共查询到20条相似文献,搜索用时 11 毫秒
1.
Membrane conductances of photoreceptors 总被引:10,自引:0,他引:10
2.
A derivative of amiloride blocks both the light-regulated and cyclic GMP-regulated conductances in rod photoreceptors 下载免费PDF全文
G D Nicol P P Schnetkamp Y Saimi E J Cragoe M D Bownds 《The Journal of general physiology》1987,90(5):651-669
Vertebrate rod photoreceptors in the dark maintain an inward current across the outer segment membrane. The photoresponse results from a light-induced suppression of this dark current. The light-regulated current is not sensitive to either tetrodotoxin or amiloride, potent blockers of Na+ channels. Here, we report that a derivative of amiloride, 3',4'-dichlorobenzamil (DCPA), completely suppresses the dark current and light response recorded from rod photoreceptors. DCPA also blocks a cyclic GMP-activated current in excised patches of rod plasma membrane and a cGMP-induced Ca++ flux from rod disk membranes. These results are consistent with the notion that the Ca++ flux mechanism in the disk membrane and the light-regulated conductance in the plasma membrane are identical. DCPA also inhibits the Na/Ca exchange mechanism in intact rods, but at a 5-10-fold-higher concentration than is required to block the cGMP-activated flux and current. The blocking action of DCPA in 10 nM Ca++ is different from that in 1 mM Ca++, which suggests either that the conductance state of the light-regulated channel may be modified in high and low concentrations of Ca++, or that there may be two ionic channels in the rod outer segment membrane. 相似文献
3.
The ionizable groups and conductances of the rod plasma membrane were studied by measuring membrane potential and input impedance with micropipettes that were placed in the rod outer segments. Reduction of the pH from 8.0 to 6.8 or from 7.8 to 7.3 resulted in membrane depolarization in the dark from 8.0 to 6.8 or from 7.8 to 7.3 resulted in membrane depolarization in the dark (by 2- 3 mV) and an increased size of the light response (also by 2-3 mV). The dark depolarization was accompanied by and increased resting input impedance (by 11-35 Mω). When the pH was decreased in a perfusate in which Cl(-) was replaced by isethionate, the membrane depolarized. When the pH was decreased in a perfusate in which Na(+) was replaced by choline, an increase of input impedance was observed (11-50 Mω) even though a depolarization did not occur. These results are consistent with the interpretation that the effects of decreased extracellular pH result mainly from a decrease in rod membrane K(+) conductance that is presumably cause by protonation of ionizable groups having a pK(a) between 7.3 and 7.8. Furthermore, from these results and results obtained by using CO(2) and NH(3) to affect specifically the internal pH of the cell, it seems unlikely that altered cytoplasmic [H(+)] is a cytoplasmic messenger for excitation of the rod. When the rods were exposed to perfusate in which Na(+) was replaced by choline, the resting (dark) input impedance increased (by 26 Mω +/- 5 Mω SE), and the light-induced changes in input impedance became undetectable. Replacement of Cl(-) by isethionate had no detectable effect on either the resting input impedance or the light-induced changes in input impedance. These results confirm previous findings that the primary effect of light is to decrease the membrane conductance to Na(+) and show that, if any other changes in conductance occur, they depend upon the change in Na(+) conductance. The results are consistent with the following relative resting conductances of the rod membrane: G(Na(+)) similar to G(K(+)) more than 2-5 G(Cl(-)). 相似文献
4.
