首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The European Centre for the Validation of Alternative Methods (ECVAM) has organised an interlaboratory prevalidation study on the Syrian hamster embryo (SHE) cell transformation assay (CTA) at pH 7.0 for the detection of rodent carcinogens. The SHE CTA at pH 7.0 has been evaluated for its within-laboratory reproducibility, transferability and between-laboratory reproducibility. Four laboratories using the same basic protocol with minor modifications participated in this study and tested a series of six coded-chemicals: four rodent carcinogens (benzo(a)pyrene, 3-methylcholanthrene, 2,4-diaminotoluene and o-toluidine HCl) and two non-carcinogens (anthracene and phthalic anhydride). All the laboratories found the expected results with coded chemicals except for phthalic anhydride which resulted in a different call in only one laboratory. Based on the outcome of this study, it can be concluded that a standardised protocol is available that should be the basis for future use. This protocol and the assay system itself are transferable between laboratories and the SHE CTA at pH 7.0 is reproducible within- and between-laboratories.  相似文献   

2.
The potential for a compound to induce carcinogenicity is a key consideration when ascertaining hazard and risk assessment of chemicals. Among the in vitro alternatives that have been developed for predicting carcinogenicity, in vitro cell transformation assays (CTAs) have been shown to involve a multistage process that closely models important stages of in vivo carcinogenesis and have the potential to detect both genotoxic and non-genotoxic carcinogens. These assays have been in use for decades and a substantial amount of data demonstrating their performance is available in the literature. However, for the standardised use of these assays for regulatory purposes, a formal evaluation of the assays, in particular focusing on development of standardised transferable protocols and further information on assay reproducibility, was considered important to serve as a basis for the drafting of generally accepted OECD test guidelines. To address this issue, a prevalidation study of the CTAs using the BALB/c 3T3 cell line, SHE cells at pH 6.7, and SHE cells at pH 7.0 was coordinated by the European Centre for the Validation of Alternative Methods (ECVAM) and focused on issues of standardisation of protocols, test method transferability and within- and between-laboratory reproducibility. The study resulted in the availability of standardised protocols that had undergone prevalidation [1,2]. The results of the ECVAM study demonstrated that for the BALB/c 3T3 method, some modifications to the protocol were needed to obtain reproducible results between laboratories, while the SHE pH 6.7 and the SHE pH 7.0 protocols are transferable between laboratories, and results are reproducible within- and between-laboratories. It is recommended that the BALB/c 3T3 and SHE protocols as instituted in this prevalidation study should be used in future applications of these respective transformation assays. To support their harmonised use and regulatory application, the development of an OECD test guideline for the SHE CTAs, based on the protocol published in this issue, is recommended. The development of an OECD test guideline for the BALB/c 3T3 CTA should likewise be further pursued upon the availability of additional supportive data and improvement of the statistical analysis.  相似文献   

3.
The Syrian hamster embryo (SHE) cell transformation assay (CTA) is a short-term in vitro assay recommended as an alternative method for testing the carcinogenic potential of chemicals. SHE cells are "normal" cells since they are diploid, genetically stable, non-tumourigenic, and have metabolic capabilities for the activation of some classes of carcinogens. The CTA, first developed in the 1960s by Berwald and Sachs (1963,1964) [3,4], is based on the change of the phenotypic feature of cell colonies expressing the first steps of the conversion of normal to neoplastic-like cells with oncogenic properties. Pienta et al. (1977) [22] developed a protocol using cryopreserved cells to enhance practicality of the assay and limit sources of variability. Several variants of the assay are currently in use, which mainly differ by the pH at which the assay is performed. We present here the common version of the SHE pH 6.7 CTA and SHE pH 7.0 CTA protocols used in the ECVAM (European Centre for the Validation of Alternative Methods) prevalidation study on CTA reported in this issue. It is recommended that this protocol, in combination with the photo catalogues presented in this issue, should be used in the future and serve as a basis for the development of the OECD test guideline.  相似文献   

