首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The contribution of Na(+)/H(+) exchange (achieved by NHE proteins) to the regulation of beta-cell cytosolic pH(c), and the role of pH(c) changes in glucose-induced insulin secretion are disputed and were examined here. Using real-time PCR, we identified plasmalemmal NHE1 and intracellular NHE7 as the two most abundant NHE isoforms in mouse islets. We, therefore, compared insulin secretion, cytosolic free Ca(2+) ([Ca(2+)](c)) and pH(c) in islets from normal mice and mice bearing an inactivating mutation of NHE1 (Slc9A1-swe/swe). The experiments were performed in HCO(-)(3)/CO(2) or HEPES/NaOH buffers. PCR and functional approaches showed that NHE1 mutant islets do not express compensatory pH-regulating mechanisms. NHE1 played a greater role than HCO(-)(3)-dependent mechanisms in the correction of an acidification imposed by a pulse of NH(4)Cl. In contrast, basal pH(c) (in low glucose) and the alkalinization produced by high glucose were independent of NHE1. Dimethylamiloride, a classic blocker of Na(+)/H(+) exchange, did not affect pH(c) but increased insulin secretion in NHE1 mutant islets, indicating unspecific effects. In control islets, glucose similarly increased [Ca(2+)](c) and insulin secretion in HCO(-)(3) and HEPES buffer, although pH(c) changed in opposite directions. The amplification of insulin secretion that glucose produces when [Ca(2+)](c) is clamped at an elevated level by KCl was also unrelated to pH(c) and pH(c) changes. All effects of glucose on [Ca(2+)](c) and insulin secretion proved independent of NHE1. In conclusion, NHE1 protects beta-cells against strong acidification, but has no role in stimulus-secretion coupling. The changes in pH(c) produced by glucose involve HCO(-)(3)-dependent mechanisms. Variations in beta-cell pH(c) are not causally related to changes in insulin secretion.  相似文献   

2.
To investigate the interaction between the ion channels and transporters in the salivary fluid secretion, we measured the membrane voltage (V(m)) and intracellular concentrations of Ca(2+), Na(+) ([Na(+)](c)), Cl(-), and H(+) (pH(i)) in rat submandibular gland acini (RSMGA). After a transient depolarization induced by a short application of acetylcholine (ACh; 5 muM, 20 s), RSMGA showed strong delayed hyperpolarization (V(h,ACh); -95 +/- 1.8 mV) that was abolished by ouabain. In the HCO(3)(-)-free condition, the V(h,ACh) was also blocked by bumetanide, a blocker of Na(+)-K(+)-2Cl(-) cotransporter (NKCC). In the presence of HCO(3)(-) (24 meq, bubbled with 5% CO(2)), however, the V(h,ACh) was not blocked by bumetanide, but it was suppressed by ethylisopropylamiloride (EIPA), a Na(+)/H(+) exchanger (NHE) inhibitor. Similarly, the ACh-induced increase in [Na(+)](c) was totally blocked by bumetanide in the absence of HCO(3)(-), but only by one-half in the presence of HCO(3)(-). ACh induced a prominent acidification of pH(i) in the presence of HCO(3)(-), and the acidification was further increased by EIPA treatment. Without HCO(3)(-), an application of ACh strongly accelerated the NKCC activity that was measured from the decay of pH(i) during the application of NH(4)(+) (20 mM). Notably, the ACh-induced activation of NKCC was largely suppressed in the presence of HCO(3)(-). In summary, the ACh-induced anion secretion in RSMGA is followed by the activation of NKCC and NHE, resulting an increase in [Na(+)](c). The intracellular Na(+)-induced activation of electrogenic Na(+)/K(+)-ATPase causes V(h,ACh). The regulation of NKCC and NHE by ACh is strongly affected by the physiological level of HCO(3)(-).  相似文献   