Functional significance of voltage-dependent conductances in Limulus ventral photoreceptors 下载免费PDF全文
《The Journal of general physiology》1982,79(2):211-232
The influence of voltage-dependent conductances on the receptor potential of Limulus ventral photoreceptors was investigated. During prolonged, bright illumination, the receptor potential consists of an initial transient phase followed by a smaller plateau phase. Generally, a spike appears on the rising edge of the transient phase, and often a dip occurs between the transient and plateau. Block of the rapidly inactivating outward current, iA, by 4-aminopyridine eliminates the dip under some conditions. Block of maintained outward current by internal tetraethylammonium increases the height of the plateau phase, but does not eliminate the dip. Block of the voltage-dependent Na+ and Ca2+ current by external Ni2+ eliminates the spike. The voltage-dependent Ca2+ conductance also influences the sensitivity of the photoreceptor to light as indicated by the following evidence: depolarizing voltage- clamp pulses reduce sensitivity to light. This reduction is blocked by removal of external Ca2+ or by block of inward Ca2+ current with Ni2+. The reduction of sensitivity depends on the amplitude of the pulse, reaching a maximum at or approximately +15 mV. The voltage dependence is consistent with the hypothesis that the desensitization results from passive Ca2+ entry through a voltage-dependent conductance. 相似文献
5.
6.
H. -P. Höpp D. L. Alkon 《Journal of comparative physiology. A, Neuroethology, sensory, neural, and behavioral physiology》1993,172(1):47-55
Wavelength-dependent, bistable phenomena were found in the receptor potential of Hermissenda crassicornis type A photoreceptors. Short exposure to blue light induced a prolonged depolarizing afterpotential (PDA) following the cessation of the light stimulus. Stronger adaptation to blue light, as caused by prolonged exposure and/or high intensity stimulation, effected a reduction in the early depolarizing transient of the late receptor potential (LRP) as elicited by subsequent stimuli. Vast separation of LRP emergence and PDA emergence could be obtained in photoreceptors in which a strong cancellation of the LRP was accomplished but a PDA still emerged after cessation of the light stimulus. Short exposure to yellow light cancelled the PDA, and stronger adaptation restored the LRP (opposite effect to blue light). The initial depolarizing part of the LRP had earlier been demonstrated to be mediated by the lightdependent increase of an inward conductance. In contrast, in this study the PDA was found to be accompanied by the reduction of an outward conductance, most likely a K+ conductance. A bistable photopigment system is thought to control the bistable receptor potential phenomenology by regulating the different membrane conductances during the LRP and the PDA.Abbreviations LRP
late receptor potential
- PDA
prolonged depolarizing afterpotential
- PHA
prolonged hyperpolarizing afterpotential 相似文献
7.
Subunit stoichiometry of the CNG channel of rod photoreceptors 总被引:6,自引:0,他引:6
Cyclic nucleotide-gated (CNG) channels play a central role in the conversion of sensory stimuli into electrical signals. CNG channels form heterooligomeric complexes built of A and B subunits. Here, we study the subunit stoichiometry of the native rod CNG channel by chemical crosslinking. The apparent molecular weight (M(w)) of each crosslink product was determined by SDS-PAGE, and its composition was analyzed by Western blotting using antibodies specific for the A1 or B1 subunit. The number of crosslink products and their M(w) as well as the immunological identification of A1 and B1 subunits in the crosslink products led us to conclude that the native rod CNG channel is a tetramer composed of three A1 and one B1 subunit. This is an example of violation of symmetry in tetrameric channels. 相似文献
8.
