves. Whilst measured activities of PEPCase and PEPCK in well-watered plants of the C3-CAM intermediate C. minor were 5–10 times in excess of that required to support the magnitude of organic acid turnover induced by drought, close correlations were observed between malate accumulation/PEPCase capacity and citrate decarboxylation/PEPCK capacity in all the species. Drought stress did not affect the amount of ribulose 1,5-bisphosphate carboxylase/oxygenase (Rubisco) protein in any of the species but Rubisco activity was reduced by 35% in the weak CAM-inducible C. aripoensis. Similar amounts of glycine decarboxylase (GDC) protein were present in all three species regardless of the magnitude of CAM expression. Thus, the constitutive CAM species C. rosea did not appear to show reduced activity of this key enzyme of the photorespiratory pathway, which, in turn, may be related to the low internal conductance to CO2 in this succulent species. Immuno-histochemical techniques showed that PEPCase, PEPCK and Rubisco were present in cells of the palisade and spongy parenchyma in leaves of species performing CAM. However, in leaves from well-watered plants of C. aripoensis which only performed C3 photosynthesis, PEPCK was localized around latex-producing ducts. Differences in leaf anatomy between the species suggest that the association between mesophyll succulence and the capacity for CAM in these hemi-epiphytic stranglers has been selected for in arid environments. Received: 4 July 1997 / Accepted: 27 November 1997  相似文献   

6.
The present study shows the importance of alternative oxidase (AOX) pathway in optimizing photosynthesis under high light (HL). The responses of photosynthesis and respiration were monitored as O2 evolution and O2 uptake in mesophyll protoplasts of pea pre‐incubated under different light intensities. Under HL (3000 µmol m?2 s?1), mesophyll protoplasts showed remarkable decrease in the rates of NaHCO3‐dependent O2 evolution (indicator of photosynthetic carbon assimilation), while decrease in the rates of respiratory O2 uptake were marginal. While the capacity of AOX pathway increased significantly by two fold under HL, the capacity of cytochrome oxidase (COX) pathway decreased by >50% compared with capacities under darkness and normal light (NL). Further, the total cellular levels of pyruvate and malate, which are assimilatory products of active photosynthesis and stimulators of AOX activity, were increased remarkably parallel to the increase in AOX protein under HL. Upon restriction of AOX pathway using salicylhydroxamic acid (SHAM), the observed decrease in NaHCO3‐dependent O2 evolution or p‐benzoquinone (BQ)‐dependent O2 evolution [indicator of photosystem II (PSII) activity] and the increase in total cellular levels of pyruvate and malate were further aggravated/promoted under HL. The significance of raised malate and pyruvate levels in activation of AOX protein/AOX pathway, which in turn play an important role in dissipating excess chloroplastic reducing equivalents and sustenance of photosynthetic carbon assimilation to balance the effects of HL stress on photosynthesis, was depicted as a model.  相似文献   

7.
The Escherichia coli gene katE, which is driven by the promoter of the Rubisco small subunit gene of tomato, rbcS3C, was introduced into a tomato (Lycopersicon esculentum Mill.) by Agrobacterium tumefaciens‐mediated transformation. Catalase activity in progeny from transgenic plants was approximately three‐fold higher than that in wild‐type plants. Leaf discs from transgenic plants remained green at 24 h after treatment with 1 µm paraquat under moderate light intensity, whereas leaf discs from wild‐type plants showed severe bleaching after the same treatment. Moreover, ion leakage from transgenic leaf discs was significantly less than that from wild‐type leaf discs at 24 h after treatment with 1 µm paraquat and 10 mm H2O2, respectively, under moderate light intensity. To evaluate the efficiency of the E. coli catalase to protect the whole transgenic plant from the oxidative stress, transgenic and wild‐type plants were sprayed with 100 µm paraquat and exposed to high light illumination (800 µmol m?2 s?1). After 24 h, the leaves of the transgenic plants were less damaged than the leaves of the wild‐type plants. The catalase activity and the photosynthesis activity (indicated by the Fv/Fm ratio) were less affected by paraquat treatment in leaves of transgenic plants, whereas the activities of the chloroplastic ascorbate peroxidase isoenzymes and the ascorbate content decreased in both lines. In addition, the transgenic plants showed increased tolerance to the oxidative damage (decrease of the CO2 fixation and photosystem II activity and increase of the lipid peroxidation) caused by drought stress or chilling stress (4 °C) under high light intensity (1000 µmol m?2 s?1). These results indicate that the expression of the catalase in chloroplasts has a positive effect on the protection of the transgenic plants from the photo‐oxidative stress invoked by paraquat treatment, drought stress and chilling stress.  相似文献   