3.
Ion transporters such as Na(+)/H(+) exchanger (NHE), Cl(-)/HCO(3)(-) exchanger (AE), and Na(+)/HCO(3)(-) cotransporter (NBC) are known to contribute to the intracellular pH (pH(i)) regulation during agonist-induced stimulation. This study examined the mechanisms for the pH(i) regulation in the mouse parotid and sublingual acinar cells using the fluorescent pH-sensitive probe, BCECF. The pH(i) recovery from agonist-induced acidification in the sublingual acinar cells was completely blocked by EIPA, a NHE inhibitor. However, the parotid acinar cells required DIDS, a NBC1 inhibitor, in addition to EIPA in order to block the pH(i) recovery. Moreover, RT-PCR analysis detected the expression of pancreatic NBC1 (pNBC1) only in the parotid acinar cells. These results provide strong evidence that the mechanisms for the pH(i) regulation are different in the two types of acinar cells, and pNBC1 contributes to pH(i) regulation in the parotid acinar cells, whereas NHE is likely to be the exclusive pH(i) regulator in the sublingual acinar cells.  相似文献   

4.
5.
The regulation of intracellular pH (pH(i)) in colonocytes of the rat proximal colon has been investigated using the pH-sensitive dye BCECF and compared with the regulation of pH(i) in the colonocytes of the distal colon. The proximal colonocytes in a HEPES-buffered solution had pH(i)=7.24+/-0.04 and removal of extracellular Na(+) lowered pH(i) by 0.24 pH units. Acid-loaded colonocytes by an NH(3)/NH(4)(+) prepulse exhibited a spontaneous recovery that was partially Na(+)-dependent and could be inhibited by ethylisopropylamiloride (EIPA). The Na(+)-dependent recovery rate was enhanced by increasing the extracellular Na(+) concentration and was further stimulated by aldosterone. In an Na(+)- and K(+)-free HEPES-buffered solution, the recovery rate from the acid load was significantly stimulated by addition of K(+) and this K(+)-dependent recovery was partially blocked by ouabain. The intrinsic buffer capacity of proximal colonocytes at physiological pH(i) exhibited a nearly 2-fold higher value than in distal colonocytes. Butyrate induced immediate colonocyte acidification that was smaller in proximal than in distal colonocytes. This acidification was followed by a recovery phase that was both EIPA-sensitive and -insensitive and was similar in both groups of colonocytes. In a HCO(3)(-)/CO(2)-containing solution, pH(i) of the proximal colonocytes was 7.20+/-0.04. Removal of external Cl(-) caused alkalinization that was inhibited by DIDS. The recovery from an alkaline load induced by removal of HCO(3)(-)/CO(2) from the medium was Cl(-)-dependent, Na(+)-independent and blocked by DIDS. Recovery from an acid load in EIPA-containing Na(+)-free HCO(3)(-)/CO(2)-containing solution was accelerated by addition of Na(+). Removal of Cl(-) inhibited the effect of Na(+). In summary, the freshly isolated proximal colonocytes of rats express Na(+)/H(+) exchanger, H(+)/K(+) exchanger ((H(+)-K(+))-ATPase) and Na(+)-dependent Cl(-)/HCO(3)(-) exchanger that contribute to acid extrusion and Na(+)-independent Cl(-)/HCO(3)(-) exchanger contributing to alkali extrusion. All of these are likely involved in the regulation of pH(i) in vivo. Proximal colonocytes are able to maintain a more stable pH(i) than distal cells, which seems to be facilitated by their higher intrinsic buffer capacity.  相似文献   

