首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
The amino acid sequences of both the alpha and beta subunits of human chorionic gonadotropin have been determined. The amino acid sequence of the alpha subunit is: Ala - Asp - Val - Gln - Asp - Cys - Pro - Glu - Cys-10 - Thr - Leu - Gln - Asp - Pro - Phe - Ser - Gln-20 - Pro - Gly - Ala - Pro - Ile - Leu - Gln - Cys - Met - Gly-30 - Cys - Cys - Phe - Ser - Arg - Ala - Tyr - Pro - Thr - Pro-40 - Leu - Arg - Ser - Lys - Lys - Thr - Met - Leu - Val - Gln-50 - Lys - Asn - Val - Thr - Ser - Glu - Ser - Thr - Cys - Cys-60 - Val - Ala - Lys - Ser - Thr - Asn - Arg - Val - Thr - Val-70 - Met - Gly - Gly - Phe - Lys - Val - Glu - Asn - His - Thr-80 - Ala - Cys - His - Cys - Ser - Thr - Cys - Tyr - Tyr - His-90 - Lys - Ser. Oligosaccharide side chains are attached at residues 52 and 78. In the preparations studied approximately 10 and 30% of the chains lack the initial 2 and 3 NH2-terminal residues, respectively. This sequence is almost identical with that of human luteinizing hormone (Sairam, M. R., Papkoff, H., and Li, C. H. (1972) Biochem. Biophys. Res. Commun. 48, 530-537). The amino acid sequence of the beta subunit is: Ser - Lys - Glu - Pro - Leu - Arg - Pro - Arg - Cys - Arg-10 - Pro - Ile - Asn - Ala - Thr - Leu - Ala - Val - Glu - Lys-20 - Glu - Gly - Cys - Pro - Val - Cys - Ile - Thr - Val - Asn-30 - Thr - Thr - Ile - Cys - Ala - Gly - Tyr - Cys - Pro - Thr-40 - Met - Thr - Arg - Val - Leu - Gln - Gly - Val - Leu - Pro-50 - Ala - Leu - Pro - Gin - Val - Val - Cys - Asn - Tyr - Arg-60 - Asp - Val - Arg - Phe - Glu - Ser - Ile - Arg - Leu - Pro-70 - Gly - Cys - Pro - Arg - Gly - Val - Asn - Pro - Val - Val-80 - Ser - Tyr - Ala - Val - Ala - Leu - Ser - Cys - Gln - Cys-90 - Ala - Leu - Cys - Arg - Arg - Ser - Thr - Thr - Asp - Cys-100 - Gly - Gly - Pro - Lys - Asp - His - Pro - Leu - Thr - Cys-110 - Asp - Asp - Pro - Arg - Phe - Gln - Asp - Ser - Ser - Ser - Ser - Lys - Ala - Pro - Pro - Pro - Ser - Leu - Pro - Ser-130 - Pro - Ser - Arg - Leu - Pro - Gly - Pro - Ser - Asp - Thr-140 - Pro - Ile - Leu - Pro - Gln. Oligosaccharide side chains are found at residues 13, 30, 121, 127, 132, and 138. The proteolytic enzyme, thrombin, which appears to cleave a limited number of arginyl bonds, proved helpful in the determination of the beta sequence.  相似文献   

2.
The thermostability of potato type L alpha-glucan phosphorylase (EC 2.4.1.1) was enhanced by random and site-directed mutagenesis. We obtained three single-residue mutations-Phe39-->Leu (F39L), Asn135-->Ser (N135S), and Thr706-->Ile (T706I)-by random mutagenesis. Although the wild-type enzyme was completely inactivated, these mutant enzymes retained their activity even after heat treatment at 60 degrees C for 2 h. Combinations of these mutations were introduced by site-directed mutagenesis. The simultaneous mutation of two (F39L/N135S, F39L/T706I, and N135S/T706I) or three (F39L/N135S/T706I) residues further increased the thermostability of the enzyme, indicating that the effect of the replacement of the residues was cumulative. The triple-mutant enzyme, F39L/N135S/T706I, retained 50% of its original activity after heat treatment at 65 degrees C for 20 min. Further analysis indicated that enzymes with a F39L or T706I mutation were resistant to possible proteolytic degradation.  相似文献   

