首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The T cell response to infection consists of clonal expansion of effector cells, followed by contraction to memory levels. It was previously thought that the duration of infection determines the magnitude and kinetics of the T cell response. However, recent analysis revealed that transition between the expansion and contraction phases of the Ag-specific CD8+ T cell response is not affected by experimental manipulation in the duration of infection or Ag display. We studied whether the duration of infection and Ag display influenced the kinetics of the Ag-specific CD4+ T cell response to Listeria monocytogenes (LM) infection. We found that truncating infection and Ag display with antibiotic treatment as early as 24 h postinfection had minimal impact on the expansion or contraction of CD4+ T cells; however, the magnitudes of the Ag-specific CD4+ and CD8+ T cell responses were differentially affected by the timing of antibiotic treatment. Treatment of LM-infected mice with antibiotics at 24 h postinfection did not prevent generation of detectable CD4+ and CD8+ memory T cells at 28 days after infection, vigorous secondary expansion of these memory T cells, or protection against a subsequent LM challenge. These results demonstrate that events within the first few days of infection stimulate CD4+ and CD8+ T cell responses that are capable of carrying out the full program of expansion and contraction to functional memory, independently of prolonged infection or Ag display.  相似文献   

2.
Recent studies have demonstrated that viral and bacterial infections can induce dramatic in vivo expansion of Ag-specific T lymphocytes. Although presentation of Ag is critical for activation of naive T cells, it is less clear how dependent subsequent in vivo T cell proliferation and memory generation are upon Ag. We investigated T cell expansion and memory generation in mice infected alternately with strains of Listeria monocytogenes that contained or lacked an immunodominant, MHC class I-restricted T cell epitope. We found substantial differences in the responses of effector and memory T cells to inflammatory stimuli. Although effector T cells undergo in vivo expansion in response to bacterial infection in the absence of Ag, memory T cells show no evidence for such bystander activation. However, Ag-independent expansion of effector T cells does not result in increased memory T cell frequencies, indicating that Ag presentation is critical for effective memory T cell generation. Early reinfection of mice with L. monocytogenes before the maximal primary T cell response induces typical memory expansion, suggesting that the capacity for a memory T cell response exists within the primary effector population. Our findings demonstrate that T cell effector proliferation and memory generation are temporally overlapping processes with differing requirements for Ag.  相似文献   

3.
Infection with attenuated Listeria monocytogenes (Lm) is a robust in vivo model for examining how Ag-specific T cells are primed, and subsequent challenge with virulent Lm allows for the protective effects of T cell priming to be quantified. Herein, we investigated the role of programmed death ligand 1 (PDL-1) in T cell priming and immunity conferred after primary infection with Lm DeltaactA followed by virulent Lm challenge. In striking contrast to the inhibitory role of PDL-1 on T cell immunity in other infection models, marked reductions in the magnitude of T cell expansion and the kinetics of T cell proliferation were observed with PDL-1 blockade after primary Lm DeltaactA infection. More importantly, PDL-1 blockade beginning before primary infection and maintained throughout the experiment resulted in delayed bacterial clearance and T cell expansion after secondary challenge with virulent Lm. These results indicate that for immunity to intracellular bacterial infection, PDL-1 plays an important stimulatory role for priming and expansion of protective T cells.  相似文献   

4.
T cell activation is controlled by incompletely defined opposing stimulation and suppression signals that together sustain the balance between optimal host defense against infection and peripheral tolerance. In this article, we explore the impacts of Foxp3(+) regulatory T cell (Treg) suppression in priming Ag-specific T cell activation under conditions of noninfection and infection. We find the transient ablation of Foxp3(+) Tregs unleashes the robust expansion and activation of peptide-stimulated CD8(+) T cells that provide protection against Listeria monocytogenes infection in an Ag-specific fashion. By contrast, Treg ablation had nonsignificant impacts on the CD8(+) T cell response primed by infection with recombinant L. monocytogenes. Similarly, nonrecombinant L. monocytogenes administered with peptide stimulated the expansion and activation of CD8(+) T cells that paralleled the response primed by Treg ablation. Interestingly, these adjuvant properties of L. monocytogenes did not require CD8(+) T cell stimulation by IL-12 produced in response to infection, but instead were associated with sharp reductions in Foxp3(+) Treg suppressive potency. Therefore, Foxp3(+) Tregs impose critical barriers that, when overcome naturally during infection or artificially with ablation, allow the priming of protective Ag-specific CD8(+) T cells.  相似文献   