6.
We hypothesized that the function of duodenocyte apical membrane acid-base transporters are essential for H(+) absorption from the lumen. We thus examined the effect of inhibition of Na(+)/H(+) exchanger-3 (NHE3), cystic fibrosis transmembrane regulator (CFTR), or apical anion exchangers on transmucosal CO(2) diffusion and HCO(3)(-) secretion in rat duodenum. Duodena were perfused with a pH 6.4 high CO(2) solution or pH 2.2 low CO(2) solution with the NHE3 inhibitor, S3226, the anion transport inhibitor, DIDS, or pretreatment with the potent CFTR inhibitor, CFTR(inh)-172, with simultaneous measurements of luminal and portal venous (PV) pH and carbon dioxide concentration ([CO(2)]). Luminal high CO(2) solution increased CO(2) absorption and HCO(3)(-) secretion, accompanied by PV acidification and PV Pco(2) increase. During CO(2) challenge, CFTR(inh)-172 induced HCO(3)(-) absorption, while inhibiting PV acidification. S3226 reversed CFTR(inh)-associated HCO(3)(-) absorption. Luminal pH 2.2 challenge increased H(+) and CO(2) absorption and acidified the PV, inhibited by CFTR(inh)-172 and DIDS, but not by S3226. CFTR inhibition and DIDS reversed HCO(3)(-) secretion to absorption and inhibited PV acidification during CO(2) challenge, suggesting that HCO(3)(-) secretion helps facilitate CO(2)/H(+) absorption. Furthermore, CFTR inhibition prevented CO(2)-induced cellular acidification reversed by S3226. Reversal of increased HCO(3)(-) loss by NHE3 inhibition and reduced intracellular acidification during CFTR inhibition is consistent with activation or unmasking of NHE3 activity by CFTR inhibition, increasing cell surface H(+) available to neutralize luminal HCO(3)(-) with consequent CO(2) absorption. NHE3, by secreting H(+) into the luminal microclimate, facilitates net transmucosal HCO(3)(-) absorption with a mechanism similar to proximal tubular HCO(3)(-) absorption.  相似文献   

7.
Secretion of HCO(3)(-) by airway submucosal glands is essential for normal liquid and mucus secretion. Because the liquid bathing the airway surface (ASL) is acidic, it has been proposed that the surface epithelium may acidify HCO(3)(-)-rich glandular fluid. The aim of this study was to investigate the mechanisms by which intact distal bronchi, which contain both surface and glandular epithelium, modify pH of luminal fluid. Distal bronchi were isolated from pig lungs, cannulated in a bath containing HCO(3)(-)-buffered solution, and perfused continually with an aliquot of similar, lightly buffered solution (LBS) in which NaCl replaced NaHCO(3)(-) (pH 7 with NaOH). The pH of this circulating LBS initially acidified (by 0.053 +/- 0.0053 pH units) and transepithelial potential difference (PD) depolarized. The magnitude of acidification was increased when pH(LBS) was higher. This acidification was unaffected by luminal dimethylamiloride (DMA, 100 microM) but was inhibited by 100 nM bafilomycin A(1) (by 76 +/- 13%), suggesting involvement of vacuolar-H(+) ATPase. Addition of ACh (10 microM) evoked alkalinization of luminal LBS and hyperpolarization of transepithelial PD. The alkalinization was inhibited in HCO(3)(-)-free solutions containing acetazolamide (1 mM) and by DMA and was enhanced by bumetanide (100 microM), an inhibitor of Cl(-) secretion. The hyperpolarization was unaffected by these maneuvers. The anion channel blocker 5-nitro-2-(3-phenylpropylamino)benzoate (300 microM) and combined treatment with DMA and bumetanide blocked both the alkalinization and hyperpolarization responses to ACh. These results are consistent with earlier studies showing that ACh evokes glandular secretion of HCO(3)(-) and Cl(-). Isolated distal airways thus secrete both acid and base equivalents.  相似文献   

