首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Optimal conditions for the co-reconstitution of bacteriorhodopsin and yeast mitochondria ATP synthase were determined. Reconstitution was achieved with a quick two-step procedure. Preparations obtained by this method displayed in optimal cases 2–3-times higher activities (up to 500 nmol ATP/min per mg protein) compared with maximal values reported in the literature, when light-driven ATP synthesis was measured under similar conditions. The final activities depended on the purification method used for the ATP synthase, and it is shown that the oligomycin-sensitive ATP hydrolysis activity was not a good measure for the ability of the ATP synthase preparations to perform ATP synthesis after co-reconstitution. Light-driven ATP synthesis activities depended also on the type of phospholipid used, soybean phospholipid giving the best results. A close relation to the bacteriorhodopsin proton pump activity was found. Using different phospholipids, different H+ATP ratios were found, calculated from ATP synthesis activities and initial and steady-state light-driven proton pump activities. From this, together with the findings that the ATP synthase displayed the same ATP hydrolysis and ATP-32Pi exchange activities with these different phospholipids used, it is concluded that the protein distribution for the two proteins among the liposomes is different relative to each other for the different phospholipids. The light-driven ATP synthesis activity did not correlate with the variation in leakiness of the membrane for protons when different phospholipids were used. An explanation is given by the finding that at high light intensities, the ATP synthesis became independent of the presence of protonophore.  相似文献   

2.
The ATP hydrolysis activity of purified ATP synthase reconstituted in liposomes was inhibited by triphenyltin in a manner different from that of other thiol-specific reagents. In liposomes containing ATP synthase and bacteriorhodopsin, ATP hydrolysis and ATP-Pi exchange were inhibited by triphenyltin to a greater extent than the ATP synthesis, in contrast to what was found with an F1-specific inhibitor, 8-azido-ATP. The possibility is discussed that ATP hydrolysis and ATP synthesis are differently coupled to proton conduction through F0.  相似文献   

3.
Thermal unfolding experiments on bacteriorhodopsin in mixed phospholipid/detergent micelles were performed. Bacteriorhodopsin was extracted from the purple membrane in a denatured state and then renatured in the micellar system. The purpose of this study was to compare the changes, if any, in the structure and stability of a membrane protein that has folded in a nonnative environment with results obtained on the native system, i.e., the purple membrane. The purple membrane crystalline lattice is an added factor that may influence the structural stability of bacteriorhodopsin. Micelles containing bacteriorhodopsin are uniformly sized disks 105 +/- 13 A in diameter (by electron microscopy) and have an estimated molecular mass of 210 kDa (by gel filtration HPLC). The near-UV CD spectra (which is indicative of tertiary structure) for micellar bacteriorhodopsin and the purple membrane are very similar. In the visible CD region of retinal absorption, the double band seen in the spectrum of the purple membrane is replaced with a broad positive band for micellar bacteriorhodopsin, indicating that in micelles, bacteriorhodopsin is monomeric. The plot of denaturational temperature vs. pH for micellar bacteriorhodopsin is displaced downward on the temperature axis, illustrating the lower thermal stability of micellar bacteriorhodopsin when compared to the purple membrane at the same pH. Even though micellar bacteriorhodopsin is less stable, similar changes in response to pH and temperature are seen in the visible absorption spectra of micellar bacteriorhodopsin and the purple membrane. This demonstrates that changes in the protonation state or temperature have a similar affect on the local environment of the chromophore and the protein conformation.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
The archaeon Halobacterium salinarum can grow phototrophically with only light as its energy source. It uses the retinal containing and light-driven proton pump bacteriorhodopsin to enhance the membrane potential which drives the ATP synthase. Therefore, a model of the membrane potential generation of bacteriorhodopsin is of central importance to the development of a mathematical model of the bioenergetics of H. salinarum. To measure the current produced by bacteriorhodopsin at different light intensities and clamped voltages, we expressed the gene in Xenopus laevis oocytes. We present current-voltage measurements and a mathematical model of the current-voltage relationship of bacteriorhodopsin and its generation of the membrane potential. The model consists of three intermediate states, the BR, L, and M states, and comparisons between model predictions and experimental data show that the L to M reaction must be inhibited by the membrane potential. The model is not able to fit the current-voltage measurements when only the M to BR phase is membrane potential dependent, while it is able to do so when either only the L to M reaction or both reactions (L to M and M to BR) are membrane potential dependent. We also show that a decay term is necessary for modeling the rate of change of the membrane potential.  相似文献   

