首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background

Biclustering is an important analysis procedure to understand the biological mechanisms from microarray gene expression data. Several algorithms have been proposed to identify biclusters, but very little effort was made to compare the performance of different algorithms on real datasets and combine the resultant biclusters into one unified ranking.

Results

In this paper we propose differential co-expression framework and a differential co-expression scoring function to objectively quantify quality or goodness of a bicluster of genes based on the observation that genes in a bicluster are co-expressed in the conditions belonged to the bicluster and not co-expressed in the other conditions. Furthermore, we propose a scoring function to stratify biclusters into three types of co-expression. We used the proposed scoring functions to understand the performance and behavior of the four well established biclustering algorithms on six real datasets from different domains by combining their output into one unified ranking.

Conclusions

Differential co-expression framework is useful to provide quantitative and objective assessment of the goodness of biclusters of co-expressed genes and performance of biclustering algorithms in identifying co-expression biclusters. It also helps to combine the biclusters output by different algorithms into one unified ranking i.e. meta-biclustering.  相似文献   

2.
Species are not independent points for comparative analyses because closely related species share more evolutionary history and are therefore more similar to each other than distantly related species. The extent to which independent-contrast analysis reduces type I and type II statistical error in comparison with cross-species analysis depends on the relative branch lengths in the phylogenetic tree: as deeper branches get relatively long, cross-species analyses have more statistical type I and type II error. Phylogenetic trees reconstructed from extant species, under the assumptions of a branching process with speciation (branching) and extinction rates remaining constant through time, will have relatively longer deep branches as the extinction rate increases relative to the speciation rate. We compare the statistical performance of cross-species and independent-contrast analyses with varying relative extinction rates, and conclude that cross-species comparisons have unacceptable statistical performance, particularly when extinction rates are relatively high.  相似文献   

3.
Growth data from a number of species of Old and New World primates have been analyzed by calculating instantaneous relative growth rates. Species discussed are the New World species Saimiri sciureus and Saguinus nigricollis, and the Old World species Pan troglodytes and Macaca mulatta. The analysis of the perinatal growth data indicated that differences in relative growth rates are present during early periods of growth. More specifically, it was found that the closer taxonomically a species is to man the greater the deceleration of growth during the first postnatal year. It is suggested that this may be a general primate trend.  相似文献   

4.
Analyses of phylogenetic niche conservatism (PNC) are becoming increasingly common. However, each analysis makes subtly different assumptions about the evolutionary mechanism that generates patterns of niche conservatism. To understand PNC, analyses should be conducted with reference to a clear underlying model, using appropriate methods. Here, we outline five macroevolutionary models that may underlie patterns of PNC (drift, niche retention, phylogenetic inertia, niche filling/shifting and evolutionary rates) and link these to published phylogenetic comparative methods. For each model, we give recent examples from the literature and suggest how the methods can be practically applied. We hope that this will help clarify the niche conservatism literature and encourage people to think about the evolutionary models underlying niche conservatism in their study group.  相似文献   

5.
Both competition and environmental filtering are expected to influence the community structure of microbes, but there are few tests of the relative importance of these processes because trait data on these organisms is often difficult to obtain. Using phylogenetic and functional trait information, we tested whether arbuscular mycorrhizal (AM) fungal community composition in an old field was influenced by competitive exclusion and/or environmental filtering. Communities at the site were dominated by species from the most speciose family of AM fungi, the Glomeraceae, though species from two other lineages, the Acaulosporaceae and Gigasporaceae were also found. Despite the dominance of species from a single family, AM fungal species most frequently co-existed when they were distantly related and when they differed in the ability to colonize root space on host plants. The ability of AM fungal species to colonize soil did not influence co-existence. These results suggest that competition between closely related and functionally similar species for space on plant roots influences community assembly. Nevertheless, in a substantial minority of cases communities were phylogenetically clustered, indicating that closely related species could also co-occur, as would be expected if i) the environment restricted community membership to single functional type or ii) competition among functionally similar species was weak. Our results therefore also suggest that competition for niche space between closely related fungi is not the sole influence of mycorrhizal community structure in field situations, but may be of greater relative importance than other ecological mechanisms.  相似文献   