8.
The molecular mechanisms responsible for intracellular pH regulation in the U2-OS osteosarcoma cell line were investigated by loading with 2',7'-bis(2-carboxyethyl)-5(6) carboxyfluorescein ester and manipulation of Cl(-) and Na(+) gradients, both in HEPES- and HCO(3)(-)/CO(2)-buffered media. Both acidification and alkalinisation were poorly sensitive to 4,4'-diisothiocyanate dihydrostilbene-2,2'-disulfonic acid, inhibitor of the anion exchanger, but sensitive to amiloride, inhibitor of the Na(+)/H(+) exchanger. In addition to the amiloride-sensitive Na(+)/H(+) exchanger, another H(+) extruding mechanism was detected in U-2 OS cells, the Na(+)-dependent HCO(3)(-)/Cl(-) exchanger. No significant difference in resting pH(i) and in the rate of acidification or alkalinisation was observed in clones obtained from U-2 OS cells by transfection with the MDR1 gene and overexpressing P-glycoprotein. However, both V(max) and K' values for intracellular [H(+)] of the Na(+)/H(+) exchanger were significantly reduced in MDR1-transfected clones, in the absence and/or presence of drug selection, in comparison to vector-transfected or parental cell line. NHE1, NHE5 and at a lower extent NHE2 mRNA were detected in similar amount in all U2-OS clones. It is concluded that, although overexpression of P-glycoprotein did not impair pH(i) regulation in U-2 OS cells, the kinetic parameters of the Na(+)/H(+) exchanger were altered, suggesting a functional relationship between the two membrane proteins.  相似文献   

9.
Elevations of cytoplasmic free calcium concentrations ([Ca(2+)](i)) evoked by cholinergic agonists stimulate isotonic fluid secretion in salivary acinar cells. This process is driven by the apical exit of Cl(-) through Ca(2+)-activated Cl(-) channels, while Cl(-) enters the cytoplasm against its electrochemical gradient via a loop diuretic-sensitive Na(+)-K(+)-2Cl(-) cotransporter (NKCC) and/or parallel operations of Cl(-)-HCO(3)(-) and Na(+)-H(+) exchangers, located in the basolateral membrane. To characterize the contributions of those activities to net Cl(-) secretion, we analyzed carbachol (CCh)-activated Cl(-) currents in submandibular acinar cells using the "gramicidin-perforated patch recording configuration." Since the linear polypeptide antibiotic gramicidin creates monovalent cation-selective pores, CCh-activated Cl(-) currents in the gramicidin-perforated patch recording were carried by Cl(-) efflux via Cl(-) channels, dependent upon Cl(-) entry through Cl(-) transporters expressed in the acinar cells. CCh-evoked oscillatory Cl(-) currents were associated with oscillations of membrane potential. Bumetanide, a loop diuretic, decreased the CCh-activated Cl(-) currents and hyperpolarized the membrane potential. In contrast, neither methazolamide, a carbonic anhydrase inhibitor, nor elimination of external HCO(3)(-) had significant effects, suggesting that the cotransporter rather than parallel operations of Cl(-)-HCO(3)(-) and Na(+)-H(+) exchangers is the primary Cl(-) uptake pathway. Pharmacological manipulation of the activities of the Ca(2+)-activated Cl(-) channel and the NKCC revealed that the NKCC plays a substantial role in determining the amplitude of oscillatory Cl(-) currents, while adjusting to the rate imposed by the Ca(2+)-activated Cl(-) channel, in the gramicidin-perforated patch configuration. By concerting with and being controlled by the cation steps, the oscillatory form of secretory Cl(-) movements may effectively provide a driving force for fluid secretion in intact acinar cells.  相似文献   