8.
Abstract. Metabolic rates of adult Lophopilio palpinalis (Herbst, 1799) (Arachnida, Opiliones, Phalangioidea) and Paranemastoma quadripunctatum (Perty, 1833) (Arachnida, Opiliones, Troguloidea) are measured during rest and activity. Carbon dioxide release during rest is continuous in both species. Mean values at 20 °C are 4.2 µL min−1 g−1 for the males of P. quadripunctatum, 4.1 µL min−1 g−1 for the males of L. palpinalis and 4.7 µL min−1 g−1 for the females of L. palpinalis, thus being significantly higher in the egg-producing females. In L. palpinalis, respiratory quotient at rest is 0.84. Spontaneous walking activity with speeds of 15–30 cm min−1 raises the metabolic rate by up to three-fold in both species. Lophopilio palpinalis is made to undertake constant running on a treadmill with speeds of 60, 72 and 96 cm min−1. Enforced activity causes the animals to raise their metabolic rates by up to five-fold above resting rates. Animals reach a steady state of CO2 release on the treadmill and show a fast t1/2 on-response, indicating aerobic exercise. The minimum cost of locomotion is determined to be 2.5 × 10−3 J cm−1 g−1, thus fitting the predicted values for terrestrial locomotion.  相似文献   

9.
There is little information available on the primary products of photosynthesis and the change in the activity of the associated enzymes with altitude. We studied the same in varieties of barley and wheat grown at 1300 (low altitude, LA) and 4200 m (high altitude, HA) elevations above mean sea level in the western Himalayas. Plants at both the locations had similar photosynthetic rates, leaf water potential and the chlorophyll fluorescence kinetics. The short-term radio-labelling experiments in leaves showed appearance of 14CO2 in phosphoglyceric acid and sugar phosphates in plants at both the LA and HA, suggesting a major role of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) in CO2 fixation in the plants at two altitudes, whereas the appearance of labelled carbon in aspartate (Asp) and glutamate (Glu) at HA suggested a role of phosphoenolpyruvate carboxylase (PEPCase) in photosynthesis metabolism. Plants at HA had significantly higher activities of PEPCase, carboxylase and oxygenase activity of Rubisco, aspartate aminotransferase (AspAT), and glutamine synthetase (GS). However, the activities of malate dehydrogenase, NAD-malic enzyme and citrate synthase were similar at the two locations. Such an altered metabolism at HA suggested that PEPCase probably captured CO2 directly from the atmosphere and/or that generated metabolically e.g. from photorespiration at HA. Higher oxygenase activity at HA suggests high photorespiratory activity. OAA thus produced could be additionally channelised for Asp synthesis using Glu as a source of ammonia. Higher GS activity ensures higher assimilation rate of NH3 and the synthesis of Glu through GS-GOGAT (glutamine:2-oxoglutarate aminotransferase) pathway, also as supported by the appearance of radiolabel in Glu at HA. Enhanced PEPCase activity coupled with higher activities of AspAT and GS suggests a role in conserving C and N in the HA environment.  相似文献   