5.
The mechanism whereby bacteriorhodopsin (BR), the light driven proton pump from the purple membrane of Halobacterium halobium, arranges in a 2D-hexagonal array, has been studied in bilayers containing the protein, 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) and various fractions of H. halobium membrane lipids, by freeze fracture electron microscopy and examination of optical diffractograms of the micrographs obtained. Electron micrographs of BR/DMPC complexes containing the entire polar lipid component of H. halobium cell membranes or the total lipid component of the purple membrane, with a protein-to-total lipid molar ratio of less than 1:50 and to which 4 M NaCl had been added, revealed that trimers of BR formed into an hexagonal 2D-array similar to that found in the native purple membrane, suggesting that one or more types of the purple membrane polar lipids are required for array formation. To support this suggestion, bacteriorhodopsin was purified free of endogenous purple membrane lipids and reconstituted into lipid bilayer complexes by detergent dialysis. The lipids used to form these complexes are 1,2-dimyristoyl-sn-glycerol-phosphocholine (DMPC) as the major lipid and, separately, each of the individual lipid types from the H. halobium cell membranes, namely 2,3-di-O-phytanyl-sn-glycero-1-phosphoryl-3'-sn-glycerol 1'-phosphate (DPhPGP), 2,3-di-O-phytanyl-sn-glycero-1-phosphoryl-3'-sn-glycerol 1'-sulphate (DPhPGS), 2,3-di-O-phytanyl-sn-glycero-1-phosphoryl-3'-sn-glycerol (DPhPG) and 2,3-di-O-phytanyl-1-O-[beta-D-Galp-3-sulphate-(1----6)-alpha-D- Manp-(1----2)-alpha-D-Glcp]-sn-glycerol (DPhGLS). When examined by freeze-fracture electron microscopy, only the complexes containing 2,3-di-O-phytanyl-sn-glycero-1-phosphoryl-3'-sn-glycerol- 1'-phosphate or 2,3-di-O-phytanyl-sn-glycero-1-phosphoryl-3'-sn-glycerol-1'-sulphate, at high protein density (less than 1:50, bacteriorhodopsin/phospholipid, molar ratio) and to which 4 M NaCl had been added, showed well defined 2D hexagonal arrays of bacteriorhodopsin trimers similar to those observed in the purple membrane of H. halobium.  相似文献   

6.
The light-induced changes in pH and ATP level were compared for cell suspensions between strains of Halobacterium halobium differing in pigmentation after growth under the same conditions. Upon illumination, red cells which contained no detectable amount of bacteriorhodopsin showed only a pH increase, which, in the case of purple cells containing bacteriorhodopsin, was followed by a spontaneous pH decrease during illumination. Pre-incubation of cells at 75° for 5 min depressed the pH increase in both cells. Pre-illumination of cells with hydroxylamine depressed the pH decrease in purple cells. Whenever the pH increase was observed, the cellular ATP level increased. The presence of a bacteriorhodopsin different from that in the purple membrane is postulated.  相似文献   

7.
Bacteriorhodopsin, the protein of the purple membrane of Halobacterium halobium, was freed to the extent of 90–95% from the natural membrane lipids without loss of function. The residual lipid corresponded to less than 1 mol/mol of bacteriorhodopsin. Delipidation was achieved by treatment of the purple membrane with a mixture of the detergent dimethyldodecylamine oxide and sodium chloride. The detergent was removed by dialysis or by sucrose density gradient centrifugation. Analysis of the lipids removed and those still bound to bacteriorhodopsin was facilitated by the use of purple membrane preparations labelled with 35S, 32P, or 14C. The composition of the residual lipids associated with bacteriorhodopsin was similar to that of the total lipid in the purple membrane.  相似文献   