Glucose-sensitive conductances in rat pancreatic beta-cells: contribution to electrical activity 总被引:2,自引:0,他引:2
Best L 《Biochimica et biophysica acta》2000,1468(1-2):311-319
The perforated patch technique was used to assess the relative contribution of K(ATP) channel activity, assessed from input conductance (G(input)), and volume-sensitive anion channel activity to the induction of electrical activity in single isolated rat pancreatic beta-cells by glucose, 2-ketoisocaproate and tolbutamide. In cells equilibrated in the absence of glucose, the membrane potential was -71 mV and G(input) 3.66 nS. Addition of 8 mM glucose resulted in depolarisation, electrical activity and a reduction in G(input), reflecting an inhibition of K(ATP) channels. Cells equilibrated in 4 mM glucose had a membrane potential of -59 mV and a G(input) of 0.88 nS. In this case, a rise in glucose concentration to 8-20 mM again resulted in depolarisation and electrical activity, but caused a small increase in G(input). 2-Ketoisocaproate also evoked electrical activity and an increase in G(input), whereas electrical activity elicited by addition of tolbutamide was accompanied by reduced G(input). Increasing the concentration of glucose from 4 to 8-20 mM generated a noisy inward current at -70 mV, reflecting activation of the volume-sensitive anion channel. The mean amplitude of this current was glucose-dependent within the range 4-20 mM. Addition of 2-ketoisocaproate or a 15% hypotonic solution elicited similar increases in inward current. In contrast, addition of tolbutamide failed to induce the inward current. It is concluded that K(ATP) channel activity is most sensitive to glucose within the range 0-4 mM. At higher glucose concentrations effective in generating electrical activity, activation of the volume-sensitive anion channel could contribute towards the nutrient-induced increase in G(input). 相似文献
9.
The intracellular Ca(2+) concentration in rod outer segments of vertebrate photoreceptors is controlled by Ca(2+) influx through cGMP-gated channels and by Ca(2+) efflux driven by Na/Ca-K exchangers. Previously, we suggested that channel and exchanger are associated (Bauer, P. J., and Drechsler, M. (1992) J. Physiol. (Lond. ) 451, 109-131). This suggestion has been thoroughly examined using a variety of biochemical approaches. First, we took advantage of the fact that cGMP-gated channels bind calmodulin (CaM). Using CaM affinity chromatographic purification of the channel in 10 mm CHAPS, a significant fraction of exchanger was co-eluted with the channel indicating a binding affinity between channel and exchanger. Binding of channel and exchanger was examined more directly by cross-linking of proteins in the rod outer segment membranes. Activation of the channel with cyclic 8-bromo-GMP lead to exposure of a cysteine, which allowed cross-linking of the channel to the exchanger with the thiol-specific reagent dl-1,4-bismaleimido-2,3-butanediol. Cleavage of the cross-links and electrophoretic analysis indicated that a cross-link between the alpha-subunit of the channel and the exchanger formed. Furthermore, a cross-link between two adjacent alpha-subunits of the channel was found, suggesting that the alpha-subunits of the native channel are dimerized. Further support for an interaction between alpha-subunit and exchanger was obtained by in vitro experiments. Specific binding of the exchanger to the alpha-subunit but not to the beta-subunit of the channel was observed in Western blots of purified channel incubated with purified exchanger. This study suggests that two exchanger molecules bind to one cGMP-gated channel and, more specifically, that binding of exchanger molecules occurs at the alpha-subunits, which in the native channel are dimerized. The implications of these findings regarding the possibility of local Ca(2+) signaling in vertebrate photoreceptors will be discussed. 相似文献
10.
11.
We have constructed a Raman microscope that has enabled us to obtain resonance Raman vibrational spectra from single photoreceptor cells. The laser beam which excites the Raman scattering is focused on the outer segment of the photoreceptor through the epiillumination system of a light microscope. Raman scattering from the visual pigment in the photoreceptor is collected by the objective and then dispersed onto a multichannel detector. High-quality spectra are recorded easily from individual outer segments that are 5 x 50 micrometer in size, and we have obtained spectra from cells as small as 1 x 10 micrometer. We have used the Raman microscope to study photostationary steady-state mixtures in pigments from toad (Bufo marinus) and goldfish (Carassius auratus) photoreceptors; these photoreceptors were frozen in glycerol glasses at 77 degrees K. Comparison of our toad red rod spectra with previously published spectra of bovine rod pigments demonstrates that the conformation of the chromophore in the first photointermediate, bathorhodopsin, is sensitive to variations in protein structure. We have also studied the first photointermediate in the goldfish rod photostationary steady-state. This bathoporphyropsin has a much lower ethylenic stretching frequency (1,507 cm-1) than that observed in the toad and bovine bathoproducts (approximately 1,535 cm-1). Preliminary results of our work on goldfish cone pigments are also reported. These are the first vibrational studies on the vertebrate photoreceptors responsible for color vision. 相似文献
12.
