首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In prior work we detected no significant inbreeding depression for pollen and ovule production in the highly selfing Mimulus micranthus, but both characters showed high inbreeding depression in the mixed-mating M. guttatus. The goal of this study was to determine if the genetic load for these traits in M. guttatus could be purged in a program of enforced selfing. These characters should have been under much stronger selection in our artificial breeding program than previously reported characters such as biomass and total flower production because, for example, plants unable to produce viable pollen could not contribute to future generations. Purging of genetic load was investigated at the level of both the population and the individual maternal line within two populations of M. guttatus. Mean ovule number, pollen number, and pollen viability declined significantly as plants became more inbred. The mean performance of outcross progeny generated from crosses between pairs of maternal inbred lines always exceeded that of self progeny and was fairly constant for each trait through all five generations. The consistent performance of outcross progeny and the universally negative relationships between performance and degree of inbreeding are interpreted as evidence for the weakness of selection relative to the quick fixation of deleterious alleles due to drift during the inbreeding process. The selective removal (purging) of deleterious alleles from our population would have been revealed by an increase in performance of outcross progeny or an attenuation of the effects of increasing homozygosity. The relationships between the mean of each of these traits and the expected inbreeding coefficient were linear, but one population displayed a significant negative curvilinear relationship between the log of male fertility (a function of pollen number and viability) and the inbreeding coefficient. The generally linear form of the responses to inbreeding were taken as evidence consistent with an additive model of gene action, but the negative curvilinear relationship between male fertility and the inbreeding coefficient suggested reinforcing epistasis. Within both populations there was significant genetic variation among maternal lineages for the response to inbreeding in all traits. Although all inbred lineages declined at least somewhat in performance, several maternal lines maintained levels of performance just below outcross means even after four or five generations of selfing. We suggest that selection among maternal lines will have a greater effect than selecting within lines in lowering the genetic load of populations.  相似文献   

2.
? Premise of the study: Embryonic inbreeding depression is a key influence on mating system evolution and can be difficult to estimate in self-incompatible species. A pollen chase experiment was used to estimate the magnitude of embryonic inbreeding depression in Costa Rican Witheringia solanacea, a species polymorphic for self-incompatibility (SI). In a pollen chase experiment, bud self-pollinations are followed after anthesis by outcross pollinations, with a comparable pair of outcross pollinations used as a control. Lowered seed set for the self-precedence treatment indicates embryonic inbreeding depression. ? Methods: Embryonic inbreeding depression was assayed for self-compatible (SC) individuals and for SI plants from two populations that differ quantitatively in the onset and enzymatic activity of their SI response. Microsatellite markers were used to assay the selfing rate of a sample of surviving progeny from the prior self-pollination treatment. ? Key results: SC individuals showed no evidence of embryonic inbreeding depression. In SI plants, prior self-pollination reduced seed number by 28-70%, depending on population. Microsatellite genotyping revealed that embryonic inbreeding depression was even more severe than estimated by the phenotypic data: for mature fruits resulting from self-pollination precedence, the majority of the progeny were the result of outcross fertilization. ? Conclusions: Lineage-specific purging of recessive lethals has accompanied the evolution of SC in this species. SI populations show contrasting levels of embryonic inbreeding depression, with nearly complete embryonic lethality upon selfing in the Monteverde population. In the face of high embryonic inbreeding depression, an increase in selfing rate can evidently occur only under severe pollen limitation.  相似文献   

3.
The consequences of selfing were examined for a population of self-compatible, protandrous, Sabatia angularis L. (Gentianaceae). Field-collected plants were hand-pollinated in the greenhouse to produce selfed progeny and outcrossed progeny from parents separated by a maximum of 5 m (near-outcross) and 85 m (far-outcross) in the field. Self, near-outcross, and far-outcross half sib progeny were grown in the greenhouse, a garden plot, and their native habitat. Progeny were compared by multiplicative fitness functions based on seed production per hand-pollination, seed germination, rosette formation, survival to reproduction, and reproduction in each environment. Variation in reproduction among progeny groups was influenced by the environment in which they were grown. Significant inbreeding depression was detected between the self and far-outcross progeny in each environment. Only the natural environment demonstrated a greater than 50% reduction in relative fitness of self compared to near-outcross progeny. This is of biological relevance since near-outcross hand-pollinations occurred within the range of pollen and seed dispersal suggesting that inbreeding depression in S. angularis is strong enough to maintain outcrossing in the study population. In the field, the far-outcross progeny outperformed the near-outcross progeny suggesting local population substructure. The magnitude of the inbreeding depression expressed among the self progeny was the greatest in the field, intermediate in the garden plot, and the least in the greenhouse.  相似文献   