5.
Regulation of CD8 T cell expansion and contraction is essential for successful immune defense against intracellular pathogens. IL-10 is a regulatory cytokine that can restrict T cell responses by inhibiting APC functions. IL-10, however, can also have direct effects on T cells. Although blockade or genetic deletion of IL-10 enhances T cell-mediated resistance to infections, the extent to which IL-10 limits in vivo APC function or T cell activation/proliferation remains unknown. Herein, we demonstrate that primary and memory CD8 T cell responses following Listeria monocytogenes infection are enhanced by the absence of IL-10. Surface expression of the IL-10R is transiently up-regulated on CD8 T cells following activation, suggesting that activated T cells can respond to IL-10 directly. Consistent with this notion, CD8 T cells lacking IL-10R2 underwent greater expansion than wild-type T cells upon L. monocytogenes infection. The absence of IL-10R2 on APCs, in contrast, did not enhance T cell responses following infection. Our studies demonstrate that IL-10 produced during bacterial infection directly limits expansion of pathogen-specific CD8 T cells and reveal an extrinsic regulatory mechanism that modulates the magnitude of memory T cell responses.  相似文献   

6.
Naive Ag-specific CD8(+) T cells expand, contract, and become memory cells after infection and/or vaccination. Memory CD8(+) T cells provide faster, more effective secondary responses against repeated exposure to the same pathogen. Using an adoptive transfer system with low numbers of trackable nontransgenic memory CD8(+) T cells, we showed that secondary responses can be comprised of both primary (naive) and secondary (memory) CD8(+) T cells after bacterial (Listeria monocytogenes) and/or viral (lymphocytic choriomeningitis virus) infections. The level of memory CD8(+) T cells present at the time of infection inversely correlated with the magnitude of primary CD8(+) T cell responses against the same epitope but directly correlated with the level of protection against infection. However, similar numbers of Ag-specific CD8(+) T cells were found 8 days postinfection no matter how many memory cells were present at the time of infection. Rapid contraction of primary CD8(+) T cell responses was not influenced by the presence of memory CD8(+) T cells. However, contraction of secondary CD8(+) T cell responses was markedly prolonged compared with primary responses in the same host mice. This situation occurred in response to lymphocytic choriomeningitis virus or L. monocytogenes infection and for CD8(+) T cell responses against multiple epitopes. The delayed contraction of secondary CD8(+) T cells was also observed after immunization with peptide-coated dendritic cells. Together, the results show that the level of memory CD8(+) T cells influences protective immunity and activation of naive precursors specific for the same epitope but has little impact on the magnitude or program of the CD8(+) T cell response.  相似文献   

7.
The differentiation of naive CD4 T cells into specific effector subsets is controlled in large part by the milieu of cytokines present during their initial encounter with Ag. Cytokines that drive differentiation of the newly described Th17 lineage have been characterized in vitro, but the cytokines that prime commitment to this lineage in response to infection in vivo are less clear. Listeria monocytogenes (Lm) induces a strong Th1 response in wild-type mice. By contrast, we demonstrate that in the absence of IL-12p40 (or IFN-gamma) and type I IFN receptor signaling, the Th1 Ag-specific CD4 T cell response is virtually abolished and replaced by a relatively low magnitude Th17-dominated response. This Th17 response was dependent on TGF-beta and IL-6. Despite this change in CD4 T cell response, neither the kinetics of the CD4 and CD8 T cell responses, the quality of the CD8 T cell response, nor the ability of CD8 T cells to mediate protection were affected. Thus, generation of protective CD8 T cell immunity was resilient to perturbations that replace a strong Th1-dominated to a reduced magnitude Th17-dominated Ag-specific CD4 T cell response.  相似文献   