10.
Responses of CAM species to increasing atmospheric CO2 concentrations   总被引:1,自引:0,他引:1  
Crassulacean acid metabolism (CAM) species show an average increase in biomass productivity of 35% in response to a doubled atmospheric CO2 concentration. Daily net CO2 uptake is similarly enhanced, reflecting in part an increase in chlorenchyma thickness and accompanied by an even greater increase in water‐use efficiency. The responses of net CO2 uptake in CAM species to increasing atmospheric CO2 concentrations are similar to those for C3 species and much greater than those for C4 species. Increases in net daily CO2 uptake by CAM plants under elevated atmospheric CO2 concentrations reflect increases in both Rubisco‐mediated daytime CO2 uptake and phosphoenolpyruvate carboxylase (PEPCase)‐mediated night‐time CO2 uptake, the latter resulting in increased nocturnal malate accumulation. Chlorophyll contents and the activities of Rubisco and PEPCase decrease under elevated atmospheric CO2, but the activated percentage for Rubisco increases and the KM(HCO3 ? ) for PEPCase decreases, resulting in more efficient photosynthesis. Increases in root:shoot ratios and the formation of additional photosynthetic organs, together with increases in sucrose‐Pi synthase and starch synthase activity in these organs under elevated atmospheric CO2 concentrations, decrease the potential feedback inhibition of photosynthesis. Longer‐term studies for several CAM species show no downward acclimatization of photosynthesis in response to elevated atmospheric CO2 concentrations. With increasing temperature and drought duration, the percentage enhancement of daily net CO2 uptake caused by elevated atmospheric CO2 concentrations increases. Thus net CO2 uptake, productivity, and the potential area for cultivation of CAM species will be enhanced by the increasing atmospheric CO2 concentrations and the increasing temperatures associated with global climate change.  相似文献   

11.
Photosynthesis and transpiration of excised leaves of Taraxacum officinale L. and a few other species of plants were measured, using an open gas analysis system. The rates of CO2 uptake and transpiration increased in two steps upon illumination of stomata-bearing epidermis of these leaves at a light intensity of 50 mW × cm−2. Abscisic acid inhibited only the second step of gas exchange. Illumination of the astomatous epidermis of hypostomatous leaves caused only the first step of gas exchange. These data indicate that the first and second steps arise from cuticular and stomatal gas exchange, respectively. The rate of the cuticular photosynthesis in a Taraxacum leaf reached saturation at a light intensity of 5 mW × cm−2, and the rates of the stomatal photosynthesis and transpiration reached saturation at a higher intensity of 35 mW × cm−2. The cuticular photosynthesis of a Taraxacum leaf was 18% of the stomatal photosynthesis at 50 mW × cm−2 and 270% at 5 mW × cm−2. The other species of leaves showed the same trend. The importance of cuticular CO2 uptake in leaf photosynthesis, especially under low light intensity was stressed from these data.  相似文献   

12.
Some kinetic properties of partially purified phosphoenolpyruvate carboxylase (PEPCase) from guard-cell and mesophyll-cell protoplasts of Commelina communis are described. The PEPCase activity inherent to each cell type was determined and the apparent K m (phosphoenolpyruvate) and K i (malate) were compared. Malate sensitivity was much higher (K i malate 0.4 mol m–3) in the extract of guard-cell protoplasts than in that of mesophyllcell protoplasts (K i malate 4.2 mol m–3). The stimulation of activity by glucose-6-phosphate in the presence of malate (deinhibition) was also investigated in extracts from both cell types and was found to be similar to previously reported results with epidermal tissue. The effect of contamination of an extract of guard-cell protoplasts with mesophyll-cell protoplasts was measured in the presence and absence of malate. It was found that a small amount to mesophyll-cell contaminant appears to desensitize the malate inhibition of PEPCase from guard-cell protoplasts. It is concluded that experiments which use epidermal tissue to study guardcell PEPCase may give misleading information as a consequence of mesophyll contamination.Abbreviations Glc6P glucose-6-phosphate - PEP phosphoenolpyruvate - PEPCase phosphoenolpyruvate carboxylase  相似文献   

13.
The phosphorylation state and the malate sensitivity of phosphoenolpyruvate carboxylase (PEPCase, EC 4.1.1.31) in Bryophyllum fedtschenkoi Hamet et Perrier are altered by changes in the ambient temperature. These effects, in turn alter the in-vivo activity of the enzyme. Low temperature (3 °C or less), stabilizes the phosphorylated form of the enzyme, while high temperature (30 °C) promotes its dephosphorylation. The catalytic activity of the phosphorylated and dephosphorylated forms of PEPCase increases with temperature, but the apparent K i values for malate of both forms of the enzyme decrease. Results of experiments with detached leaves maintained in darkness in normal air indicate that the changes in malate sensitivity and phosphorylation state of PEPCase with temperature are of physiological significance. When the phosphorylated form of PEPCase is stabilized by reducing the temperature of leaves 9 h after transfer to constant darkness at 15 °C, a prolonged period of CO2 fixation follows. When leaves are maintained in constant darkness at 15 °C until CO2 output reaches a low steady-state level and the PEPCase is dephosphorylated, reducing the temperature to 3 °C results in a further period of CO2 fixation even though the phosphorylation state of PEPCase does not change.Abbreviations CAM Crassulacean acid metabolism - PEP phosphoenolpyruvate - PEPCase phosphoenolpyruvate carboxylase We thank the Agricultural and Food Research Council for financial support for this work.  相似文献   