4.
The cell transformation assays (CTAs) have attracted attention within the field of alternative methods due to their potential to reduce the number of animal experiments in the field of carcinogenicity. The CTA using BALB/c 3T3 cells has proved to be able to respond to chemical carcinogens by inducing morphologically transformed foci. Although a considerable amount of data on the performance of the assay has been collected, a formal evaluation focusing particularly on reproducibility, and a standardised protocol were considered important. Therefore the European Centre for the Validation of Alternative Methods (ECVAM) decided to coordinate a prevalidation study of the BALB/c 3T3 CTA. Three different laboratories from Japan and Europe participated. In the study the following modules were assessed stepwise: test definition (Module 1) consisted of the standardisation of the protocol, the selection of the cell lineage, and the preparation of a photo catalogue on the transformed foci. The within-laboratory reproducibility (Module 2) and the transferability (Module 3) were assessed using non-coded and coded 3-methylcholanthrene. Then, five coded chemicals were tested for the assessment of between-laboratory reproducibility (Module 4). All three laboratories obtained positive results with benzo[a]pyrene, phenanthrene and o-toluidine HCl. 2-Acetylaminofluorene was positive in two laboratories and equivocal in one laboratory. Anthracene was negative in all three laboratories. The chemicals except phenanthrene, which is classified by IARC (http://monographs.iarc.fr) as group 3 "not classifiable as to its carcinogenicity to human", were correctly predicted as carcinogens. Further studies on phenanthrene will clarify this discrepancy. Thus, although only a few chemicals were tested, it can be seen that the predictive capacity of the BALB/c 3T3 CTA is satisfactory. On the basis of the outcome of this study, an improved protocol, incorporating some changes related to data interpretation, has been developed. It is recommended that this protocol be used in the future to provide more data that may confirm the robustness of this protocol and the performance of the assay itself. During the study it became clear that selecting the most appropriate concentrations for the transformation assay is crucial.  相似文献   

5.
Two year rodent bioassays play a key role in the assessment of carcinogenic potential of chemicals to humans. The seventh amendment to the European Cosmetics Directive will ban in 2013 the marketing of cosmetic and personal care products that contain ingredients that have been tested in animal models. Thus 2-year rodent bioassays will not be available for cosmetics/personal care products. Furthermore, for large testing programs like REACH, in vivo carcinogenicity testing is impractical. Alternative ways to carcinogenicity assessment are urgently required. In terms of standardization and validation, the most advanced in vitro tests for carcinogenicity are the cell transformation assays (CTAs). Although CTAs do not mimic the whole carcinogenesis process in vivo, they represent a valuable support in identifying transforming potential of chemicals. CTAs have been shown to detect genotoxic as well as non-genotoxic carcinogens and are helpful in the determination of thresholds for genotoxic and non-genotoxic carcinogens. The extensive review on CTAs by the OECD (OECD (2007) Environmental Health and Safety Publications, Series on Testing and Assessment, No. 31) and the proven within- and between-laboratories reproducibility of the SHE CTAs justifies broader use of these methods to assess carcinogenic potential of chemicals.  相似文献   

6.
The Syrian hamster embryo (SHE) cell transformation assay evaluates the potential of chemicals to induce morphological transformation in karyotypically normal primary cells. Induction of transformation has been shown to correlate well with the carcinogenicity of many compounds in the rodent bioassay. Historically the assay has not received wide-spread use due to technical difficulty. An improved protocol for a low pH 6.7 assay was developed by LeBoeuf et al. [R.A. LeBoeuf, G.A. Kerckaert, M.J. Aardema, D.P. Gibson, R. Brauninger, R.J. Isfort, Mutat. Res., 356 (1996) 85-127], that greatly reduced many of the technical difficulties associated with the SHE assay. The purpose of this paper is to describe the most current execution of the pH 6.70 protocol including protocol refinements made since the publication of a comprehensive protocol for this assay in Kerckaert et al. [G.A. Kerckaert, R.J. Isfort, G.J. Carr, M.J. Aardema, Mutat. Res., 356 (1996) 65-84].  相似文献   

7.
This catalogue is a display of Syrian hamster embryo (SHE) cell colony photos representative of the cell transformation assay (CTA) carried out at pH 6.7. It is intended as a visual aid for the identification and the scoring of cell colonies in the conduct of the assay. A proper training from experienced personnel together with the protocol reported in this issue and the present photo catalogue will support method transfer and consistency in the assay results.  相似文献   