10.
Submucosal glands are the primary source of airway mucus, a critical component of lung innate defenses. Airway glands are defective in cystic fibrosis (CF), showing a complete absence of secretion to vasoactive intestinal peptide or forskolin, which increase intracellular cAMP concentration. This defect is attributed to gland serous cells, which express the cystic fibrosis transmembrane conductance regulator. Calu-3 cells, which mimic many features of serous cells, secrete Cl(-) and HCO(3)(-), with HCO(3)(-) secretion predominating for forskolin stimulation and Cl(-) secretion predominating for stimuli that open basolateral K(+) channels to hyperpolarize the cells. We used pH stat and ion substitution experiments to clarify the mechanisms and consequences of these two modes of secretion. We confirm that Calu-3 cells secrete primarily HCO(3)(-) in response to forskolin. Unexpectedly, HCO(3)(-) secretion continued in response to K(+) channel openers, with Cl(-) secretion being added to it. Secretion of HCO(3)(-) from hyperpolarized cells occurs via the conversion of CO(2) to HCO(3)(-) and is reduced by approximately 50% with acetazolamide. A gap between the base equivalent current and short-circuit current was observed in all experiments and was traced to secretion of H(+) via a ouabain-sensitive, K(+)-dependent process (possibly H(+)-K(+)-ATPase), which partially neutralized the secreted HCO(3)(-). The conjoint secretion of HCO(3)(-) and H(+) may help explain the puzzling finding that mucus secreted from normal and CF glands has the same acidic pH as does mucus from glands stimulated with forskolin or ACh. It may also help explain how human airway glands produce mucus that is hypotonic.  相似文献   

11.
The esophageal submucosal glands (SMG) secrete HCO(3)(-) and mucus into the esophageal lumen, where they contribute to acid clearance and epithelial protection. This study characterized the ion transport mechanisms linked to HCO(3)(-) secretion in SMG. We localized ion transporters using immunofluorescence, and we examined their expression by RT-PCR and in situ hybridization. We measured HCO(3)(-) secretion by using pH stat and the isolated perfused esophagus. Using double labeling with Na(+)-K(+)-ATPase as a marker, we localized Na(+)-coupled bicarbonate transporter (NBCe1) and Cl(-)-HCO(3)(-) exchanger (SLC4A2/AE2) to the basolateral membrane of duct cells. Expression of cystic fibrosis transmembrane regulator channel (CFTR) was confirmed by immunofluorescence, RT-PCR, and in situ hybridization. We identified anion exchanger SLC26A6 at the ducts' luminal membrane and Na(+)-K(+)-2Cl(-) (NKCC1) at the basolateral membrane of mucous and duct cells. pH stat experiments showed that elevations in cAMP induced by forskolin or IBMX increased HCO(3)(-) secretion. Genistein, an activator of CFTR, which does not increase intracellular cAMP, also stimulated HCO(3)(-) secretion, whereas glibenclamide, a Cl(-) channel blocker, and bumetanide, a Na(+)-K(+)-2Cl(-) blocker, decreased it. CFTR(inh)-172, a specific CFTR channel blocker, inhibited basal HCO(3)(-) secretion as well as stimulation of HCO(3)(-) secretion by IBMX. This is the first report on the presence of CFTR channels in the esophagus. The role of CFTR in manifestations of esophageal disease in cystic fibrosis patients remains to be determined.  相似文献   

12.
The contribution of Cl-/HCO3- exchange to intracellular pH (pHi) regulation in cultured chick heart cells was evaluated using ion-selective microelectrodes to monitor pHi, Na+ (aiNa), and Cl- (aiCl) activity. In (HCO3- + CO2)-buffered solution steady-state pHi was 7.12. Removing (HCO3- + CO2) buffer caused a SITS (0.1 mM)-sensitive alkalinization and countergradient increase in aiCl along with a transient DIDS-sensitive countergradient decrease in aiNa. SITS had no effect on the rate of pHi recovery from alkalinization. When (HCO3- + CO2) was reintroduced the cells rapidly acidified, aiNa increased, aiCl decreased, and pHi recovered. The decrease in aiCl and the pHi recovery were SITS sensitive. Cells exposed to 10 mM NH4Cl became transiently alkaline concomitant with an increase in aiCl and a decrease in aiNa. The intracellular acidification induced by NH4Cl removal was accompanied by a decrease in aiCl and an increase in aiNa that led to the recovery of pHi. In the presence of (HCO3- + CO2), addition of either amiloride (1 mM) or DIDS (1 mM) partially reduced pHi recovery, whereas application of amiloride plus DIDS completely inhibited the pHi recovery and the decrease in aiCl. Therefore, after an acid load pHi recovery is HCO3o- and Nao- dependent and DIDS sensitive (but not Ca2+o dependent). Furthermore, SITS inhibition of Na(+)-dependent Cl-/HCO3- exchange caused an increase in aiCl and a decrease in the 36Cl efflux rate constant and pHi. In (HCO3- + CO2)-free solution, amiloride completely blocked the pHi recovery from acidification that was induced by removal of NH4Cl. Thus, both Na+/H+ and Na(+)-dependent Cl-/HCO3- exchange are involved in pHi regulation from acidification. When the cells became alkaline upon removal of (HCO3- + CO2), a SITS-sensitive increase in pHi and aiCl was accompanied by a decrease of aiNa, suggesting that the HCO3- efflux, which can attenuate initial alkalinization, is via a Na(+)-dependent Cl-/HCO3- exchange. However, the mechanism involved in pHi regulation from alkalinization is yet to be established. In conclusion, in cultured chick heart cells the Na(+)-dependent Cl-/HCO3- exchange regulates pHi response to acidification and is involved in the steady-state maintenance of pHi.  相似文献   