14.
African violet (Saintpaulia ionantha H. Wendl) is one of the most easily and commonly tissue-cultured ornamental plants. Despite this, there are limited reports on photosynthetic capacity and its impact on the plant quality during acclimatization. Various growth, photosynthetic and biochemical parameters and activities of antioxidant enzymes and dehydrins of micropropagated plants were assessed under three light intensities (35, 70, and 100 µmol m?2 s?1 photosynthetic photon flux density – PPFD). Fresh and dry plant biomass, plant height, and leaf area were optimal with high irradiance (70–100 µmol m?2 s?1 PPFD). Chlorophyll and carotenoid contents and net photosynthesis were optimal in plants grown under 70 µmol m?2 s?1 PPFD. Stomatal resistance, malondialdehyde content, and Fv/Fm values were highest at low light irradiance (35 µmol m?2 s?1 PPFD). The activities of three antioxidant enzymes, superoxide dismutase, catalase, and glutathione peroxidase, increased as light irradiance increased, signaling that high light irradiance was an abiotic stress. The accumulation of 55, 33, and 25 kDa dehydrins was observed with all light treatments although the expression levels were highest at 35 µmol m?2 s?1 PPFD. Irradiance at 70 µmol m?2 s?1 PPFD was suitable for the acclimatization of African violet plants. Both low and high irradiance levels (35 and 100 µmol m?2 s?1 PPFD) induced the accumulation of antioxidants and dehydrins in plants which reveals enhanced stress levels and measures to counter it.  相似文献   

15.

Plant-derived smoke is a positive regulator of seed germination and growth with regard to many plant species. Of the several compounds present in plant-derived smoke, karrikinolide or KAR1 (3-methyl-2H-furo[2,3-c]pyran-2-one) is considered to be the major active growth-promoting compound. To test the efficacy of smoke-saturated water (SSW) and KAR1 on carrot (Daucus carota L.), two separate pot experiments were simultaneously conducted in the same environmental conditions. SSW and KAR1 treatments were applied to the plants in the form of aqueous solutions of variable concentrations. Prior to sowing, seeds were soaked in the solutions of SSW (25.8 µg L−1, 51.6 µg L−1,103.2 µg L−1 and 258.0 µg L−1) and KAR1 (0.015 µg L−1, 0.150 µg L−1, 1.501 µg L−1 and 15.013 µg L−1). Percent seed germination, vegetative growth, photosynthesis and nutritional values were the major parameters through which the plant response to the applied treatments was investigated. The results obtained indicated a significant improvement in all the plant attributes studied. In general, SSW (51.6 µg L−1) and KAR1 (1.501 µg L−1) proved optimum treatments for most the parameters. As compared to the control, 51.6 µg L−1 of SSW and 1.501 µg L−1 of KAR1 increased the percent seed germination by 58.0% and 54.4%, respectively. Over the control, the values of plant height and net photosynthetic rate were enhanced by 33.9% and 40.9%, respectively, due to 51.6 µg L−1 of SSW, while the values of these parameters were increased by 25.2% and 34.0%, respectively, due to 1.501 µg L−1 of KAR1. In comparison with the control, treatment 51.6 µg L−1 of SSW increased the contents of β-carotene and ascorbic acid by 32.7% and 37.9%, respectively, while the treatment 1.501 µg L−1 M of KAR1 enhanced these contents by 42.0% and 48.4%, respectively. This study provides an insight into an affordable and feasible method of crop improvement.