3.
The amino acid sequence of a protease inhibitor isolated from the hemolymph of Sarcophaga bullata larvae was determined by tandem mass spectrometry. Homology considerations with respect to other protease inhibitors with known primary structures assisted in the choice of the procedure followed in the sequence determination and in the alignment of the various peptides obtained from specific chemical cleavage at cysteines and enzyme digests of the S. bullata protease inhibitor. The resulting sequence of 57 residues is as follows: Val Asp Lys Ser Ala Cys Leu Gln Pro Lys Glu Val Gly Pro Cys Arg Lys Ser Asp Phe Val Phe Phe Tyr Asn Ala Asp Thr Lys Ala Cys Glu Glu Phe Leu Tyr Gly Gly Cys Arg Gly Asn Asp Asn Arg Phe Asn Thr Lys Glu Glu Cys Glu Lys Leu Cys Leu.  相似文献   

4.
The complete amino acid sequence of the β-subunit of protocatechuate 3,4-dioxygenase was determined. The β-subunit contained four methionine residues. Thus, five peptides were obtained after cleavage of the carboxymethylated β-subunit with cyanogen bromide, and were isolated on Sephadex G-75 column chromatography. The amino acid sequences of the cyanogen bromide peptides were established by characterization of the peptides obtained after digestion with trypsin, chymotrypsin, thermolysin, or Staphylococcus aureus protease. The major sequencing techniques used were automated and manual Edman degradations. The five cyanogen bromide peptides were aligned by means of the amino acid sequences of the peptides containing methionine purified from the tryptic hydrolysate of the carboxymethylated β-subunit. The amino acid sequence of all the 238 residues was as follows: ProAlaGlnAspAsnSerArgPheValIleArgAsp ArgAsnTrpHis ProLysAlaLeuThrPro-Asp — TyrLysThrSerIleAlaArg SerProArgGlnAla LeuValSerIleProGlnSer — IleSerGluThrThrGly ProAsnPheSerHisLeu GlyPheGlyAlaHisAsp-His — AspLeuLeuLeuAsnPheAsn AsnGlyGlyLeu ProIleGlyGluArgIle-Ile — ValAlaGlyArgValValAsp GlnTyrGlyLysPro ValProAsnThrLeuValGluMet — TrpGlnAlaAsnAla GlyGlyArgTyrArg HisLysAsnAspArgTyrLeuAlaPro — LeuAspProAsn PheGlyGlyValGly ArgCysLeuThrAspSerAspGlyTyrTyr — SerPheArg ThrIleLysProGlyPro TyrProTrpArgAsnGlyProAsnAsp — TrpArgProAla HisIleHisPheGlyIle SerGlyProSerIleAlaThr-Lys — LeuIleThrGlnLeuTyr PheGluGlyAspPro LeuIleProMetCysProIleVal — LysSerIleAlaAsn ProGluAlaValGlnGln LeuIleAlaLysLeuAspMetAsnAsn — AlaAsnProMet AsnCysLeuAlaTyr ArgPheAspIleValLeuArgGlyGlnArgLysThrHis PheGluAsnCys. The sequence published earlier in summary form (Iwaki et al., 1979, J. Biochem.86, 1159–1162) contained a few errors which are pointed out in this paper.  相似文献   

5.
The thermostability of potato type L α-glucan phosphorylase (EC 2.4.1.1) was enhanced by random and site-directed mutagenesis. We obtained three single-residue mutations—Phe39→Leu (F39L), Asn135→Ser (N135S), and Thr706→Ile (T706I)—by random mutagenesis. Although the wild-type enzyme was completely inactivated, these mutant enzymes retained their activity even after heat treatment at 60°C for 2 h. Combinations of these mutations were introduced by site-directed mutagenesis. The simultaneous mutation of two (F39L/N135S, F39L/T706I, and N135S/T706I) or three (F39L/N135S/T706I) residues further increased the thermostability of the enzyme, indicating that the effect of the replacement of the residues was cumulative. The triple-mutant enzyme, F39L/N135S/T706I, retained 50% of its original activity after heat treatment at 65°C for 20 min. Further analysis indicated that enzymes with a F39L or T706I mutation were resistant to possible proteolytic degradation.  相似文献   