6.
We sought to assess effects of fragmentation and quantify the contribution of ecological processes to community assembly by measuring species richness, phylogenetic, and phenotypic diversity of species found in local and regional plant communities. Specifically, our fragmented system is Craters of the Moon National Monument and Preserve, Idaho, USA. CRMO is characterized by vegetated islands, kipukas, that are isolated in a matrix of lava. We used floristic surveys of vascular plants in 19 kipukas to create a local species list to compare traditional dispersion metrics, mean pairwise distance, and mean nearest taxon distance (MPD and MNTD), to a regional species list with phenotypic and phylogenetic data. We combined phylogenetic and functional trait data in a novel machine‐learning model selection approach, Community Assembly Model Inference (CAMI), to infer probability associated with different models of community assembly given the data. Finally, we used linear regression to explore whether the geography of kipukas explained estimated support for community assembly models. Using traditional metrics of MPD and MNTD neutral processes received the most support when comparing kipuka species to regional species. Individually no kipukas showed significant support for overdispersion. Rather, five kipukas showed significant support for phylogenetic clustering using MPD and two kipukas using MNTD. Using CAMI, we inferred neutral and filtering models structured the kipuka plant community for our trait of interest. Finally, we found as species richness in kipukas increases, model support for competition decreases and lower elevation kipukas show more support for habitat filtering models. While traditional phylogenetic community approaches suggest neutral assembly dynamics, recently developed approaches utilizing machine learning and model choice revealed joint influences of assembly processes to form the kipuka plant communities. Understanding ecological processes at play in naturally fragmented systems will aid in guiding our understanding of how fragmentation impacts future changes in landscapes.  相似文献   

7.
In ecomorphology, Discriminant Function Analysis (DFA) has been used as evidence for the presence of functional links between morphometric variables and ecological categories. Here we conduct simulations of characters containing phylogenetic signal to explore the performance of DFA under a variety of conditions. Characters were simulated using a phylogeny of extant antelope species from known habitats. Characters were modeled with no biomechanical relationship to the habitat category; the only sources of variation were body mass, phylogenetic signal, or random “noise.” DFA on the discriminability of habitat categories was performed using subsets of the simulated characters, and Phylogenetic Generalized Least Squares (PGLS) was performed for each character. Analyses were repeated with randomized habitat assignments. When simulated characters lacked phylogenetic signal and/or habitat assignments were random, <5.6% of DFAs and <8.26% of PGLS analyses were significant. When characters contained phylogenetic signal and actual habitats were used, 33.27 to 45.07% of DFAs and <13.09% of PGLS analyses were significant. False Discovery Rate (FDR) corrections for multiple PGLS analyses reduced the rate of significance to <4.64%. In all cases using actual habitats and characters with phylogenetic signal, correct classification rates of DFAs exceeded random chance. In simulations involving phylogenetic signal in both predictor variables and predicted categories, PGLS with FDR was rarely significant, while DFA often was. In short, DFA offered no indication that differences between categories might be explained by phylogenetic signal, while PGLS did. As such, PGLS provides a valuable tool for testing the functional hypotheses at the heart of ecomorphology. Am J Phys Anthropol 153:663–674, 2014. © 2013 Wiley Periodicals, Inc.  相似文献   

8.
A Macintosh Hypertalk program (Hypercard ‘stack’)for use in phylogenetic comparative analysis of RNA structureis described. The program identifies covariations and compensatorychanges in RNA sequence alignments, for use in the constructionof secondary structure models or the identification of tertiaryinteractions. The results of an analysis are presented eitheras a list of positions in the alignment which covary, or asa 2-dimensional matrix in which potential helices in the secondarystructure appear as diagonal patterns. Received on January 7, 1991; accepted on March 19, 1991  相似文献   

9.
A host may be physically isolated in space and then may correspond to a geographical island, but it may also be separated from its local neighbours by hundreds of millions of years of evolutionary history, and may form in this case an evolutionarily distinct island. We test how this affects the assembly processes of the host''s colonizers, this question being until now only invoked at the scale of physically distinct islands or patches. We studied the assembly of true bugs in crowns of oaks surrounded by phylogenetically more or less closely related trees. Despite the short distances (less than 150 m) between phylogenetically isolated and non-isolated trees, we found major differences between their Heteroptera faunas. We show that phylogenetically isolated trees support smaller numbers and fewer species of Heteroptera, an increasing proportion of phytophages and a decreasing proportion of omnivores, and proportionally more non-host-specialists. These differences were not due to changes in the nutritional quality of the trees, i.e. species sorting, which we accounted for. Comparison with predictions from meta-community theories suggests that the assembly of local Heteroptera communities may be strongly driven by independent metapopulation processes at the level of the individual species. We conclude that the assembly of communities on hosts separated from their neighbours by long periods of evolutionary history is qualitatively and quantitatively different from that on hosts established surrounded by closely related trees. Potentially, the biotic selection pressure on a host might thus change with the evolutionary proximity of the surrounding hosts.  相似文献   