8.
IFN-gamma plays a critical role in the CD8(+) T cell response to infection, but when and if this cytokine directly signals CD8(+) T cells during an immune response is unknown. We show that naive Ag-specific CD8(+) T cells receive IFN-gamma signals within 12 h after in vivo infection with Listeria monocytogenes and then become unresponsive to IFN-gamma throughout the ensuing Ag-driven expansion phase. Ag-specific CD8(+) T cells regain partial IFN-gamma responsiveness throughout the contraction phase, whereas the memory pool exhibits uniform, but reduced, responsiveness that is also modulated during the secondary response. The responsiveness of Ag-specific CD8(+) T cells to IFN-gamma correlated with modulation in the expression of IFN-gammaR2, but not with IFN-gammaR1 or suppressor of cytokine signaling-1. This dynamic regulation suggests that early IFN-gamma signals participate in regulation of the primary CD8(+) T cell response program, but that evading or minimizing IFN-gamma signals during expansion and the memory phase may contribute to appropriate regulation of the CD8(+) T cell response.  相似文献   

9.
Secreted or nonsecreted Ag expressed by recombinant Listeria monocytogenes can prime CD8 T cells. However, Ag-specific memory CD8 T cells confer protection against bacteria secreting Ag, but not against bacteria expressing the nonsecreted form of the same Ag. This dichotomy may be explained by a long-standing hypothesis that nonsecreted Ags are less effective than secreted Ags at inducing a protective immune response at the onset of infection. We tested this hypothesis by examining whether these two different forms of Ag induce different primary and secondary CD8 T cell responses. The primary responses to secreted and nonsecreted Ags expanded and contracted almost synchronously, although the responses to nonsecreted Ags were of lower magnitude. These results demonstrate that the kinetics of the CD8 T cell response are similar regardless of whether Ag is accessible to the endogenous MHC class I pathway or can only be presented through cross-presentation. No differences were detected in the CD8 T cell recall response to L. monocytogenes expressing secreted or nonsecreted Ags. Nonsecreted Ags are as effective as secreted Ags at the induction of a rapid recall response by memory CD8 T cells. Thus, the inability of nonsecreted bacterial proteins to serve as protective Ags cannot be attributed to a defective CD8 T cell response.  相似文献   

10.
In this study, we investigated whether B cells play a role in the induction and maintenance of CD8 T cell memory after immunization with an intracellular bacterium, Listeria monocytogenes. Our results show that B cells play a minimal role in the initial activation and Ag-driven expansion of CD8 T lymphocytes. However, absence of B cells results in increased death of activated CD8 T cells during the contraction phase, leading to a lower level of Ag-specific CD8 T cell memory. Once memory is established, B cells are no longer required for the long-term maintenance and rapid recall response of memory CD8 T cells. Increased contraction of Ag-specific CD8 T cells in B cell-deficient mice is not due to impaired CD4 T cell responses since priming of epitope-specific CD4 T cell responses is normal in B cell-deficient mice following L. monocytogenes infection. Furthermore, no exaggerated contraction of Ag-specific CD8 T cells is evident in CD4 knockout mice. Thus, B cells play a specific role in modulating the contraction of CD8 T cell responses following immunization. Elucidation of factors that regulate the death phase may allow us to manipulate this process to increase the level of immunological memory and thus, vaccine efficacy.  相似文献   