6.
In the N-terminal domain of thermolysin, two polypeptide strands, Asn112-Ala113-Phe114-Trp115 and Ser118-Gln119-Met120-Val121-Tyr122, are connected by a short loop, Asn116-Gly117, to form an anti-parallel β-sheet. The Asn112-Trp115 strand is located in the active site, while the Ser118-Tyr122 strand and the Asn116-Gly117 loop are located outside the active site. In this study, we explored the catalytic role of Gly117 by site-directed mutagenesis. Five variants, G117A (Gly117 is replaced by Ala), G117D, G117E, G117K, and G117R, were produced by co-expressing in Escherichia coli the mature and pro domains as independent polypeptides. The production levels were in the order G117E > wild type > G117K, G117R > G117D. G117A was hardly produced. This result is in contrast to our previous one that all 72 active-site thermolysin variants were produced at the similar levels whether they retained activity or not (M. Kusano et al. J. Biochem., 145, 103-113 (2009)). G117E exhibited lower activity in the hydrolysis of N-[3-(2-furyl)acryloyl]-glycyl-L-leucine amide and higher activity in the hydrolysis of N-carbobenzoxy-L-aspartyl-L-phenylalanine methyl ester than the wild-type thermolysin. G117K and G117R exhibited considerably reduced activities. This suggests that Gly117 plays an important role in the activity and stability of thermolysin, presumably by affecting the geometries of the Asn112-Trp115 and Ser118-Tyr122 strands.  相似文献   

7.
Steady-state and rapid kinetic studies were conducted to functionally characterize the overall and partial reactions of the Ca2+ transport cycle mediated by the human sarco(endo)plasmic reticulum Ca2+-ATPase 2 (SERCA2) isoforms, SERCA2a and SERCA2b, and 10 Darier disease (DD) mutants upon heterologous expression in HEK-293 cells. SERCA2b displayed a 10-fold decrease in the rate of Ca2+ dissociation from E1Ca2 relative to SERCA2a (i.e. SERCA2b enzyme manifests true high affinity at cytosolic Ca2+ sites) and a lower rate of dephosphorylation. These fundamental kinetic differences explain the increased apparent affinity for activation by cytosolic Ca2+ and the reduced catalytic turnover rate in SERCA2b. Relative to SERCA1a, both SERCA2 isoforms displayed a 2-fold decrease of the rate of E2 to E1Ca2 transition. Furthermore, seven DD mutants were expressed at similar levels as wild type. The expression level was 2-fold reduced for Gly23 --> Glu and Ser920 --> Tyr and 10-fold reduced for Gly749 --> Arg. Uncoupling between Ca2+ translocation and ATP hydrolysis and/or changes in the rates of partial reactions account for lack of function for 7 of 10 mutants: Gly23 --> Glu (uncoupling), Ser186 --> Phe, Pro602 --> Leu, and Asp702 --> Asn (block of E1 approximately P(Ca2) to E2-P transition), Cys318 --> Arg (uncoupling and 3-fold reduction of E2-P to E2 transition rate), and Thr357 --> Lys and Gly769 --> Arg (lack of phosphorylation). A 2-fold decrease in the E1 approximately P(Ca2) to E2-P transition rate is responsible for the 2-fold decrease in activity for Pro895 --> Leu. Ser920 --> Tyr is a unique DD mutant showing an enhanced molecular Ca2+ transport activity relative to wild-type SERCA2b. In this case, the disease may be a consequence of the low expression level and/or reduction of Ca2+ affinity and sensitivity to inhibition by lumenal Ca2+.  相似文献   