8.
The three-dimensional crystallization of bacteriorhodopsin was systematically investigated and the needle-shaped crystal form analysed. In these crystals the M-intermediate forms 10 times faster and decays 15 times more slowly than in purple membranes. Polarized absorption spectra of the crystals were measured in the dark and light adapted states. A slight decrease in the angle between the transition moment and the membrane plane was detected during dark adaptation. The crystallization of a mutated bacteriorhodopsin, in which the aspartic acid at residue 96 was replaced by asparagine, provided crystals with a long lived M-intermediate. This allowed polarized absorption measurements of the M-chromophore. The change in the polarization ratio upon formation of the M-intermediate indicates an increase in the angle between the main transition dipole and the membrane plane by 2.2 degrees +/- 0.5, corresponding to a 0.5 A displacement of one end of the chromophore out of the membrane plane of the bacteriorhodopsin molecule.  相似文献   

9.
Yokoyama Y  Sonoyama M  Mitaku S 《Proteins》2004,54(3):442-454
Heterogeneity in the state of bacteriorhodopsin in purple membrane was studied through temperature jump experiments carried out in darkness and under illumination with visible light. The thermal denaturation, the irreversible component of spectral change at high temperature, had two decay components, suggesting that bacteriorhodopsin in purple membrane has heterogeneous stability. The temperature dependence of kinetic parameters under illumination revealed that the fast-decay component gradually increased at above 60 degrees C, indicating that the proportion of unstable bacteriorhodopsin increased. Significant change in the visible circular dichroism (CD) spectra was observed in darkness in the same temperature range as the increase of the fast-decay component under illumination. Denaturation experiments for C-terminal-cleaved bacteriorhodopsin showed that the C-terminal segment had some effect on the structural stability of bacteriorhodopsin under illumination. Dynamic and static models of the inhomogeneous stability of bacteriorhodopsin in purple membrane are discussed on the basis of the results of the denaturation kinetics and the visible CD spectra.  相似文献   

10.
Reconstituted crystalline purple membrane has been prepared starting from denatured bacteriorhodopsin (BR) fragments, native lipids and retinal. The two chymotryptic fragments are thought to contain respectively five and two transmembrane alpha-helices in native BR. The new reconstitution procedure, a modification of that of Huang et al. (1986, J. Biol. Chem., 256, 3802), relies on dodecylsulfate precipitation by potassium ions and yields samples with a high protein-to-lipid ratio (approximately 1:1 w/w). X-ray and neutron diffraction measurements show that in the reconstituted samples BR molecules are arranged in a P3 two-dimensional lattice with the same unit cell dimensions as the native purple membrane lattice. Analysis of reflection intensities indicates that the reconstituted molecules have regained the structure of native BR to 7 A resolution.  相似文献   

11.
Here we report a fast, simple purification for thermophilic F1F0 ATP synthase (TF1F0) that utilizes a cocktail of stabilizing reagents and the detergent n-dodecyl beta-D-maltoside to yield enzyme with an ATPase activity of 41 micromol/min/mg, 2.5-fold higher than that previously reported. ATPase activity was 80% inhibited by the F0-reactive reagent dicyclohexylcarbodiimide, indicating that F1-F0 interactions were largely intact. To measure ATP-driven proton pumping activity, purified TF1F0 was incorporated into liposomes, and the ATP-induced change in internal pH was measured using the fluorescent probe pyranine. In the presence of valinomycin, a maximum ATP-driven deltapH of 0.8 units was obtained. To measure ATP synthesis activity, TF1F0 was incorporated into liposomes with the light-dependent proton pump bacteriorhodopsin. Proteoliposomes were illuminated to generate an electrochemical gradient, after which ADP and inorganic phosphate were added to initiate ATP synthesis. A steady state ATP synthesis activity of 490 nmol/min/mg was achieved after an initial approximately 30-min lag phase.  相似文献   

12.
The reverse phase evaporation procedure was used to prepare large unilamellar liposomes containing bacteriorhodopsin. Electron microscopy showed that proteoliposomes were unilamellar and fairly uniform in size provided the preparation was extruded through calibrated nucleopore membranes : the vesicles have diameters around 200 nm. The spectral properties of the bacteriorhodopsin in the large liposomes resembled those of bacteriorhodopsin in purple membrane. Furthermore, the chromoprotein in the reconstituted vesicles had an inside-out orientation and on illumination, translocated protons efficiently from the external medium into the vesicles in the presence of the ionophore valinomycin. In the absence of the latter, a light-independent transmembrane potential of about 60 mV was measured from thiocyanate distribution. In the presence of valinomycin, this transmembrane electrical potential was abolished and then a light-dependent transmembrane pH gradient of about 2 pH units could be generated.  相似文献   