11.
The intracytosolic niche for replication of Listeria monocytogenes (Lm) facilitates delivery of bacteria-derived Ags into the MHC class I pathway for subsequent stimulation of CD8 effector T cells. Using Lm strains that are equivalent for in vivo virulence yet express marked differences in the level of secretion of a protective target Ag, we have evaluated how these specific differences in secretion levels influences the magnitude and effector function of Ag-specific CD8 T cell responses following Lm injection. Immunization with low doses of a hyperantigen-secreting Lm strain stimulated enhanced target-Ag specific CD8 T cell responses compared with the magnitude stimulated following immunization with the same dose of wild-type Lm. The enhanced determinant-specific response was also evident by in vivo CTL activity, increased numbers of memory cells 4 wk following immunization, and enhanced antilisterial protection following a challenge infection. Initiation of antibiotic treatment 24 h following infection with wild-type Lm markedly reduced the magnitude of the effector CD8 T cell response. In contrast, antibiotic treatment initiated 24 h following immunization with the hyperantigen secreting strain of Lm did not impact the frequency of the target-Ag specific CD8 T cells. Thus, immunization with a low dose of a hyperantigen secreting Lm strain, followed by antibiotic treatment to limit the extent of the infection, may represent a safe strategy for the stimulation of enhanced effector CD8 T cell responses to specific Ag by a rLm vaccine.  相似文献   

12.
Although Listeria monocytogenes can induce systemic infection causing spontaneous abortion, septicemia, and meningitis, studies have not been performed to investigate human anti-L. monocytogenes immune responses, including those of Ag-specific Vγ2Vδ2 T cells, a dominant human γδ T cell subset. L. monocytogenes is the only pathogen known to possess both the mevalonate and non-mevalonate isoprenoid biosynthesis pathways that produce metabolic phosphates or phosphoantigens activating human Vγ2Vδ2 T cells, making it interesting to explore in vivo anti-L. monocytogenes immune responses of Vγ2Vδ2 T cells. In this study, we demonstrated that subclinical systemic L. monocytogenes infection of rhesus macaques via parenteral inoculation or vaccination with an attenuated Listeria strain induced multieffector-functional immune responses of phosphoantigen-specific Vγ2Vδ2 T cells. Subclinical systemic infection and reinfection with attenuated L. monocytogenes uncovered the ability of Vγ2Vδ2 T cells to mount expansion and adaptive or recall-like expansion. Expanded Vγ2Vδ2 T cells could traffic to and accumulate in the pulmonary compartment and intestinal mucosa. Expanded Vγ2Vδ2 T cells could evolve into effector cells producing IFN-γ, TNF-α, IL-4, IL-17, or perforin after L. monocytogenes infection, and some effector Vγ2Vδ2 T cells could coproduce IL-17 and IFN-γ, IL-4 and IFN-γ, or TNF-α and perforin. Surprisingly, in vivo-expanded Vγ2Vδ2 T effector cells in subclinical L. monocytogenes infection could directly lyse L. monocytogenes-infected target cells and inhibit intracellular L. monocytogenes bacteria. Thus, we present the first demonstration, to our knowledge, of multieffector-functional Vγ2Vδ2 T cell responses against L. monocytogenes.  相似文献   

13.
Expression of IL-7Ralpha (CD127) has been suggested as a major determinant in the survival of memory T cell precursors. We investigated whether constitutive expression of IL-7Ralpha on T cells increased expansion and/or decreased contraction of endogenous Ag-specific CD4 and CD8 T cells following infection with Listeria monocytogenes. The results indicate that constitutive expression of IL-7Ralpha alone was not enough to impart an expansion or survival advantage to CD8 T cells responding to infection, and did not increase memory CD8 T cell numbers over those observed in wild-type controls. Constitutive expression of IL-7Ralpha did allow for slightly prolonged expansion of Ag-specific CD4 T cells; however, it did not alter the contraction phase or protect against the waning of memory T cell numbers at later times after infection. Memory CD4 and CD8 T cells generated in IL-7Ralpha transgenic mice expanded similarly to wild-type T cells after secondary infection, and immunized IL-7Ralpha transgenic mice were fully protected against lethal bacterial challenge demonstrating that constitutive expression of IL-7Ralpha does not impair, or markedly improve memory/secondary effector T cell function. These results indicate that expression of IL-7Ralpha alone does not support increased survival of effector Ag-specific CD4 or CD8 T cells into the memory phase following bacterial infection.  相似文献   