8.
The functional importance of a conserved region in a novel chitosanase from Bacillus sp. CK4 was investigated. Each of the three carboxylic amino acid residues (Glu-50, Glu-62, and Asp-66) was changed to Asp and Gln or Asn and Glu by site-directed mutagenesis, respectively. The Asp-66-->Asn and Asp-66-->Glu mutation remarkably decreased kinetic parameters such as Vmax and kcat to approximately 1/1,000 those of the wild-type enzyme, indicating that the Asp-66 residue was essential for catalysis. The thermostable chitosanase contains three Cys residues at positions 49, 72, and 211. The Cys-49-->Ser/Tyr and Cys-72-->Ser/Tyr mutant enzymes were as stable to thermal inactivation and denaturating agents as the wild-type enzyme. However, the half-life of the Cys-211-->Ser/Tyr mutant enzyme was less than 10 min at 80 degrees C, while that of the wild-type enzyme was about 90 min. Moreover, the residual activity of Cys-211-->Ser/Tyr enzyme was substantially decreased by 8 M urea; and it lost all catalytic activity in 40% ethanol. These results show that the substitution of Cys with any amino acid residues at position 211 seems to affect the conformational stability of the chitosanase.  相似文献   

9.
The active site of thermolysin is composed of one zinc ion and five polypeptide regions [N-terminal sheet (Asn112-Trp115), alpha-helix 1 (Val139-Thr149), C-terminal loop 1 (Asp150-Gly162), alpha-helix 2 (Ala163-Val176) and C-terminal loop 2 (Gln225-Ser234)]. To explore their catalytic roles, we introduced single amino-acid substitutions into these regions by site-directed mutagenesis and examined their effects on the activity and stability. Seventy variants, in which one of the twelve residues (Ala113, Phe114, Trp115, Asp150, Tyr157, Gly162, Ile168, Ser169, Asp170, Asn227, Val230 and Ser234) was replaced, were produced in Escherichia coli. The hydrolytic activities of thermolysin for N-[3-(2-furyl)acryloyl]-Gly-l-Leu amide (FAGLA) and casein revealed that the N-terminal sheet and alpha-helix 2 were critical in catalysis and the C-terminal loops 1 and 2 were in substrate recognition. Twelve variants were active for both substrates. In the hydrolysis of FAGLA and N-carbobenzoxy-L-Asp-L-Phe methyl ester, the k(cat)/K(m) values of the D150E (in which Asp150 is replaced with Glu) and I168A variants were 2-3 times higher than those of the wild-type (WT) enzyme. Thermal inactivation of thermolysin at 80 degrees C was greatly suppressed with the D150H, D150W, I168A, I168H, N227A, N227H and S234A. The evidence might provide the insights into the activation and stabilization of thermolysin.  相似文献   

10.
Theil R  Scheit KH 《The EMBO journal》1983,2(7):1159-1163
Analytical ultracentrifugation of highly purified seminalplasmin revealed a molecular mass of 6300. Amino acid analysis of the protein preparation indicated the absence of sulfur-containing amino acids cysteine and methionine. The amino acid sequence of seminalplasmin was determined by manual Edman degradation of peptides obtained by proteolytic enzymes trypsin, chymotrypsin and thermolysin: NH2-Ser Asp Glu Lys Ala Ser Pro Asp Lys His His Arg Phe Ser Leu Ser Arg Tyr Ala Lys Leu Ala Asn Arg Leu Ser Lys Trp Ile Gly Asn Arg Gly Asn Arg Leu Ala Asn Pro Lys Leu Leu Glu Thr Phe Lys Ser Val-COOH. The number of amino acids according to the sequence were 48, the molecular mass 6385. As predicted from the sequence, seminalplasmin very likely contains two α-helical domains in which residues 8-17 and 40-48 are involved. No evidence for the existence of β-sheet structures was obtained. Treatment of seminalplasmin with the above proteases as well as with amino peptidase M and carboxypeptidase Y completely eliminated biological activity.  相似文献   