13.
Photoreactions of bacteriorhodopsin at acid pH.   总被引:6,自引:3,他引:3       下载免费PDF全文
It has been known that bacteriorhodopsin, the retinal protein in purple membrane which functions as a light-driven proton pump, undergoes reversible spectroscopic changes at acid pH. The absorption spectra of various bacteriorhodopsin species were estimated from measured spectra of the mixtures that form at low pH, in the presence of sulfate and chloride. The dependency of these on pH and the concentration of Cl- fit a model in which progressive protonation of purple membrane produces "blue membrane", which will bind, with increasing affinity as the pH is lowered, chloride ions to produce "acid purple membrane." Transient spectroscopy with a multichannel analyzer identified the intermediates of the photocycles of these altered pigments, and described their kinetics. Blue membrane produced red-shifted KL-like and L-like products, but no other photointermediates, consistent with earlier suggestions. Unlike others, however, we found that acid purple membrane exhibited a very different photocycle: its first detected intermediate was not like KL in that it was much more red-shifted, and the only other intermediate detectable resembled the O species of the bacteriorhodopsin photocycle. An M-like intermediate, with a deprotonated Schiff base, was not found in either of these photocycles. There are remarkable similarities between the photoreactions of the acid forms of bacteriorhodopsin and the chloride transport system halorhodopsin, where the Schiff base deprotonation seems to be prevented by lack of suitable aspartate residues, rather than by low pH.  相似文献   

14.
A suspension of purple membrane fragments in a solution of soya phosphatidyl-choline in hexane is spread at an air-water interface. Surface pressure and surface potential measurements indicate that the membrane fragments and lipids organize at the interface as an insoluble film. Electron microscopy of shadow-cast replicas of the film reveal that in the bacteriorhodopsin to soya PC weight ratio range of 2:1 to 10:1, these films consist of nonoverlapping membrane fragments which occupy approximately 35% of the surface area and are separated by a lipid monolayer. Furthermore, the membrane fragments are oriented with their intracellular surface towards the aqueous subphase. Nearly all the bacteriorhodopsin molecules at the interface are spectroscopically intact and exhibit visible spectral characteristics identical to those in aqueous suspensions of purple membrane and in intact bacteria. In addition, bacteriorhodopsin in air-dried interface films show spectral changes upon dark-adaptation and upon flash illumination similar to those observed in aqueous suspensions of purple membrane, but with slower kinetics. The kinetics of the spectral changes in interface films can be made nearly the same as in aqueous suspension by immersing the films in water.  相似文献   

15.
Circular dichroism spectroscopy has been used to investigate the binding of valinomycin to bacteriorhodopsin in purple membrane suspensions. Addition of valinomycin to purple membrane suspensions obtained from Halobacterium halobium causes the circular dichroism spectrum to shift from an aggregate spectrum to one resembling a monomer spectrum, indicating a loss of chromophore-chromophore interactions. By observing the spectral change upon titration of valinomycin, an apparent dissociation constant of 30–40 M for valinomycin binding was determined. Kinetics of dark adaptation for valinomycin-treated purple membrane are comparable to those for monomeric bacteriorhodopsin. Centrifugation studies demonstrate that valinomycin-treated purple membrane sediments the same as untreated purple membrane suspensions. These results are consistent with a model in which valinomycin binds specifically to bacteriorhodopsin without disrupting the purple membrane fragments.Abbreviations BR bacteriorhodopsin - CD circular dichroism - Tricine N-[tris-(hydroxymethyl) methyl] glycine  相似文献   