8.
9.
This catalogue is a display of Syrian hamster embryo (SHE) cell colony photos representative of the cell transformation assay (CTA) carried out at pH 7.0. It is intended as a visual aid for the identification and the scoring of cell colonies in the conduct of the assay. A proper training from experienced personnel together with the protocol reported in this issue and the present photo catalogue will support method transfer and consistency in the assay results.  相似文献   

10.
The present protocol has been developed for the BALB/c 3T3 cell transformation assay (CTA), following the prevalidation study coordinated by the European Centre for the Validation of Alternative Methods (ECVAM) and reported in this issue (Tanaka et al. [16]). Based upon the experience gained from this effort and as suggested by the Validation Management Team (VMT), some acceptance and assessment criteria have been refined compared to those used during the prevalidation study. The present protocol thus describes cell culture maintenance, the dose-range finding (DRF) experiment and the transformation assay, including cytotoxicity and morphological transformation evaluation. Use of this protocol and of the associated photo catalogue included in this issue (Sasaki et al. [17]) is recommended for the future conduct of the BALB/c 3T3 CTA.  相似文献   

11.
Syrian hamster embryo (SHE) cell transformation has been used for many years to study chemical carcinogenesis in vitro. It has been shown that this assay is probably the most predictive short-term test system for identifying rodent carcinogens. Although most of the operational difficulties encountered in the early stage of application of this assay have been overcome by culturing the SHE cells under slightly acidic conditions (pH 6.7), a relatively low level of induction of morphological transformation (MT) by known carcinogens still occurs for many cell isolates. In order to improve the response of this assay system to known carcinogens, the effect of incubation time of target SHE cells on the frequency of morphological transformation induced by benzo(a)pyrene (BaP) was investigated. It was shown that the morphological transformation frequency induced by BaP increased significantly (1.4-2.5-fold) when the incubation time of target cells was reduced from the usual 24h to less than 6h prior to seeding onto feeder layers. This improvement in sensitivity was consistent for different cell isolates. In addition, the enhanced response appeared to be a property of carcinogens because treatment with two non-carcinogens, l-ascorbic acid and 4-nitro-o-phenylenediamine, did not induce significant increases in the transformation frequency under the shortened incubation period for target cells. These results suggest that the response of the SHE cell transformation assay may be improved by optimizing the incubation time of the target SHE cells. In addition, the results of the present study provide further evidence to support the idea that morphological transformation of SHE cells results from a block of cellular differentiation of stem or stem-like cells.  相似文献   

12.
A validation study on an in vitro skin irritation assay was performed with the reconstructed human epidermis (RhE) LabCyte EPI-MODEL24, developed by Japan Tissue Engineering Co. Ltd (Gamagori, Japan). The protocol that was followed in the current study was an optimised version of the EpiSkin protocol (LabCyte assay). According to the United Nations Globally Harmonised System (UN GHS) of classification for assessing the skin irritation potential of a chemical, 12 irritants and 13 non-irritants were validated by a minimum of six laboratories from the Japanese Society for Alternatives to Animal Experiments (JSAAE) skin irritation assay validation study management team (VMT). The 25 chemicals were listed in the European Centre for the Validation of Alternative Methods (ECVAM) performance standards. The reconstructed tissues were exposed to the chemicals for 15 minutes and incubated for 42 hours in fresh culture medium. Subsequently, the level of interleukin-1 alpha (IL-1 α) present in the conditioned medium was measured, and tissue viability was assessed by using the MTT assay. The results of the MTT assay obtained with the LabCyte EPI-MODEL24 (LabCyte MTT assay) demonstrated high within-laboratory and between-laboratory reproducibility, as well as high accuracy for use as a stand-alone assay to distinguish skin irritants from non-irritants. In addition, the IL-1α release measurements in the LabCyte assay were clearly unnecessary for the success of this model in the classification of chemicals for skin irritation potential.  相似文献   