11.
The recently described cysteine proteinase cathepsin W, also known as lymphopain, which is expressed specifically by CD8+ T lymphocytes, is phylogenetically related to the cruzipain-like group of the C1 family of peptidases. We have constructed sequence alignments and a theoretical three dimensional homology model of cathepsin W. These have allowed the characterization of signature features of cathepsin W in particular and the cruzipain lineage in general. The signature features are (1) an extended loop structure, Gly 170-Trp 200, in the second or beta-sheet domain; (2) an additional disulfide bond, Cys 25/Cys 60; (3) an additional "orphan" cysteine, Cys 5; (4) an additional residue. Ala 11, inserted after the first beta-sheet sheet; and (5) an S2 pocket lined with Phe 68 and Phe 230 which explains the preference for substrates containing Leu at P2. Further, the model suggested that cathepsin W could exist as a dimer with the Cys 5 of each monomer forming a disulfide bond and the Arg 40 Phe 46 loop (RISFWDF) forming part of the dimeric interface. By comparing cathepsin W with other members of the cruzipain group and with other C1 peptidases, six conserved residues were identified which appear in general to be characteristic of the cruzipain group, and which differentiate cruzipain group members from other C1 peptidases including those of the related cathepsin L lineage. The signature residues of the cruzipain lineage are (cruzipain numbering) Asn 33, Trp 38, Ala 124, Leu 127, Leu 164, and Pro 174.  相似文献   

12.
Venkatesan P  Liu Z  Hu Y  Kaback HR 《Biochemistry》2000,39(35):10649-10655
Cys-scanning mutagenesis of helix II in the lactose permease of Escherichia coli [Frillingos, S., Sun, J. et al. (1997) Biochemistry 36, 269-273] indicates that one face contains positions where Cys replacement or Cys replacement followed by treatment with N-ethylmaleimide (NEM) significantly inactivates the protein. In this study, site-directed sulfhydryl modification is utilized in situ to study this face of helix II. [(14)C]NEM labeling of 13 single-Cys mutants, including the nine NEM-sensitive Cys replacements, in right-side-out membrane vesicles is examined. Permease mutants with a single-Cys residue in place of Gly46, Phe49, Gln60, Ser67, or Leu70 are alkylated by NEM at 25 degrees C in 10 min, and mutants with Cys in place of Thr45 and Ser53 are labeled only in the presence of ligand, while mutants with Cys in place of Ile52, Ser56, Leu57, Leu62, Phe63, or Leu65 do not react. Binding of substrate leads to a marked increase in labeling of Cys residues at positions 45, 49, or 53 in the periplasmic half of helix II and a slight decrease in labeling of Cys residues at positions 60 or 67 in the cytoplasmic half. Labeling studies with methanethiosulfonate ethylsulfonate (MTSES) show that positions 45 and 53 are accessible to solvent in the presence of ligand only, while positions 46, 49, 67, and 70 are accessible to solvent in the absence or presence of ligand. Position 60 is also exposed to solvent, and substrate binding causes a decrease in solvent accessibility. The findings demonstrate that the NEM-sensitive face of helix II participates in ligand-induced conformational changes. Remarkably, this membrane-spanning face is accessible to the aqueous phase from the periplasmic side of the membrane. In the following paper in this issue [Venkatesan, P., Hu, Y., and Kaback, H. R. (2000) Biochemistry 39, 10656-10661], the approach is applied to helix X.  相似文献   

13.
We examined the effects of orally administrated amino acids on myfibrillar proteolysis in food-deprived chicks. Plasma N(tau)-methylhistidine concentration, as an index of myofibrillar proteolysis, was decreased by the administration of Glu, Gly, Ala, Leu, Ile, Ser, Thr, Met, Trp, Asn, Gln, Pro, Lys and Arg but not by Asp, Val, Phe, Tyr or His to chicks. Orally administrated Cys was fatal to chicks. These results indicate that oral Glu, Gly, Ala, Leu, Ile, Ser, Thr, Met, Trp, Asn, Gln, Pro, Lys and Arg administration suppressed myofibrillar proteolysis in chicks.  相似文献   