13.
The Na(+)/H(+) exchanger (NHE) and/or the Na(+)/HCO(3)(-) cotransporter (NBC) were blocked during ischemia in isolated rat hearts. Intracellular Na(+) concentration ([Na(+)](i)), intracellular pH (pH(i)), and energy-related phosphates were measured by using simultaneous (23)Na and (31)P NMR spectroscopy. Hearts were subjected to 30 min of global ischemia and 30 min of reperfusion. Cariporide (3 microM) or HCO(3)(-)-free HEPES buffer was used, respectively, to block NHE, NBC, or both. End-ischemic [Na(+)](i) was 320 +/- 18% of baseline in HCO(3)(-)-perfused, untreated hearts, 184 +/- 6% of baseline when NHE was blocked, 253 +/- 19% of baseline when NBC was blocked, and 154 +/- 6% of baseline when both NHE and NBC were blocked. End-ischemic pH(i) was 6.09 +/- 0.06 in HCO(3)(-)-perfused, untreated hearts, 5.85 +/- 0.02 when NHE was blocked, 5.81 +/- 0.05 when NBC was blocked, and 5.70 +/- 0.01 when both NHE and NBC were blocked. NHE blockade was cardioprotective, but NBC blockade and combined blockade were not, the latter likely due to a reduction in coronary flow, because omission of HCO(3)(-) under conditions of NHE blockade severely impaired coronary flow. Combined blockade of NHE and NBC conserved intracellular H(+) load during reperfusion and led to massive Na(+) influx when blockades were lifted. Without blockade, both NHE and NBC mediate acid-equivalent efflux in exchange for Na(+) influx during ischemia, NHE much more than NBC. Blockade of either one does not affect the other.  相似文献   

14.
We have studied the expression and localization of several H(+) and HCO(3)(-) transporters, whose presence in the rat pancreas is still unclear. The Cl(-)/HCO(3)(-) exchanger AE2, the Na(+)/H(+) exchangers NHE1 and NHE4, and the 31-kD and 70-kD vacuolar H(+)-ATPase (V-ATPase) subunits were detected by immunoblotting and immunocytochemical techniques. Immunoblotting of plasma membranes with transporter-specific antibodies revealed protein bands at approximately 160 kD for AE2, at approximately 90 kD and approximately 103 kD for NHE1 and NHE4, respectively, and at 31 kD and 70 kD for V-ATPase. NHE1 and NHE4 were further identified by amplification of isoform-specific cDNA using RT-PCR. Immunohistochemistry revealed a basolateral location of AE2, NHE1, and NHE4 in acinar cells. In ducts, NHE1 and NHE4 were basolaterally located but no AE2 expression was detected. V-ATPase was detected in zymogen granules (ZGs) by immunogold labeling, and basolaterally in duct cells by immunohistochemistry. The data indicate that NHE1 and NHE4 are co-expressed in rat pancreatic acini and ducts. Basolateral acinar AE2 could contribute to Cl(-) uptake and/or pH regulation. V-ATPase may be involved in ZG fusion/exocytosis and ductal HCO(3)(-) secretion. The molecular identity of the ductal Cl(-)/HCO(3)(-) exchanger remains unclear.  相似文献   