10.
Evolutionary ecologists are increasingly combining phylogenetic data with distributional and ecological data to assess how and why communities of species differ from random expectations for evolutionary and ecological relatedness. Of particular interest have been the roles of environmental filtering and competitive interactions, or alternatively neutral effects, in dictating community composition. Our goal is to place current research within a dynamic framework, specifically using recent phylogenetic studies from insular environments to provide an explicit spatial and temporal context. We compare communities over a range of evolutionary, ecological and geographic scales that differ in the extent to which speciation and adaptation contribute to community assembly and structure. This perspective allows insights into the processes that can generate community structure, as well as the evolutionary dynamics of community assembly.  相似文献   

11.
The growing interest in using phylogenies to test evolutionary hypotheses has focused attention on the need for robust estimates of phylogenetic history. Whether specific branching structures are correct summaries of evolutionary history can be estimated only through the examination of congruence of many sets of characters. After consideration of practical and philosophical aspects of congruence, I conclude that taxonomic congruence (analysis of congruence of topologies produced from independent datasets) is preferable to character congruence (analysis of congruence between individual characters) for estimating accuracy of phylogenetic hypotheses. Existing methods for examining taxonomic congruence are discussed and the combinable components approach, when preceded by application of rigorous statistical manipulations (e.g. jackknifing or bootstrapping), found most appropriate. Implementation of the method of combinable components is described, and is demonstrated using published data for Menidia and Rana. The robust branching structure resulting from this analysis (a phylogenetic framework) contains those nodes (phylogenetic hypotheses) that are strongly supported by at least one dataset and are consistent with all others. This approach is the most appropriate/conservative for testing hypotheses about evolutionary history.  相似文献   

12.
The relationship between ascomycetes and basidiomycetes, the two main phyla of non-flagellated fungi, has rarely been investigated. In this study, we performed a comparative genomics analysis of genome sequences of 55 ascomycetes and 26 basidiomycetes species and detected 81 universal markers, 875 homologous genes and a conserved contig in the glucose-regulated protein gene. In dendrograms based on simple sequence repeat markers and homologous genes, ascomycetes and basidiomycetes formed distinct clusters, with each set of taxa having a high coefficient of relatedness. Ascomycetes and basidiomycetes also constituted distinct groups in a phylogenetic tree based on a conserved contig in the glucose-regulated protein gene. These results provide evidence that basidiomycetes may be derived from ascomycetes but are definitely genetically differentiated at the genomic level. The phylogenetic relationships of ascomycetes and basidiomycetes uncovered in this study provide new insights for future research related to fungal classification and evolution.  相似文献   

13.
N R Pace  D K Smith  G J Olsen  B D James 《Gene》1989,82(1):65-75
The most incisive a priori approach to inferring the higher order structure of large RNAs has proven to be the use of phylogenetic comparisons. This article provides guidelines to the method, using as an illustration the elucidation of the secondary structure of the catalytic RNA subunit of ribonuclease P (RNase P). The resultant structure is compared to the possibilities that are predicted thermodynamically for the RNase P RNA sequences of nine eubacteria.  相似文献   

14.
This paper presents the first broad overview of three main features of microsporogenesis (male meiosis) in angiosperms: cytokinesis (cell division), intersporal wall formation, and tetrad form. A phylogenetic comparative approach was used to test for correlated evolution among these characters and to make hypotheses about evolutionary trends in microsporogenesis. The link between features of microsporogenesis and pollen aperture type was examined. We show that the pathway associated with successive cytokinesis (cytoplasm is partitioned after each meiotic division) is restricted to wall formation mediated by centrifugally developing cell plates, and tetragonal (or decussate, T-shaped, linear) tetrads. Conversely, much more flexibility is observed when cytokinesis is simultaneous (two meiotic divisions completed before cytoplasmic partitioning). We suggest that the ancestral type of microsporogenesis for angiosperms, and perhaps for all seed plants, associated simultaneous cytokinesis with centripetal wall formation, resulting in a large diversity in tetrad forms, ranging from regular tetrahedral to tetragonal tetrads, including rhomboidal tetrads. From this ancestral pathway, switches toward successive cytokinesis occurred among basal angiosperms and monocots, generally associated with a switch toward centrifugal intersporal wall formation, whereas eudicots evolved toward an almost exclusive production of regular tetrahedral tetrads. No straightforward link is found between the type of microsporogenesis and pollen aperture type.  相似文献   