14.
Cutting edge: antigen-independent CD8 T cell proliferation   总被引:11,自引:0,他引:11  
Recent analyses of CD8 T cell responses to Listeria monocytogenes infection demonstrate that the duration of in vivo T cell proliferation is not determined by the amount or duration of Ag presentation. However, the extent to which T lymphocytes are capable of proliferating in the absence of Ag is unknown. Herein we demonstrate that CD8 T lymphocytes undergo up to eight rounds of proliferation in the absence of Ag following transient, 2.5-h in vitro antigenic stimulation. Ag-independent expansion of CD8 T cells is driven by IL-2 and is further augmented by IL-7 or IL-15. These experiments clearly demonstrate that CD8 T cells undergo prolonged proliferation following transient Ag exposure and support the notion that in vivo CD8 T cell expansion following infection can be uncoupled from Ag presentation.  相似文献   

15.
16.
The intestinal mucosal CD8 T cell response to infection with Listeria monocytogenes was measured using MHC class I tetramers and was compared with the response in peripheral blood, secondary lymphoid tissue, and liver. To assess the vaccination potential of Listeria and to analyze responses in C57BL/6 mouse strains, a recombinant Listeria expressing OVA (rLM-ova) was generated. The response peaked at 9 days postinfection with a much larger fraction of the intestinal mucosa and liver CD8 T cell pool OVA specific, as compared with the spleen. However, these differences were not linked to bacterial titers in each site. The higher responses in lamina propria and liver resulted in a larger CD8 memory population in these tissues. Furthermore, the level of memory induced was dependent on infectious dose and inversely correlated with the magnitude of the recall response after oral challenge. Recall responses in the tissues were most robust in the lamina propria and liver, and reactivated Ag-specific T cells produced IFN-gamma. Infection of CD40- or MHC class II-deficient mice induced poor CD8 T cell responses in the intestinal mucosa, but only partially reduced responses in the spleen and liver. Overall, the results point to novel pathways of tissue-specific regulation of primary and memory antimicrobial CD8 T cell responses.  相似文献   

17.
Adaptive immunity is characterized by the expansion of an Ag-specific T cell population following Ag exposure. The precise mechanisms, however, that control the expansion and subsequent contraction in the number of Ag-specific T cells are not fully understood. We show that T cell/transmembrane, Ig, and mucin (TIM)-4, a receptor for phosphatidylserine, a marker of apoptotic cells, regulates adaptive immunity in part by mediating the removal of Ag-specific T cells during the contraction phase of the response. During Ag immunization or during infection with influenza A virus, blockade of TIM-4 on APCs increased the expansion of Ag-specific T cells, resulting in an increase in secondary immune responses. Conversely, overexpression of TIM-4 on APCs in transgenic mice reduced the number of Ag-specific T cells that remained after immunization, resulting in reduced secondary T cell responses. There was no change in the total number of cell divisions that T cells completed, no change in the per cell proliferative capacity of the remaining Ag-specific T cells, and no increase in the development of Ag-specific regulatory T cells in TIM-4 transgenic mice. Thus, TIM-4-expressing cells regulate adaptive immunity by mediating the removal of phosphatidylserine-expressing apoptotic, Ag-specific T cells, thereby controlling the number of Ag-specific T cells that remain after the clearance of Ag or infection.  相似文献   