15.
16.
17.
The mammalian esophagus has the capacity to secrete a HCO(3)(-) and mucin-rich fluid in the esophageal lumen. These secretions originate from the submucosal glands (SMG) and can contribute to esophageal protection against refluxed gastric acid. The cellular mechanisms by which glandular cells achieve these secretions are largely unknown. To study this phenomenon, we used the pH-stat technique to measure luminal alkali secretion in an isolated, perfused pig esophagus preparation. Immunohistochemistry was used to localize receptors and transporters involved in HCO(3)(-) transport. The SMG-bearing esophagus was found to have significant basal alkali secretion, predominantly HCO(3)(-), which averaged 0.21 +/- 0.04 microeq.h(-1).cm(-2). This basal secretion was doubled when stimulated by carbachol but abolished by HCO(3)(-) or Cl(-) removal. Basal- and carbachol-stimulated secretions were also blocked by serosal application of atropine, pirenzipine, DIDS, methazolamide, and ethoxzolamide. The membrane-impermeable carbonic anhydrase inhibitor benzolamide, applied to the serosal bath, partially inhibited basal HCO(3)(-) secretion and blocked the stimulation by carbachol. Immunohistochemistry using antibodies to M(1) cholinergic receptor or carbonic anhydrase-II enzyme showed intense labeling of duct cells and serous demilunes but no labeling of mucous cells. Labeling with an antibody to Na(+)-(HCO(3)(-))(n) (rat kidney NBC) was positive in ducts and serous cells, whereas labeling for Cl(-)/HCO(3)(-) exchanger (AE2) was positive in duct cells but less pronounced in serous cells. These data indicate that duct cells and serous demilunes of SMG play a role in HCO(3)(-) secretion, a process that involves M(1) cholinergic receptor stimulation. HCO(3)(-) transport in these cells is dependent on cytosolic and serosal membrane-bound carbonic anhydrase. HCO(3)(-) secretion is also dependent on serosal Cl(-) and is mediated by DIDS-sensitive transporters, possibly NBC and AE2.  相似文献   

18.
The ubiquitously expressed Na(+)/H(+) exchanger isoform 1 (NHE1) functions as a major intracellular pH (pH(i)) regulatory mechanism in many cell types, and in some tissues its activity may contribute to ischemic injury. In the present study, cortical astrocyte cultures from wild-type (NHE1(+/+)) and NHE1-deficient (NHE1(-/-)) mice were used to investigate the role of NHE1 in pH(i) recovery and ischemic injury in astrocytes. In the absence of HCO(3)(-), the mean resting pH(i) levels were 6.86 +/- 0.03 in NHE1(+/+) astrocytes and 6.53 +/- 0.04 in NHE1(-/-) astrocytes. Removal of extracellular Na(+) or blocking of NHE1 activity by the potent NHE1 inhibitor HOE-642 significantly reduced the resting level of pH(i) in NHE1(+/+) astrocytes. NHE1(+/+) astrocytes exhibited a rapid pH(i) recovery (0.33 +/- 0.08 pH unit/min) after NH(4)Cl prepulse acid load. The pH(i) recovery in NHE1(+/+) astrocytes was reversibly inhibited by HOE-642 or removal of extracellular Na(+). In NHE1(-/-) astrocytes, the pH(i) recovery after acidification was impaired and not affected by either Na(+)-free conditions or HOE-642. Furthermore, 2 h of oxygen and glucose deprivation (OGD) led to an approximately 80% increase in pH(i) recovery rate in NHE1(+/+) astrocytes. OGD induced a 5-fold rise in intracellular [Na(+)] and 26% swelling in NHE1(+/+) astrocytes. HOE-642 or genetic ablation of NHE1 significantly reduced the Na(+) rise and swelling after OGD. These results suggest that NHE1 is the major pH(i) regulatory mechanism in cortical astrocytes and that ablation of NHE1 in astrocytes attenuates ischemia-induced disruption of ionic regulation and swelling.  相似文献   