  相似文献   

16.
To test the possibility of inorganic carbon limitation of the marine unicellular alga Emiliania huxleyi (Lohmann) Hay and Mohler, its carbon acquisition was measured as a function of the different chemical species of inorganic carbon present in the medium. Because these different species are interdependent and covary in any experiment in which the speciation is changed, a set of experiments was performed to produce a multidimensional carbon uptake scheme for photosynthesis and calcification. This scheme shows that CO2 that is used for photosynthesis comes from two sources. The CO2 in seawater supports a modest rate of photosynthesis. The HCO is the major substrate for photosynthesis by intracellular production of CO2 (HCO+ H+→ CO2+ H2O → CH2O + O2). This use of HCO is possible because of the simultaneous calcification using a second HCO, which provides the required proton (HCO+ Ca2+→ CaCO3+ H+). The HCO is the only substrate for calcification. By distinguishing the two sources of CO2 used in photosynthesis, it was shown that E. huxleyi has a K½ for external CO2 of “only” 1.9 ± 0.5 μM (and a Vmax of 2.4 ± 0.1 pmol·cell−1·d−1). Thus, in seawater that is in equilibrium with the atmosphere ([CO2]= 14 μM, [HCO]= 1920 μM, at fCO2= 360 μatm, pH = 8, T = 15° C), photosynthesis is 90% saturated with external CO2. Under the same conditions, the rate of photosynthesis is doubled by the calcification route of CO2 supply (from 2.1 to 4.5 pmol·cell−1·d−1). However, photosynthesis is not fully saturated, as calcification has a K½ for HCO of 3256 ± 1402 μM and a Vmax of 6.4 ± 1.8 pmol·cell−1·d−1. The H+ that is produced during calcification is used with an efficiency of 0.97 ± 0.08, leading to the conclusion that it is used intracellularly. A maximum efficiency of 0.88 can be expected, as NO uptake generates a H+ sink (OH source) for the cell. The success of E. huxleyi as a coccolithophorid may be related to the efficient coupling between H+ generation in calcification and CO2 fixation in photosynthesis.  相似文献   

17.
The regulation of phosphoenolpyruvate carboxylase (PEPCase, EC. 4.1.1.31) and PEPCase kinase was investigated using barley (Hordeum vulgare L.) mesophyll protoplasts. Incubation of protoplasts in the light resulted in a reduction in the sensitivity of PEPCase to the inhibitor L-malate; PEPCase from protoplasts incubated in the light for 1 h was inhibited 48±2% by 2mM malate, whereas the enzyme from protoplasts incubated for 1 h in the dark was inhibited by 67±2%. Light-induced reduction of sensitivity of PEPCase to malate was decreased by cycloheximide (CHM), indicating the involvement of protein synthesis. The PEPCase kinase in protoplasts increased with time after isolation in darkness, and increased still further following light treatment. The increase in kinase activity in the light was sensitive to CHM. When protoplasts were illuminated in the presence of EGTA and the calcium ionophore A23187 to reduce intracellular Ca2+, the reduction in the senstivity of PEPCase to malate was enhanced, though no more PEPCase kinase activity was detected than in protoplasts illuminated in the absence of EGTA and A23187. Incubation with 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU) had no effect on the light-induced reduction of sensitivity of PEPCase to malate inhibition or on light-activation of PEPCase kinase. These results indicate that there is a constitutive PEPCase kinase activity in C3 leaf tissue, that there is another kinase which is light-activated in a CHMsensitive way, that the sensitivity of PEPCase to its inhibitor may not always be correlated with apparent PEPCase kinase actvity, and that PEPCase and PEPCase kinase are regulated in a different manner in C3 protoplasts than in C4 protoplasts or leaf tissue.Abbreviations CAM Crassulacean acid metabolism - Chl chlorophyll - CHM cycloheximide - DCMU 3-(3,4-dichloro-phenyl)-1,1-dimethylurea - PEP phosphoenolpyruvate - PEPCase PEP carboxylase  相似文献   