13.
There has been a current resurgence of interest in the use of cell transformation for predicting carcinogenicity, which is based mainly on rodent carcinogenicity data. In view of this renewed interest, this paper critically reviews the published literature concerning the ability of the available assays to detect IARC Group 1 agents (known human carcinogens) and Group 2A agents (probable human carcinogens). The predictivity of the available assays for human and rodent non-genotoxic carcinogens (NGCs), in comparison with standard and supplementary in vitro and in vivo genotoxicity tests, is also discussed. The principal finding is that a surprising number of human carcinogens have not been tested for cell transformation across the three main assays (SHE, Balb/c 3T3 and C3H10T1/2), confounding comparative assessment of these methods for detecting human carcinogens. This issue is not being addressed in the ongoing validation studies for the first two of these assays, despite the lack of any serious logistical issues associated with the use of most of these chemicals. In addition, there seem to be no plans for using exogenous bio-transformation systems for the metabolic activation of pro-carcinogens, as recommended in an ECVAM workshop held in 1999. To address these important issues, it is strongly recommended that consideration be given to the inclusion of more human carcinogens and an exogenous source of xenobiotic metabolism, such as an S9 fraction, in ongoing and future validation studies. While cell transformation systems detect a high level of NGCs, it is considered premature to rely only on this endpoint for screening for such chemicals, as recently suggested. This is particularly important, in view of the fact that there is still doubt as to the relevance of morphological transformation to tumorigenesis in vivo, and the wide diversity of potential mechanisms by which NGCs are known to act. Recent progress with regard to increasing the objectivity of scoring the transformed phenotype, and prospects for developing human cell-based transformation assays, are reviewed.  相似文献   

14.
15.
Currently, two reconstructed human skin models, EpiDerm and EPISKIN are being evaluated in an ECVAM skin irritation validation study. A common skin irritation protocol has been developed, differing only in minor technical details for the two models. A small-scale study, applying this common skin irritation protocol to the SkinEthic reconstructed human epidermis (RHE), was performed at ZEBET at the BfR, Berlin, Germany, to consider whether this protocol could be successfully transferred to another epidermal model. Twenty substances from Phase III of the ECVAM prevalidation study on skin irritation were tested with the SkinEthic RHE. After minor, model-specific adaptations for the SkinEthic RHE, almost identical results to those obtained with the EpiDerm and EPISKIN models were achieved. The overall accuracy of the method was more than 80%, indicating a reliable prediction of the skin irritation potential of the tested chemicals when compared to in vivo rabbit data. As a next step, inter laboratory reproducibility was assessed in a study conducted between ZEBET and the Department of Experimental Toxicology, Schering AG, Berlin, Germany. Six coded substances were tested in both laboratories, with three different batches of the SkinEthic model. The assay results showed good reproducibility and correct predictions of the skin irritation potential for all six test chemicals. The results obtained with the SkinEthic RHE and the common protocol were reproducible in both phases, and the overall outcome is very similar to that of earlier studies with the EPISKIN and EpiDerm models. Therefore, the SkinEthic skin irritation assay test protocol can now be evaluated in a formal "catch-up" validation study.  相似文献   