14.
Ser130, Asp131 and Asn132 ('SDN') are highly conserved residues in class A beta-lactamases forming one wall of the active-site cavity. All three residues of the SDN loop in Streptomyces albus G beta-lactamase were modified by site-directed mutagenesis. The mutant proteins were expressed in Streptomyces lividans, purified from culture supernatants and their kinetic parameters were determined for several substrates. Ser130 was substituted by Asn, Ala and Gly. The first modification yielded an almost totally inactive protein, whereas the smaller-side-chain mutants (A and G) retained some activity, but were less stable than the wild-type enzyme. Ser130 might thus be involved in maintaining the structure of the active-site cavity. Mutations of Asp131 into Glu and Gly proved to be highly detrimental to enzyme stability, reflecting significant structural perturbations. Mutation of Asn132 into Ala resulted in a dramatically decreased enzymic activity (more than 100-fold) especially toward cephalosporin substrates, kcat. being the most affected parameter, which would indicate a role of Asn132 in transition-state stabilization rather than in ground-state binding. Comparison of the N132A and the previously described N132S mutant enzymes underline the importance of an H-bond-forming residue at position 132 for the catalytic process.  相似文献   

15.
Macrophage migration inhibitory factor (MIF) displays both cytokine and enzyme activities, but its molecular mode of action is still unclear. MIF contains three cysteine residues and we showed recently that the conserved Cys57-Ala-Leu-Cys60 (CALC) motif is critical for the oxidoreductase and macrophage-activating activities of MIF. Here we probed further the role of this catalytic centre by expression, purification, and characterization of the cysteine-->serine mutants Cys60Ser, Cys57Ser/Cys60Ser, and Cys81Ser of human MIF and of mutants Ala58Gly/Leu59Pro and Ala58Gly/Leu59His, containing a thioredoxin (Trx)-like and protein disulphide isomerase (PDI)-like dipeptide, respectively. The catalytic centre mutants formed inclusion bodies and the resultant mutant proteins Cys57Ser/Cys60Ser, Ala58Gly/Leu59Pro, and Als58Gly/Leu59His were only soluble in organic solvent or 6 m GdmHCl when reconstituted at concentrations above 1 microgram.mL-1. This made it necessary to devise new purification methods. By contrast, mutant Cys81Ser was soluble. Effects of pH, solvent, and ionic strength conditions on the conformation of the mutants were analysed by far-UV CD spectropolarimetry and mutant stability was examined by denaturant-induced unfolding. The mutants, except for mutant Cys81Ser, showed a close conformational similarity to wild-type (wt) MIF, and stabilization of the mutants was due mainly to acid pH conditions. Intramolecular disulphide bond formation at the CALC region was confirmed by near-UV CD of mutant Cys60Ser. Mutant Cys81Ser was not involved in disulphide bond formation, yet had decreased stability. Analysis in the oxidoreductase and a MIF-specific cytokine assay revealed that only substitution of the active site residues led to inactivation of MIF. Mutant Cys60Ser had no enzyme and markedly reduced cytokine activity, whereas mutant Cys81Ser was active in both tests. The Trx-like variant showed significant enzyme activity but was less active than wtMIF; PDI-like MIF was enzymatically inactive. However, both variants had full cytokine activity. Together with the low but nonzero cytokine activity of mutant Cys60Ser, this indicated that the cytokine activity of MIF may not be tightly regulated by redox effects or that a distinguishable receptor mechanism exists. This study provides evidence for a role of the CALC motif in the oxidoreductase and cytokine activities of MIF, and suggests that Cys81 could mediate conformational effects. Availability and characterization of the mutants should greatly aid in the further elucidation of the mechanism of action of the unusual cytokine MIF.  相似文献   