18.
Salmonella are intracellular bacterial pathogens that reside and replicate inside macrophages, and attenuated strains of Salmonella typhimurium can be used to deliver heterologous Ags for MHC class I and/or MHC class II-restricted presentation. Recently, it was shown that invasion of macrophages by S. typhimurium may result in the death of host macrophages via a mechanism harboring features of apoptotic and necrotic cell death. However, it is unknown whether this bacterial-induced host cell death affects immunity. In addition, it has been hypothesized that macrophage death following infection with S. typhimurium and subsequent uptake of apoptotic cells by APC are fundamental to the induction of CTL responses. In this study we investigated the in vivo induction of Ag-specific CD8+ T lymphocyte responses and compared CD8+ T lymphocyte responses elicited with S. typhimurium strains carrying a mutation in their invA gene, and therefore an inability to induce Salmonella pathogenicity island 1 (SPI-1)-mediated macrophage death, with responses elicited by an attenuated deltaaroAD strain. Ag-specific CD8+ T lymphocyte responses were analyzed using IFN-gamma ELISPOT, tetramer binding, and in vivo and in vitro CTL assays. Our results showed that deltaaroAD and deltaaroADdeltainvA induced comparable levels of Ag-specific CD8+ T lymphocyte responses as well as protective, Ag-specific B and CD4+ T lymphocyte immunity. Furthermore, experiments in macrophage-depleted mice showed that CD8+ T lymphocyte responses were effectively induced in the absence of macrophages. Together, our results imply that in this infection model, SPI-1-mediated cell death does not affect the immunological defense response and is not important for the induction of CD8+ T lymphocyte responses.  相似文献   

19.
T follicular helper (T(FH)) cells are critical initiators in the development of T cell-dependent humoral immunity and the generation of protective immunity. We demonstrate that T(FH) cell accumulation and Ab production are negatively regulated by B7-H1 (programmed death ligand 1) in response to both helminth infection and active immunization. Following immunization of B7-H1(-/-) mice with keyhole limpet hemocyanin or helminth Ags, there is a profound increase in induction of T(FH) cells as a result of increased cell cycling and decreased apoptosis relative to wild-type mice. The increase in T(FH) cells in the absence of B7-H1 was associated with significant elevations in Ag-specific Ig response. Cotransfer experiments in vivo demonstrated that B7-H1 expression on B cells was required for negatively regulating T(FH) cell expansion and production of Ag-specific Ig. Treatment of immunized wild-type mice with anti-B7-H1 or anti-programmed death 1 mAbs, but not anti-B7-DC, led to a significant expansion of the T(FH) cell population and an enhanced Ag-specific Ig response. Our results demonstrate that the coinhibitory B7-H1/programmed death 1 pathway can limit the expansion of T(FH) cells and constrain Ag-specific Ig responses. This finding has direct implications for investigations examining the feasibility of therapeutically manipulating this pathway and reveals new insights into the regulation of the humoral immune response.  相似文献   

20.
Infection with Listeria monocytogenes elicits expansion in numbers of Ag-specific CD8+ T cells, which then undergo programmed contraction. The remaining cells undergo further phenotypic and functional changes with time, eventually attaining the qualities of memory CD8+ T cells. In this study, we show that L. monocytogenes-specific CD8+ T cell populations primed in antibiotic-pretreated mice undergo brief effector phase, but rapidly develop phenotypic (CD127(high), CD43(low)) and functional (granzyme B(low), IL-2-producing) characteristics of memory CD8+ T cells. These early memory CD8+ T cells were capable of substantial secondary expansion in response to booster challenge at day 7 postinfection, resulting in significantly elevated numbers of secondary effector and memory CD8+ T cells and enhanced protective immunity compared with control-infected mice. Although early expansion in numbers is similar after L. monocytogenes infection of antibiotic-pretreated and control mice, the absence of sustained proliferation coupled with decreased killer cell lectin-like receptor G-1 up-regulation on responding CD8+ T cells may explain the rapid effector to memory CD8+ T cell transition. In addition, antibiotic treatment 2 days post-L. monocytogenes challenge accelerated the generation of CD8+ T cells with memory phenotype and function, and this accelerated memory generation was reversed in the presence of CpG-induced inflammation. Together, these data show that the rate at which Ag-specific CD8+ T cell populations acquire memory characteristics after infection is not fixed, but rather can be manipulated by limiting inflammation that will in turn modulate the timing and extent to which CD8+ T cells proliferate and up-regulate killer cell lectin-like receptor G-1 expression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号