16.
The induction of transformation in Syrian hamster embryo (SHE) cells is a multifactorial process, in comparison to endpoints induced in in vitro genotoxicity assays such as Ames, mouse lymphoma and cytogenetics [Y. Berwald, L. Sachs, In vitro cell transformation with chemical carcinogens, Nature (London) 200 (1963) 1182-1184]. Furthermore, a number of non-genotoxic carcinogens and promoters such as clofibrate and diethylhexylphthalate, have been positively identified in this assay, while giving false negative results in traditional genotoxicity assays [H. Yamasaki, J. Ashby, M. Bignami, W. Jongen, K. Linnainmaa, R.F. Newbold, G. Nguyen-Ba, S. Parodi, E. Rivedal, D. Schiffmann, J.W.I.M. Simons, P. Vasseur, Nongenotoxic carcinogens: development of detection methods based on mechanisms: a European project, Mutat. Res. 353 (1996) 47-63]. A high concordance between results obtained in this assay when compared with rodent carcinogenesis bioassays has also been noted [R.J. Isfort, G.A. Kerckaert, R.A. LeBoeuf, Comparison of the standard and reduced pH Syrian hamster embryo (SHE) in vitro cell transformation assays to predict the carcinogenic potential of chemicals, Mutat. Res. 356 (1996) 11-63]. Carcinogenesis is known to be a multistage process, with agents potentially acting at each stage. Specifically, mouse skin painting experiments established that tumour induction could be mechanistically divided into two distinct phases, termed initiation and promotion. Initiation, is defined as the stage at which a normal cell is converted to a latent tumour cell, followed by promotion where the latent tumour cell progresses to a tumour [W.F. Friedwald, P. Rous, The initiating and promoting elements in tumour production: analysis of the effects of tar, benzpyrene and methylcholanthrene on rabbit skin, J. Exp. Med. 80 (1944) 101-125]. A protocol for the pH 6.7 SHE transformation assay has been developed which allows separation of cell transformation process into two phases, potentially analogous to initiation and promotion in vivo. This allows chemicals found to be positive in the traditional SHE cell transformation assay to be further classified as initiators or promoters. Following validation with known initiators, benzo(a)pyrene and N-methyl-N'-nitro-N-nitrosoguanidine and promoters, 12-O-tetradecanoyl-phorbol-13-acetate and phenobarbitone, the two-stage model was applied to cigarette smoke particulates which was found to act both at the initiation and promotion stage of cell transformation.  相似文献   

17.
In 2005, the European Centre for the Validation of Alternative Methods (ECVAM) sponsored a study aimed at evaluating the reproducibility (between-laboratory and within-laboratory variability) and the predictive capacity of two in vitro cellular systems--the Caco-2/ATCC parental cell line and the Caco- 2/TC7 clone--for estimating the oral fraction absorbed (Fa) in humans. Two laboratories, both of which had experience with Caco-2 cultures, participated in the study. Ten test chemicals with documented in vivo oral absorption data were selected. Atenolol, cimetidine and propranolol were included as reference compounds for low, medium and high intestinal absorption, respectively. Transport experiments were independently carried out in the two laboratories, according to an agreed protocol. The apparent permeability coefficient (Papp) was calculated in either the apical to basolateral (absorption) or the basolateral to apical (efflux) direction. To investigate the involvement of possible active transport processes, experiments were also performed in the presence of sodium azide plus 2-deoxy-D-glucose in the donor compartment. Before performing the permeability experiments, the highest concentration that did not impair barrier integrity was identified for each test chemical in both cell models, by applying the chemicals together with a marker of the paracellular pathway. In addition, barrier integrity was assessed by measuring the trans-epithelial electrical resistance. All the permeability data obtained were independently analysed. Reproducibility was assessed for the seven substances for which sufficient data were available. Within-laboratory variability was based on coefficient of variation (CV) values. Median CV values of 10.4% and 14.7% were found for the two laboratories. Concerning between-laboratory reproducibility, comparable response levels were obtained for the three reference compounds and for paracetamol, while, for the other chemicals, the results were less reproducible--in particular, for compounds known to be actively transported. The Papp values obtained for both cell lines were comparable for identical experimental conditions. Despite the limited number of substances tested, the predictive capacity was investigated by using two mathematical models available in the literature. Good estimations of the human Fa were obtained for five well-absorbed compounds, while moderately and poorly absorbed compounds were overestimated. It is proposed that a confirmatory study addressing the main results, including power considerations, would now be useful.  相似文献   