4.
The evolution of self‐fertilization is one of the most commonly traversed transitions in flowering plants, with profound implications for population genetic structure and evolutionary potential. We investigated factors influencing this transition using Witheringia solanacea, a predominantly self‐incompatible (SI) species within which self‐compatible (SC) genotypes have been identified. We showed that self‐compatibility in this species segregates with variation at the S‐locus as inherited by plants in F1 and F2 generations. To examine reproductive assurance and the transmission advantage of selfing, we placed SC and SI genotypes in genetically replicated gardens and monitored male and female reproductive success, as well as selfing rates of SC plants. Self‐compatibility did not lead to increased fruit or seed set, even under conditions of pollinator scarcity, and the realized selfing rate of SC plants was less than 10%. SC plants had higher fruit abortion rates, consistent with previous evidence showing strong inbreeding depression at the embryonic stage. Although the selfing allele did not provide reproductive assurance under observed conditions, it also did not cause pollen discounting, so the transmission advantage of selfing should promote its spread. Given observed numbers of S‐alleles and selfing rates, self‐compatibility should spread even under conditions of exceedingly high initial inbreeding depression.  相似文献   

5.
Inbreeding depression and selfing rates were investigated in Schiedea membranacea (Caryophyllaceae), a hermaphroditic species endemic to the Hawaiian Islands. Most theoretical models predict high inbreeding depression in outcrossing hermaphroditic species and low inbreeding depression in inbreeding species. Although high outcrossing rates and high levels of inbreeding depression are characteristic of many species of Schiedea, self- fertilization is common among relatives of hermaphroditic S. membranacea, and high selfing rates and low levels of inbreeding depression were predicted in this species. Sixteen individuals grown in the greenhouse were used to produce selfed and outcrossed progeny. Inbreeding depression, which was evident throughout the stages measured (percentage viable seeds per capsule, mean seed mass, percentage seed germination, percentage seedling survival, and biomass after 8 mo), averaged 0.70. Inbreeding depression among maternal families varied significantly for all measured traits and ranged from −0.12 to 0.97. Using isozyme analysis, the multilocus selfing rate varied from 0.13 to 0.38 over 4 yr. Contrary to the initial prediction of high selfing and low inbreeding depression based on phylogenetic relationships within Schiedea, low selfing rates and high levels of inbreeding depression were found in S. membranacea. These results indicate that outcrossing is stable in this species and maintained by high levels of inbreeding depression.  相似文献   

6.
In plants, selfing and outcrossing may be affected by maternal mate choice and competition among pollen and zygotes. To evaluate this in Silene nutans, we pollinated plants with mixtures of (1) self‐ and outcross pollen and (2) pollen from within a population and from another population. Pollen fitness and zygote survival was estimated from the zygote survival and paternity of seeds. Self pollen had a lower fitness than outcross pollen, and selfed zygotes were less likely, or as likely, to develop into seeds. Hybrid zygotes survived as frequently or more than local zygotes, and pollen from one of the populations fertilized most ovules in both populations. Our results thus indicate strong maternal discrimination against selfing, whereas the success of outbreeding seems mostly affected by divergent pollen performance. The implications for the evolution of maternal mate choice are discussed.  相似文献   

7.
We experimentally examined the effects of pollen composition on progeny fitness in the self-compatible, annual plant Chamaecrista fasciculata. Plants were hand-pollinated with single- and mixed-donor pollen loads and with various combinations of self- and outcross pollen. For outcrosses, pollen was obtained from two plants at each of two different distances within the same subpopulation as the female parent. Seedlings from all crosses were planted back into the maternal site. For single-donor crosses, seed weight, progeny fruit production, and overall relative fitness were significantly higher for outcross, as compared to self-treatments, but we found no significant differences among outcross sources. For all fitness components, the value observed for crosses derived from mixed loads was intermediate between the values for the singledonor crosses that comprised the mixed load. In a parallel experiment, an analysis of seed paternity of progeny which resulted from pollen mixtures of self- and outcross pollen showed random paternity in two maternal families, and significant excess of outcross in one family. Our results demonstrate that mixed pollen loads do not confer a fitness advantage to the maternal plant in this species, and that the fitness observed for progeny derived from mixed loads is generally consistent with a hypothesis of random paternity.  相似文献   

