首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
3.
Soluble nickel compounds are likely human carcinogens. The mechanism by which soluble nickel may contribute to carcinogenesis is unclear, though several hypotheses have been proposed. Here we verify the ability of nickel to enter the cell via the divalent metal ion transporter 1 (DMT1) and disturb cellular iron homeostasis. Nickel may interfere with iron at both an extracellular level, by preventing iron from being transported into the cell, and at an intracellular level, by competing for iron sites on enzymes like the prolyl hydroxylases that modify hypoxia inducible factor-1α (HIF-1α). Nickel was able to decrease the binding of the Von Hippel–Lindau (VHL) protein to HIF-1α, indicating a decrease in prolyl hydroxylase activity. The ability of nickel to affect various iron dependent processes may be an important step in nickel dependent carcinogenesis. In addition, understanding the mechanisms by which nickel activates the HIF-1α pathway may lead to new molecular targets in fighting cancer.  相似文献   

4.
5.
6.
7.
8.
9.
10.
11.
Hypoxia inducible factor 1 (HIF-1) senses and coordinates cellular responses towards hypoxia. HIF-1 activity is primarily determined by stability regulation of its alpha subunit that is degraded by the 26S proteasome under normoxia due to hydroxylation by prolyl hydroxylases (PHDs) but is stabilized under hypoxia. Besides hypoxia, nitric oxide (NO) stabilizes HIF-1alpha and promotes hypoxia-responsive target gene expression under normoxia. However, in hypoxia, NO attenuates HIF-1alpha stabilization and gene activation. It was our intention to explain the contrasting behavior of NO under hypoxia. We used the iron chelator desferrioxamine (DFX) or hypoxia to accumulate HIF-1alpha in HEK293 cells. Once the protein accumulated, we supplied NO donors and followed HIF-1alpha disappearance. NO-evoked HIF-1alpha destabilization was reversed by proteasomal inhibition or by blocking PHD activity. By using the von Hippel Lindau (pVHL)-HIF-1alpha capture assay, we went on to demonstrate binding of pVHL to HIF-1alpha under DFX/NO but not DFX alone. Showing increased intracellular free iron under conditions of hypoxia/NO compared to hypoxia alone, we assume that increased free iron contributes to regain PHD activity. Variables that allow efficient PHD activation such as oxygen availability, iron content, or cofactor accessibility at that end allow NO to modulate HIF-1alpha accumulation.  相似文献   

12.
13.
14.
15.
Oxygen sensors and angiogenesis   总被引:24,自引:0,他引:24  
  相似文献   

16.
17.
18.
Regulation of HIF prolyl hydroxylases by hypoxia-inducible factors   总被引:13,自引:0,他引:13  
Hypoxia and induction of hypoxia-inducible factors (HIF-1alpha and HIF-2alpha) is a hallmark of many tumors. Under normal oxygen tension HIF-alpha subunits are rapidly degraded through prolyl hydroxylase dependent interaction with the von Hippel-Lindau (VHL) tumor suppressor protein, a component of E3 ubuiquitin ligase complex. Using microarray analysis of VHL mutated and re-introduced cells, we found that one of the prolyl hydroxylases (PHD3) is coordinately expressed with known HIF target genes, while the other two family members (PHD1 and 2) did not respond to VHL. We further tested the regulation of these genes by HIF-1 and HIF-2 and found that siRNA targeted degradation of HIF-1alpha and HIF-2alpha results in decreased hypoxia-induced PHD3 expression. Ectopic overexpression of HIF-2alpha in two different cell lines provided a much better induction of PHD3 gene than HIF-1alpha. In contrast, we demonstrate that PHD2 is not affected by overexpression or downregulation of HIF-2alpha. However, induction of PHD2 by hypoxia has HIF-1-independent and -dependent components. Short-term hypoxia (4 h) results in induction of PHD2 independent of HIF-1, while PHD2 accumulation by prolonged hypoxia (16 h) was decreased by siRNA-mediated degradation of HIF-1alpha subunit. These data further advance our understanding of the differential role of HIF factors and putative feedback loop in HIF regulation.  相似文献   

19.
20.
Prolyl hydroxylation of hypoxible-inducible factor alpha (HIF-alpha) proteins is essential for their recognition by pVHL containing ubiquitin ligase complexes and subsequent degradation in oxygen (O(2))-replete cells. Therefore, HIF prolyl hydroxylase (PHD) enzymatic activity is critical for the regulation of cellular responses to O(2) deprivation (hypoxia). Using a fusion protein containing the human HIF-1alpha O(2)-dependent degradation domain (ODD), we monitored PHD activity both in vivo and in cell-free systems. This novel assay allows the simultaneous detection of both hydroxylated and nonhydroxylated PHD substrates in cells and during in vitro reactions. Importantly, the ODD fusion protein is regulated with kinetics identical to endogenous HIF-1alpha during cellular hypoxia and reoxygenation. Using in vitro assays, we demonstrated that the levels of iron (Fe), ascorbate, and various tricarboxylic acid (TCA) cycle intermediates affect PHD activity. The intracellular levels of these factors also modulate PHD function and HIF-1alpha accumulation in vivo. Furthermore, cells treated with mitochondrial inhibitors, such as rotenone and myxothiazol, provided direct evidence that PHDs remain active in hypoxic cells lacking functional mitochondria. Our results suggest that multiple mitochondrial products, including TCA cycle intermediates and reactive oxygen species, can coordinate PHD activity, HIF stabilization, and cellular responses to O(2) depletion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号