18.
Inside-out submitochondrial particles from both potato (Solanum tuberosum L. cv. Bintje) tubers and pea (Pisum sativum L. cv. Oregon) leaves possess three distinct dehydrogenase activities: Complex I catalyzes the rotenone-sensitive oxidation of deamino-NADH, NDin(NADPH) catalyzes the rotenone-insensitive and Ca2+-dependent oxidation of NADPH and NDin(NADH) catalyzes the rotenone-insensitive and Ca2+-independent oxidation of NADH. Diphenylene iodonium (DPI) inhibits complex I, NDin(NADPH) and NDin (NADH) activity with a Ki of 3.7, 0.17 and 63 µM, respectively, and the 400-fold difference in Ki between the two NDin made possible the use of DPI inhibition to estimate NDin (NADPH) contribution to malate oxidation by intact mitochondria. The oxidation of malate in the presence of rotenone by intact mitochondria from both species was inhibited by 5 µM DPI. The maximum decrease in rate was 10–20 nmol O2 mg?1 min?1. The reduction level of NAD(P) was manipulated by measuring malate oxidation in state 3 at pH 7.2 and 6.8 and in the presence and absence of an oxaloacetate-removing system. The inhibition by DPI was largest under conditions of high NAD(P) reduction. Control experiments showed that 125 µM DPI had no effect on the activities of malate dehydrogenase (with NADH or NADPH) or malic enzyme (with NAD+ or NADP+) in a matrix extract from either species. Malate dehydrogenase was unable to use NADP+ in the forward reaction. DPI at 125 µM did not have any effect on succinate oxidation by intact mitochondria of either species. We conclude that the inhibition caused by DPI in the presence of rotenone in plant mitochondria oxidizing malate is due to inhibition of NDin(NADPH) oxidizing NADPH. Thus, NADP turnover contributes to malate oxidation by plant mitochondria.  相似文献   

19.
The effects of reduced osmotic potential on photosynthesis and respiration were studied in mesophyll protoplasts of pea (Pisum sativum). Osmotic stress was induced by increasing the sorbitol concentration in the medium from 0·4 kmol m−3 (-1·3 MPa) to 1·0 kmol m−3 (-3·1 MPa). Protoplasts lost up to 35% of the maximum capacity of photo-synthetic carbon assimilation (but not PS II mediated activity) soon after exposure to 1·0 kmol m−3 sorbitol. The response of protoplast respiration to osmotic stress was intriguing. Respiration was stimulated if stress was induced at 25°C, but was inhibited when protoplasts were subjected to osmotic stress at 0°C. Photosynthesis was also much more sensitive to osmotic stress at 0°C than at 25°C. The inhibitory effects of osmotic stress on photosynthesis as well as respiration were amplified by not only chilling but also photoinhibitory light. The photosynthetic or respiratory activities of protoplasts recovered remarkably when they were transferred from hyperosmotic (1·0 kmol m−3 sorbitol) back to iso-osmotic medium (0·4 kmol m−3 sorbitol), demonstrating the reversibility of osmotic-stress-induced changes in protoplasts. Respiration was more resistant to osmotic stress and was quicker to recover than photosynthesis. We suggest that the experimental system of protoplasts can be useful in studying the effects of osmotic stress on plant tissues.  相似文献   

20.
The high rates of photosynthesis and the carbon-concentrating mechanism (CCM) in C4 plants are initiated by the enzyme phosphoenolpyruvate (PEP) carboxylase (PEPC). The flow of inorganic carbon into the CCM of C4 plants is driven by PEPC’s affinity for bicarbonate (KHCO3), which can be rate limiting when atmospheric CO2 availability is restricted due to low stomatal conductance. We hypothesize that natural variation in KHCO3 across C4 plants is driven by specific amino acid substitutions to impact rates of C4 photosynthesis under environments such as drought that restrict stomatal conductance. To test this hypothesis, we measured KHCO3 from 20 C4 grasses to compare kinetic properties with specific amino acid substitutions. There was nearly a twofold range in KHCO3 across these C4 grasses (24.3 ± 1.5 to 46.3 ± 2.4 μm ), which significantly impacts modeled rates of C4 photosynthesis. Additionally, molecular engineering of a low-HCO3 affinity PEPC identified key domains that confer variation in KHCO3. This study advances our understanding of PEPC kinetics and builds the foundation for engineering increased-HCO3 affinity and C4 photosynthetic efficiency in important C4 crops.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号