16.
Blue bacteriorhodopsin was prepared by electrodialysis, cation-exchange chromatography and acidification. The electrooptical properties of these preparations compared to those of the native purple bacteriorhodopsin suggest that the blue bacteriorhodopsin has a smaller induced dipole moment than the native purple bacteriorhodopsin and that bound cations in the native bacteriorhodopsin stabilize the protein conformation in the membrane.Purple bacteriorhodopsin was regenerated by addition of potassium, magnesium or ferric ions to blue bacteriorhodopsin. Both spectrscopically and electrooptically the potassium- and ferric-regenerated samples are different from the native purple state. Although the magnesium-regenerated sample is spectroscopically similar to the native purple bacteriorhodopsin, the electrooptical properties are rather similar to those of the cation-depleted blue sample, suggesting that it is very difficult to re-stabilize protein structures once cations are depleted.  相似文献   

17.
Reconstitution of CF0F1 into liposomes using a new reconstitution procedure   总被引:3,自引:0,他引:3  
The H(+)-ATPase (ATP synthase) from chloroplasts was isolated, purified and reconstituted into phosphatidylcholine/phosphatidic-acid liposomes. Liposomes prepared by reverse-phase evaporation were treated with various amounts of Triton X-100 and protein incorporation was studied at each step of the solubilization process. After detergent removal by SM2-Biobeads, the activities of the resulting proteoliposomes were measured indicating that the most efficient reconstitution was obtained by insertion of the protein into preformed, detergent-saturated liposomes. The conditions for the reconstitution were optimized with regard to ATP synthesis driven by an artificially generated delta pH/delta psi. An important benefit of the new reconstituted CF0F1 liposomes is the finding that the rate of ATP synthesis remains constant up to 10 s, indicating a low basal membrane permeability.  相似文献   

18.
Electric field induced conformational changes of bacteriorhodopsin were studied in six types of dried film (randomly and electrically oriented membranes of purple as well as cation-depleted blue bacteriorhodopsin) by measuring the frequency dependence of the optical absorbance change and the dielectric dispersion and absorption. For the purple bacteriorhodopsin the optical absorbance change induced by alternating rectangular electric fields of ±300 kV/cm altered the sign twice in the frequency range from 0.001 Hz to 100 kHz (around 0.03 Hz and 100 kHz), indicating that the electric field induced conformational change in these samples consists of, at least, three steps. Similarly, it was found for the blue bacteriorhodopsin that at least two steps are involved. In accord with optical measurements, the dielectric behaviour due to alternating sinusoidal electric fields of±6kV/cm in the frequency range from 10 Hz to 10 MHz showed two broad dispersion/absorption regions, one below 1 kHz and the other around 10–100 kHz. This suggests that the conformational change of bacteriorhodopsin is also reflected by its dielectrical properties and that it is partially induced at 6 kV/cm. Including previous results obtained by analysis of the action of DC fields on purple membrane films, a model for a field-induced cyclic reaction for purple as well as blue bacteriorhodopsin is proposed. In addition it was found that there are electrical interactions among purple membrane fragments in dried films.  相似文献   

19.
20.
Proteoliposome vesicles containing both bacteriorhodopsin of Halobacterium halobium and H+-translocating ATPase [EC 3.6,1.3] of a thermophilic bacterium, PS3, (TF0-F1) were reconstituted by either the dialysis method or the sonication method. Generation of the electrochemical proton gradient (deltamuH+) in these vesicles was measured using 9-aminoacridine for estimation of the chemical (deltapH) component and 8-anilinonaphthalene sulfonate for the electrical (deltaphi) component). In illuminated bacteriorhodopsin-vesicles the deltamuH+ reached 180-190 mV when reconstituted by the dialysis method and 210-220 mV when reconstituted by the sonication method. Vesicles reconstituted from both TF0-F1 and bacteriorhodopsin by the dialysis method generated a deltapH+ of about 200 mV on addition of ATP, while vesicles prepared by the sonication method generated very little deltamuH+, if any. These vesicles generated similar deltamuH+ on illumination to that found in bacteriorhodopsin-vesicles. Using vesicles reconstituted from both TF0-F1 and bacteriorhodopsin by the dialysis method, light dependent ATP synthesis was measured in relation to deltamuH+ formation. It was necessary to generate a deltamuH+ of above 170 mV for demonstration of appreciable formation of ATP and the greater the deltamuH+, the faster the rate of ATP synthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号