18.
The Bhas 42 cell transformation assay is a sensitive short-term system for predicting chemical carcinogenicity. Bhas 42 cells were established from BALB/c 3T3 cells by the transfection of v-Ha-ras gene and postulated to have acquired an initiated state in the two-stage carcinogenesis theory. The Bhas 42 cell transformation assay is capable of detecting both tumor-initiating and tumor-promoting activities of chemical carcinogens. The full assay protocol consists of two components, the initiation assay and the promotion assay, to detect the initiating activity and the promoting activity, respectively. An international study was carried out to validate this cell transformation assay in which six laboratories from three countries participated. Twelve coded chemicals were examined in total and each chemical was tested by three laboratories. In the initiation assay, concordant results were obtained by three laboratories for eight out of ten chemicals and in the promotion assay, concordant results were achieved for ten of twelve chemicals. The positive results were obtained in all three laboratories with the following chemicals: 2-acetylaminofluorene was positive in both initiation and promotion assays; dibenz[a,h]anthracene was positive in the initiation assay; sodium arsenite, lithocholic acid, cadmium chloride, mezerein and methapyrilene hydrochloride were positive in the promotion assay. o-Toluidin hydrochloride was positive in the both assays in two of the three laboratories. d-Mannitol, caffeine and l-ascorbic acid were negative in both assays in all the laboratories, and anthracene was negative in both assays in two of the three laboratories except one laboratory obtaining positive result in the promotion assay. Consequently, the Bhas 42 cell transformation assay correctly discriminated all six carcinogens and two tumor promoters from four non-carcinogens. Thus, the present study demonstrated that the Bhas 42 cell transformation assay is transferable and reproducible between laboratories and applicable to the prediction of chemical carcinogenicity. In addition, by comparison of the present results with intra-laboratory data previously published, within-laboratory reproducibility using the Bhas 42 cell transformation assay was also confirmed.  相似文献   

19.
The GreenScreen GADD45alpha indicator assay has been assessed for its concordance with in vitro genotoxicity and rodent carcinogenicity bioassay data. To test robustness, sensitivity, and specificity of the assay, 91 compounds with known genotoxicity results were screened in a blinded manner. Fifty seven of the compounds were classified as in vitro genotoxic whereas 34 were non-genotoxic. Out of the 91 compounds, 50 had been tested in 2-year carcinogenicity assays, with 33 identified to be rodent carcinogens and 17 non-carcinogens. Gadd45alpha assay sensitivity and specificity for genotoxicity was 30% and 97%, respectively (17/57 and 33/34), whereas its sensitivity and specificity for rodent carcinogenicity was 30% and 88%, respectively (10/33 and 15/17). Gadd45alpha assay genotoxicity results from this validation study exhibited a high concordance with previously published results as well as for compound test results generated at two different sites (91%, 19/21), indicating that the assay is both robust and reproducible. In conclusion, results from this blinded and independent validation study indicate that the GreenScreen GADD45 indicator assay is reproducible and reliable with low sensitivity and high specificity for identifying genotoxic and carcinogenic compounds.  相似文献   

20.
Aromatic amines represent one of the most important classes of industrial and environmental chemicals: many of them have been reported to be powerful carcinogens and mutagens, and/or hemotoxicants. Their toxicity has been studied also with quantitative structure-activity relationship (QSAR) methods: these studies are potentially suitable for investigating mechanisms of action and for estimating the toxicity of compounds lacking experimental determinations. In this paper, we first summarized the QSAR models for the rodent carcinogenicity of the aromatic amines. The gradation of potency of the carcinogenic amines depended firstly on their hydrophobicity, and secondly on electronic (reactivity, propensity to be metabolically transformed) and steric properties. On the contrary, the difference between carcinogenic and non-carcinogenic aromatic amines depended mainly on electronic and steric properties. These QSARs can be used directly for estimating the carcinogenicity of aromatic amines. A two-step prediction is possible: (1) estimation of yes/no activity; (2) if the answer from step 1 is yes, then prediction of the degree of potency. The QSARs for rodent carcinogenicity were put in a wider context by comparing them with those for: (a) Salmonella mutagenicity; (b) general toxicity; (c) enzymatic reactions; (d) physical-chemical reactions. This comparative QSAR exercise generated a coherent global picture of the action mechanisms of the aromatic amines. The QSARs for carcinogenicity were similar to those for Salmonella mutagenicity, thus pointing to a similar mechanism of action. On the contrary, the general toxicity QSARs (both in vitro and in vivo systems) were mostly based on hydrophobicity, pointing to an aspecific mechanism of action much simpler than that for carcinogenicity and mutagenicity. The oxidation of the amines (first step in the main metabolic pathway leading to carcinogenic and mutagenic species) had identical QSARs in both enzymatic and physical-chemical systems, thus providing evidence for the link between simple chemical reactions and those in biological systems. The results show that it is possible to generate mechanistically and statistically sound QSAR models for rodent carcinogenicity, and indirectly that the rodent bioassay is a reliable source of good quality data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号