13.
The cGMP-gated channel of bovine rod photoreceptors is localized exclusively in the plasma membrane 总被引:5,自引:0,他引:5
N J Cook L L Molday D Reid U B Kaupp R S Molday 《The Journal of biological chemistry》1989,264(12):6996-6999
Although there have been several reports pertaining to the existence of the cGMP-gated channel in the disk membrane of rod photoreceptors, its density there relative to that of the photoreceptor plasma membrane is unknown. Using immunoblotting, immunohistochemical, and reconstitution techniques on purified disk and plasma membrane preparations, we found that the density of channels in the plasma membrane was at least 50-fold higher than that of the disk membrane. Purification of membrane fractions without prior digestion of cytoskeletal components by mild trypsinization was found to increase the amount of channel protein present in disk membrane preparations. We propose that the presence of the channel protein in rod disk membrane preparations is an artifact arising from fusion of plasma membrane components during permeabilization of the photoreceptor cell. 相似文献
14.
Dividing cells and their progeny in retinae of young goldfish were labeled with [3H]thymidine, and selected cells were reconstructed from serial sections processed for electron microscopic autoradiography. Our goals were to characterize the cells that were identified as rod precursors in previous light microscopic autoradiographical studies and to determine their origin and fate. (In fish the population of rods increases several-fold postembryonically by proliferation of rod precursor cells scattered across the retina). Over 200 labeled cells taken from 11 retinas were examined, and 20 of these were reconstructed in their entirety. Some retinas were examined at short intervals (1 to 48 hr) after [3H]thymidine injection in order to study mitotically active cells, and others were examined after longer intervals (9 or 14 days) to discover the nature of the progeny of labeled dividing cells. Previous evidence from thymidine studies in larval goldfish suggested that proliferating cells destined to produce rods appear first in the inner nuclear layer and later in the outer nuclear layer, where they continue to divide and generate new rods (P.R. Johns, (1982) J. Neurosci. 2, 179). The present results provide morphological evidence in support of the suggestion that rod precursors migrate from inner to outer nuclear layer and, furthermore, show that the precursors are closely associated with, and perhaps guided by, the radial processes of Müller glial cells. Examination of EM autoradiographs of labeled cells at 9 and 14 days after a pulse label with thymidine confirms that the differentiated progeny of dividing precursor cells are exclusively rods. To our knowledge, rod precursors are the first example of a neuronal germinal cell in the vertebrate central nervous system that under normal conditions produces only one type of neuron. 相似文献
15.
Glycinergic synapses in photoreceptors are made by centrifugal feedback neurons in the network, but the function of the synapses
is largely unknown. Here we report that glycinergic input enhances photoreceptor synapses in amphibian retinas. Using specific
antibodies against a glycine transporter (GlyT2) and glycine receptor β subunit, we identified the morphology of glycinergic
input in photoreceptor terminals. Electrophysiological recordings indicated that 10 μM glycine depolarized rods and activated
voltage-gated Ca2+ channels in the neurons. The effects facilitated glutamate vesicle release in photoreceptors, meanwhile increased the spontaneous
excitatory postsynaptic currents in Off-bipolar cells. Endogenous glycine feedback also enhanced glutamate transmission in
photoreceptors. Additionally, inhibition of a Cl− uptake transporter NKCC1 with bumetanid effectively eliminated glycine-evoked a weak depolarization in rods, suggesting that
NKCC1 maintains a high Cl− level in rods, which causes to depolarize in responding to glycine input. This study reveals a new function of glycine in
retinal synaptic transmission. 相似文献
16.