8.
Hermaphroditic plants can potentially self‐fertilize, but most possess adaptations that promote outcrossing. However, evolutionary transitions to higher selfing rates are frequent. Selfing comes with a transmission advantage over outcrossing, but self‐progeny may suffer from inbreeding depression, which forms the main barrier to the evolution of higher selfing rates. Here, we assessed inbreeding depression in the North American herb Arabidopsis lyrata, which is normally self‐incompatible, with a low frequency of self‐compatible plants. However, a few populations have become fixed for self‐compatibility and have high selfing rates. Under greenhouse conditions, we estimated mean inbreeding depression per seed (based on cumulative vegetative performance calculated as the product of germination, survival and aboveground biomass) to be 0.34 for six outcrossing populations, and 0.26 for five selfing populations. Exposing plants to drought and inducing defences with jasmonic acid did not magnify these estimates. For outcrossing populations, however, inbreeding depression per seed may underestimate true levels of inbreeding depression, because self‐incompatible plants showed strong reductions in seed set after (enforced) selfing. Inbreeding‐depression estimates incorporating seed set averaged 0.63 for outcrossing populations (compared to 0.30 for selfing populations). However, this is likely an overestimate because exposing plants to 5% CO2 to circumvent self‐incompatibility to produce selfed seed might leave residual effects of self‐incompatibility that contribute to reduced seed set. Nevertheless, our estimates of inbreeding depression were clearly lower than previous estimates based on the same performance traits in outcrossing European populations of A. lyrata, which may help explain why selfing could evolve in North American A. lyrata.  相似文献   

9.
Using the long-styled, self-compatible species Lobelia cardinalis, I examined the relative abilities of self pollen and two outcross pollen sources to fertilize ovules when these three kinds of pollen were applied simultaneously to stigmas. Paternity was determined electrophoretically for 712 progeny of 25 seed parents. Two hypotheses were tested. First, it was hypothesized that self pollen would be less effective than outcross pollen at fertilizing ovules, as a means of reducing the selfing rate. Outcross pollen outperformed self pollen in eight of the 25 seed parents, self outperformed outcross in five, and they were competitively indistinguishable in 12. The mean proportion of offspring produced by self pollen was not significantly different from the value expected under random tube growth and fertilization. The rate of self-fertilization is therefore determined by prepollination events. Second, to test one stage of the sexual-selection process, it was hypothesized that the pollen of some individuals would outcompete that of others, across a range of maternal plants. The 25 maternal parents were divided into five groups of approximately five individuals. Each member of a group received pollen from the same two outcross pollen sources (as well as from itself). With offspring pooled across seed parents, one outcross pollen parent outcompeted the other in two of the five groups. In two other groups, pollen sources were competitively superior or inferior depending on the maternal parent. Overall, pollen donors were competitively indistinguishable in 13 of 25 maternal parents. There is thus no evidence for strong postpollination sexual selection. If such selection is present, it is weak, and its importance to the evolution of style length in Lobelia cardinalis requires other kinds of study.  相似文献   

10.
Sex allocation by simultaneous hermaphrodites is theoretically influenced by selfing rate, which is in turn influenced by the benefits of enhanced genomic transmission and reproductive assurance relative to the cost of inbreeding depression. The experimental investigation of these influences in seed plants has a rich pedigree, yet although such an approach is equally relevant to colonial invertebrates, which globally dominate subtidal communities on firm substrata, such studies have been scarce. We reared self‐compatible genets of the marine bryozoan Celleporella hyalina s.l. in the presence and absence of allosperm, and used molecular genetic markers for paternity analysis of progeny to test theoretical predictions that: (1) genets from focal populations with high selfing rates show less inbreeding depression than from focal populations with low selfing rates; (2) genets whose selfed progeny show inbreeding depression prefer outcross sperm (allosperm); and (3) genets bias sex allocation toward female function when reared in reproductive isolation. Offspring survivorship and paternity analysis were used to estimate levels of inbreeding depression and preference for outcrossing or selfing. Sex allocation was assessed by counting male and female zooids. As predicted, inbreeding depression was severe in selfed progeny of genets derived from the populations with low self‐compatibility rates, but, with one exception, was not detected in selfed progeny of genets derived from the populations with higher self‐compatibility rates. Also, as predicted, genets whose selfed progeny showed inbreeding depression preferred outcrossing, and a genet whose selfed progeny did not show inbreeding depression preferred selfing. Contrary to prediction, sex allocation in the majority of genets was not influenced by reproductive isolation. Lack of economy of male function may reflect the over‐riding influence of allosperm‐competition in typically dense breeding populations offering good opportunity for outcrossing. We suggest that hermaphroditism may be a plesiomorphic character of the crown group Bryozoa, prevented by phylogenetic constraint from being replaced by gonochorism and therefore not necessarily adaptive in all extant clades. © 2009 The Linnean Society of London, Biological Journal of the Linnean Society, 2009, 98 , 519–531.  相似文献   