16.
研究A型γ 氨基丁酸受体 (γ aminobutyricacidtypeA ,GABAAreceptor)α1亚基Cys166 Leu2 96片段的苯并二氮杂 (benzodiazepine ,BZ)结合位点及其结构特性 ,了解该片段结构与功能的关系 .利用PfuDNA多聚酶依赖的点突变技术将该片段的每一残基用丙氨酸替代 ,通过E .coli体系过表达 ,纯化得到各种突变蛋白 .运用圆二色性 (circulardichroism ,CD)技术测定突变蛋白的二级结构 ,借助荧光各向异性 (fluorescenceanisotropy ,FA)、荧光共振能量转移 (fluorescenceresonanceenergytrans fer,FRET)技术测定其与BZ荧光配基Bodipy FLRo 1986 (BFR)的结合强弱 .通过与野生型的比较 ,确定其残基是否与结构和或结合相关 .结果显示 ,突变体R191A、G2 12A、S2 13A、R2 14A及V2 79A的结合能力减弱 2~ 3倍 ,除V2 79A显著增加α螺旋外均无二级结构的改变 .E193A、S2 78A、V2 79A和P2 80A的α螺旋显著增多 ,N2 75A和R2 76A的α螺旋则显著减少 .推测Cys166 Leu2 96的Arg191,Gly2 12 ,Ser2 13 和Arg2 14 可能位于BZ的结合袋 ,其第 4个环区 (Glu2 10 Asn2 16)与结合密切相关 .Glu193 、Ser2 78和Pro2 80 参与维持β折叠结构 ,而Asn2 75和Arg2 76参与维持α螺旋结构 .Cys166 Leu2 96的第 9个环区 (Asn2 75 Pro2 80 )对其结  相似文献   

17.
Four Na+ -dependent transporters of neutral amino acids (NAA) are known to exist in the abluminal membranes (brain side) of the blood-brain barrier (BBB). This article describes the kinetic characteristics of systems A, ASC, and N that, together with the recently described Na+ -dependent system for large NAA (Na+ -LNAA), provide a basis for understanding the functional organization of the BBB. The data demonstrate that system A is voltage dependent (3 positive charges accompany each molecule of substrate). Systems ASC and N are not voltage dependent. Each NAA is a putative substrate for at least one system, and several NAA are transported by as many as three. System A transports Pro, Ala, His, Asn, Ser, and Gln; system ASC transports Ser, Gly, Met, Val, Leu, Ile, Cys, and Thr; system N transports Gln, His, Ser, and Asn; Na+ -LNAA transports Leu, Ile, Val, Trp, Tyr, Phe, Met, Ala, His, Thr, and Gly. Together, these four systems have the capability to actively transfer every naturally occurring NAA from the extracellular fluid (ECF) to endothelial cells and thence to the circulation. The existence of facilitative transport for NAA (L1) on both membranes provides the brain access to essential NAA. The presence of Na+ -dependent carriers on the abluminal membrane provides a mechanism by which NAA concentrations in the ECF of brain are maintained at approximately 10% of those of the plasma.  相似文献   

18.
Enzymatic properties of barley alpha-amylase 1 (AMY1) are altered as a result of amino acid substitutions at subsites -5/-6 (Cys95-->Ala/Thr) and +1/+2 (Met298-->Ala/Asn/Ser) as well as in the double mutants, Cys95-->Ala/Met298-->Ala/Asn/Ser. Cys95-->Ala shows 176% activity towards insoluble Blue Starch compared to wild-type AMY1, kcat of 142 and 211% towards amylose DP17 and 2-chloro-4-nitrophenyl beta-d-maltoheptaoside (Cl-PNPG7), respectively, but fivefold to 20-fold higher Km. The Cys95-->Thr-AMY1 AMY2 isozyme mimic exhibits the intermediary behaviour of Cys95-->Ala and wild-type. Met298-->Ala/Asn/Ser have slightly higher to slightly lower activity for starch and amylose, whereas kcat and kcat/Km for Cl-PNPG7 are < or = 30% and < or = 10% of wild-type, respectively. The activity of Cys95-->Ala/Met298-->Ala/Asn/Ser is 100-180% towards starch, and the kcat/Km is 15-30%, and 0.4-1.1% towards amylose and Cl-PNPG7, respectively, emphasizing the strong impact of the Cys95-->Ala mutation on activity. The mutants therefore prefer the longer substrates and the specificity ratios of starch/Cl-PNPG7 and amylose/Cl-PNPG7 are 2.8- to 270-fold and 1.2- to 60-fold larger, respectively, than of wild-type. Bond cleavage analyses show that Cys95 and Met298 mutations weaken malto-oligosaccharide binding near subsites -5 and +2, respectively. In the crystal structure Met298 CE and SD (i.e., the side chain methyl group and sulfur atom) are near C(6) and O(6) of the rings of the inhibitor acarbose at subsites +1 and +2, respectively, and Met298 mutants prefer amylose for glycogen, which is hydrolysed with a slightly lower activity than by wild-type. Met298 AMY1 mutants and wild-type release glucose from the nonreducing end of the main-chain of 6"'-maltotriosyl-maltohexaose thus covering subsites -1 to +5, while productive binding of unbranched substrate involves subsites -3 to +3.  相似文献   