We have investigated the time course of rod photoreceptor determination in the goldfish retina. Rod precursor cells located in the outer nuclear layer of the mature retina continuously generate rod photoreceptors. In this study, we asked when rod precursor cells begin to express opsin, which would signal their commitment to the rod pathway of differentiation. There are three possibilities: a rod precursor could express opsin while still mitotic, at or shortly after the terminal mitosis but before differentiation, or during differentiation. We used immunocytochemistry with antibodies against bromodeoxyuridine, BrdU (a thymidine analogue) and against opsin to determine when during the mitotic history of a cell the expression of opsin first occurred, taking a double labelled cell to be evidence of commitment to the rod cell fate. We found that the first double labelled cells appeared at 4 days after BrdU injection. The number of double labelled cells increased to peak at 10 days, and then fell. These results support the hypothesis that dividing rod precursor cells are probably multipotent stem cells not committed to the rod cell fate. 相似文献
17.
Batra-Safferling R Abarca-Heidemann K Körschen HG Tziatzios C Stoldt M Budyak I Willbold D Schwalbe H Klein-Seetharaman J Kaupp UB 《The Journal of biological chemistry》2006,281(3):1449-1460
The outer segment of vertebrate photoreceptors is a specialized compartment that hosts all the signaling components required for visual transduction. Specific to rod photoreceptors is an unusual set of three glutamic acid-rich proteins (GARPs) as follows: two soluble forms, GARP1 and GARP2, and the N-terminal cytoplasmic domain (GARP' part) of the B1 subunit of the cyclic GMP-gated channel. GARPs have been shown to interact with proteins at the rim of the disc membrane. Here we characterized native GARP1 and GARP2 purified from bovine rod photoreceptors. Amino acid sequence analysis of GARPs revealed structural features typical of "natively unfolded" proteins. By using biophysical techniques, including size-exclusion chromatography, dynamic light scattering, NMR spectroscopy, and circular dichroism, we showed that GARPs indeed exhibit a large degree of intrinsic disorder. Analytical ultracentrifugation and chemical cross-linking showed that GARPs exist in a monomer/multimer equilibrium. The results suggested that the function of GARP proteins is linked to their structural disorder. They may provide flexible spacers or linkers tethering the cyclic GMP-gated channel in the plasma membrane to peripherin at the disc rim to produce a stack of rings of these protein complexes along the long axis of the outer segment. GARP proteins could then provide the environment needed for protein interactions in the rim region of discs. 相似文献
18.
Globular protein thermostability is characterized the cold denaturation, maximal stability (Tms) and heat denaturation temperatures. For mesophilic globular proteins, Tms typically ranges from -25 degrees C to +35 degrees C. We show that the indirect estimate of Tms from calorimetry and the direct estimate from chemical denaturation performed in a range of temperatures are in close agreement. The heat capacity change of unfolding per mol residue (delta Cp) alone is shown to accurately predict Tms. Delta Cp and hence Tms can be predicted solely from the protein sequence. The average difference in free energy of unfolding at the observed and predicted values of Tms is 1.0 kcal mol(-1), which is small compared to typical values of the total free energy of unfolding. 相似文献
19.
Photoreceptor discs are membrane organelles harboring components of the visual signal transduction pathway. The mechanism by which discs form remains enigmatic and is the subject of a major controversy. Classical studies suggest that discs are formed as serial plasma membrane evaginations, whereas a recent alternative postulates that discs, at least in mammalian rods, are formed through intracellular vesicular fusion. We evaluated these models in mouse rods using methods that distinguish between the intracellular vesicular structures and plasma membrane folds independently of their appearance in electron micrographs. The first differentiated membranes exposed to the extracellular space from intracellular membranes; the second interrogated the orientation of protein molecules in new discs. Both approaches revealed that new discs are plasma membrane evaginations. We further demonstrated that vesiculation and plasma membrane enclosure at the site of new disc formation are artifacts of tissue fixation. These data indicate that all vertebrate photoreceptors use the evolutionary conserved membrane evagination mechanism to build their discs. 相似文献