19.
The effect of intracellular acidification and subsequent pH recovery in sensory neurons has not been well characterized. We have studied the mechanisms underlying Ca(2+)-induced acidification and subsequent recovery of intracellular pH (pH(i)) in rat trigeminal ganglion neurons and report their effects on neuronal excitability. Glutamate (500 μM) and capsaicin (1 μM) increased intracellular Ca(2+) concentration ([Ca(2+)](i)) with a following decrease in pH(i). The recovery of [Ca(2+)](i) to the prestimulus level was inhibited by LaCl(3) (1 mM) and o-vanadate (10 mM), a plasma membrane Ca(2+)/ATPase (PMCA) inhibitor. Removal of extracellular Ca(2+) also completely inhibited the acidification induced by capsaicin. TRPV1 was expressed only in small and medium sized trigeminal ganglion neurons. mRNAs for Na(+)/H(+) exchanger type 1 (NHE1), pancreatic Na(+)-HCO(3)(-) cotransporter type 1 (pNBC1), NBC3, NBC4, and PMCA types 1-3 were detected by RT-PCR. pH(i) recovery was significantly inhibited by pretreatment with NHE1 or pNBC1 siRNA. We found that the frequency of action potentials (APs) was dependent on pH(i). Application of the NHE1 inhibitor 5'-(N-ethyl-N-isopropyl) amiloride (5 μM) or the pNBC1 inhibitor 4',4'-di-isothiocyanostilbene-2',2'-sulfonic acid (500 μM) delayed pH(i) recovery and decreased AP frequency. Simultaneous application of 5'-(N-ethyl-N-isopropyl) amiloride and 4',4'-di-isothiocyanostilbene-2',2'-sulfonic acid almost completely inhibited APs. In summary, our results demonstrate that the rise in [Ca(2+)](i) in sensory neurons by glutamate and capsaicin causes intracellular acidification by activation of PMCA type 3, that the pH(i) recovery from acidification is mediated by membrane transporters NHE1 and pNBC1 specifically, and that the activity of these transporters has direct consequences for neuronal excitability.  相似文献   

20.
We investigated the question of whether inhibition of the Na(+)/H(+) exchanger (NHE) during ischemia is protective due to reduction of cytosolic Ca(2+) accumulation or enhanced acidosis in cardiomyocytes. Additionally, the role of the Na(+)-HCO(3)(-) symporter (NBS) was investigated. Adult rat cardiomyocytes were exposed to simulated ischemia and reoxygenation. Cytosolic pH [2', 7'-bis(2-carboxyethyl)-5(6)-carboxyfluorescein (BCECF)], Ca(2+) (fura 2), Na(+) [sodium-binding benzolfuran isophthatlate (SBFI)], and cell length were measured. NHE was inhibited with 3 micromol/l HOE 642 or 1 micromol/l 5-(N-ethyl-N-isopropyl)-amiloride (EIPA), and NBS was inhibited with HEPES buffer. During anoxia in bicarbonate buffer, cells developed acidosis and intracellular Na and Ca (Na(i) and Ca(i), respectively) overload. During reoxygenation cells underwent hypercontracture (44.0 +/- 4.1% of the preanoxic length). During anoxia in bicarbonate buffer, inhibition of NHE had no effect on changes in intracellular pH (pH(i)), Na(i), and Ca(i), but it significantly reduced the reoxygenation-induced hypercontracture (HOE: 61.0 +/- 1.4%, EIPA: 68.2 +/- 1.8%). The sole inhibition of NBS during anoxia was not protective. We conclude that inhibition of NHE during anoxia protects cardiomyocytes against reoxygenation injury independently of cytosolic acidification and Ca(i) overload.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号