19.
The intestinal fatty acid binding protein is one of a class of proteins that are primarily beta-sheet and contain a large interior cavity into which ligands bind. A highly conserved region of the protein exists between two adjacent antiparallel strands (denoted as D and E in the structure) that are not within hydrogen bonding distance. A series of single, double, and triple mutations have been constructed in the turn between these two strands. In the wild-type protein, this region has the sequence Leu 64/Gly 65/Val 66. Replacing Leu 64 with either Ala or Gly decreases the stability and the midpoint of the denaturation curve somewhat, whereas mutations at Gly 65 affect the stability slightly, but the protein folds at a rate similar to wild-type and binds oleate. Val 66 appears not to play an important role in maintaining stability. All double or triple mutations that include mutation of Leu 64 result in a large and almost identical loss of stability from the wild-type. As an example of the triple mutants, we investigated the properties of the Leu 64 Ser/Gly 65 Ala/Val 66 Asn mutant. As measured by the change in intrinsic fluorescence, this mutant (and similar triple mutants lacking leucine at position 64) folds much more rapidly than wild-type. The mutant, and others that lack Leu 64, have far-UV CD spectra similar to wild-type, but a different near-UV CD spectrum. The folded form of the protein binds oleate, although less tightly than wild-type. Hydrogen/deuterium exchange studies using electrospray mass spectrometry indicate many more rapidly exchangeable amide protons in the Leu 64 Ser/Gly 65 Ala/Val 66 Asn mutant. We propose that there is a loss of defined structure in the region of the protein near the turn defined by the D and E strands and that the interaction of Leu 64 with other hydrophobic residues located nearby may be responsible for (1) the slow step in the refolding process and (2) the final stabilization of the structure. We suggest the possibility that this region of the protein may be involved in both an early and late step in refolding.  相似文献   

20.
A glucose dehydrogenase gene was isolated from Bacillus megaterium IWG3, and its nucleotide sequence was identified. The amino acid sequence of the enzyme deduced from the nucleotide sequence is very similar to the protein sequence of the enzyme from B. megaterium M1286 reported by Jany et al. (Jany, K.-D., Ulmer, W., Froschle, M., and Pfleiderer, G. (1984) FEBS Lett. 165, 6-10). The isolated gene was mutagenized with hydrazine, formic acid, or sodium nitrite, and 12 clones (H35, H39, F18, F20, F191, F192, N1, N13, N14, N28, N71, and N72) containing mutant genes for thermostable glucose dehydrogenase were obtained. The nucleotide sequences of the 12 genes show that they include 8 kinds of mutants having the following amino acid substitutions: H35 and H39, Glu-96 to Gly; F18 and F191, Glu-96 to Ala; F20, Gln-252 to Leu; F192, Gln-252 to Leu and Ala-258 to Gly; N1, Glu-96 to Lys and Val-183 to Ile; N13 and N14, Glu-96 to Lys, Val-112 to Ala, Glu-133 to Lys, and Tyr-217 to His; N28, Glu-96 to Lys, Asp-108 to Asn, Pro-194 to Gln, and Glu-210 to Lys; and N71 and N72, Tyr-253 to Cys. These mutant enzymes have higher stability at 60 degrees C than the wild-type enzyme. The results of this study indicate that the tetrameric structure of glucose dehydrogenase is stabilized by several kinds of mutation, and at least one of the following amino acid substitutions stabilizes the enzyme: Glu-96 to Gly, Glu-96 to Ala, Gln-252 to Leu, and Tyr-253 to Cys.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号