15.
The question is often raised whether it is statistically necessary to control for phylogenetic associations in comparative studies. To investigate this question, we explore the use of a measure of phylogenetic correlation, lambda, introduced by Pagel (1999), that normally varies between 0 (phylogenetic independence) and 1 (species' traits covary in direct proportion to their shared evolutionary history). Simulations show lambda to be a statistically powerful index for measuring whether data exhibit phylogenetic dependence or not and whether it has low rates of Type I error. Moreover, lambda is robust to incomplete phylogenetic information, which demonstrates that even partial information on phylogeny will improve the accuracy of phylogenetic analyses. To assess whether traits generally show phylogenetic associations, we present a quantitative review of 26 published phylogenetic comparative data sets. The data sets include 103 traits and were chosen from the ecological literature in which debate about the need for phylogenetic correction has been most acute. Eighty-eight percent of data sets contained at least one character that displayed significant phylogenetic dependence, and 60% of characters overall (pooled across studies) showed significant evidence of phylogenetic association. In 16% of tests, phylogenetic correlation could be neither supported nor rejected. However, most of these equivocal results were found in small phylogenies and probably reflect a lack of power. We suggest that the parameter lambda be routinely estimated when analyzing comparative data, since it can also be used simultaneously to adjust the phylogenetic correction in a manner that is optimal for the data set, and we present an example of how this may be done.  相似文献   

16.
Zhao F  Zhao F  Li T  Bryant DA 《Nucleic acids research》2008,36(10):3455-3462
Gap closing is considered one of the most challenging and time-consuming tasks in bacterial genome sequencing projects, especially with the emergence of new sequencing technologies, such as pyrosequencing, which may result in large amounts of data without the benefit of large insert libraries for contig scaffolding. We propose a novel algorithm to align contigs with more than one reference genome at a time. This approach can successfully overcome the limitations of low degrees of conserved gene order for the reference and target genomes. A pheromone trail-based genetic algorithm (PGA) was used to search globally for the optimal placement for each contig. Extensive testing on simulated and real data sets shows that PGA significantly outperforms previous methods, especially when assembling genomes that are only moderately related. An extended version of PGA can predict additional candidate connections for each contig and can thus increase the likelihood of identifying the correct arrangement of each contig. The software and test data sets can be accessed at http://sourceforge.net/projects/pga4genomics/.  相似文献   

17.
18.
The relative roles of historical processes, environmental filtering, and ecological interactions in the organization of species assemblages vary depending on the spatial scale. We evaluated the phylogenetic and morphological relationships between species and individuals (i.e., inter‐ and intraspecific variability) of Neotropical nonvolant small mammals coexisting in grassland‐forest ecotones, in landscapes and in regions, that is, three different scales. We used a phylogenetic tree to infer evolutionary relationships, and morphological traits as indicators of performance and niche similarities between species and individuals. Subsequently, we applied phylogenetic and morphologic indexes of diversity and distance between species to evaluate small mammal assemblage structures on the three scales. The results indicated a repulsion pattern near forest edges, showing that phylogenetically similar species coexisted less often than expected by chance. The strategies for niche differentiation might explain the phylogenetic repulsion observed at the edge. Phylogenetic and morphological clustering in the grassland and at the forest interior indicated the coexistence of closely related and ecologically similar species and individuals. Coexistence patterns were similar whether species‐trait values or individual values were used. At the landscape and regional scales, assemblages showed a predominant pattern of phylogenetic and morphological clustering. Environmental filters influenced the coexistence patterns at three scales, showing the importance of phylogenetically conserved ecological tolerances in enabling taxa co‐occurrence. Evidence of phylogenetic repulsion in one region indicated that other processes beyond environmental filtering are important for community assembly at broad scales. Finally, ecological interactions and environmental filtering seemed important at the local scale, while environmental filtering and historical colonization seemed important for community assembly at broader scales.  相似文献   

19.
Humans have, and continue to, dramatically influence the life history of many taxa. Identification of traits that allow taxa to tolerate humans and urban environments is important for informed conservation policy. Winchell et al. (2020) uses a phylogenetic comparative framework to identify such traits in the Caribbean clade of Anolis lizards. They provide an example of how to use disparate data sources to develop probabilities about species’ traits that can be used in phylogenetic analyses.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号