11.
The evolution of selfing taxa from outcrossing ancestors has occurred repeatedly and is the subject of many theoretical models, yet few empirical studies have examined the immediate consequences of inbreeding in a population with variable expression of self-incompatibility. Because self-incompatibility breaks down with floral age in Campanula rapunculoides, we were able to mate outbred and selfed maternal plants in a crossing design which produced progeny with inbreeding coefficients of 0, 0.25, 0.50 and 0.75. Cumulative inbreeding depression in plants that were selfed for one generation was very high in families derived from strongly self-incompatible plants (average δ = 0.98), and somewhat lower in families derived from plants with weaker expression of self-incompatibility (average δ = 0.90). Relative to outbred progeny, inbred progeny produced fewer seeds, had lower rates of germination, less vegetative growth and fewer flowers per plant. Inbred progeny also took longer to germinate, and longer to produce a first leaf and to flower. Interestingly, inbred plants also produced 40% fewer seeds than outcrossed plants (t-test P < 0.001) even when mated to the same, unrelated pollen donor, suggesting that inbreeding can produce profound maternal effects. Most importantly, our results demonstrate that progeny derived from plants with stronger expression of self-incompatibility exhibited greater levels of inbreeding depression than progeny from plants with weaker expression of self-incompatibility. Moreover, the decline in fitness (cumulative, ln-transformed) over the four inbreeding levels was steeper for the progeny of the strongly self-incompatible lineages. These empirical results suggest that inbreeding depression and mating system phenotype have the potential to coevolve.  相似文献   

12.
Inbreeding depression (δ) is a major selective force favoring outcrossing in flowering plants. Many phenotypic and genetic models of the evolution of selfing conclude that complete outcrossing should evolve whenever inbreeding depression is greater than one-half, otherwise selfing should evolve. Recent theoretical work, however, has challenged this view and emphasized (1) the importance of variation in inbreeding depression among individuals within a population; and (2) the nature of gene action between deleterious mutations at different loci (epistasis) as important determinants for the evolution of plant mating systems. The focus of this study was to examine the maintenance of inbreeding depression and the relationship between inbreeding level and inbreeding depression at both the population and the individual level in one population of the partially self-fertilizing plant Plantago coronopus (L.). Maternal plants, randomly selected from an area of about 50 m2 in a natural population, were used to establish lines with expected inbreeding coefficients (f) of 0, 0.25, 0.50, 0.75, and 0.875. Inbreeding depression was estimated both in the greenhouse and at the site of origin of the maternal plants by comparing growth, survival, flowering, and seed production of the progeny with different inbreeding coefficients. No significant inbreeding depression for these fitness traits was detected in the greenhouse after 16 weeks. This was in strong contrast to the field, where the traits all displayed significant inbreeding depression and declined with increased inbreeding. The results were consistent with the view that mutation to mildly deleterious alleles is the primary cause of inbreeding depression. At the family level, significantly different maternal line responses (maternal parent × inbreeding level interaction) provide a mechanism for the invasion of a selfing variant into the population through any maternal line exhibiting purging of its genetic load. At the population level, evidence for synergistic epistasis was detected for the probability of flowering, but not for total seed production. At the family level, however, a significant interaction between inbreeding level and maternal families for both traits was observed, indicating that epistasis could play a role in the expression of inbreeding depression among maternal lines.  相似文献   

13.
Greenhouse pollinations were performed to determine whether early-acting inbreeding depression is contributing to low levels of self-fertility in three Vaccinium species: V. myrtilloides Michaux, V. angustifolium Aiton, and V. corymbosum L. All three species showed a significant reduction in self fruit set and in the proportion of fertilized ovules that developed into mature seed in self compared to outcross fruit. Reductions were more severe in V. myrtilloides and V. angustifolium than in V. corymbosum; however, early-acting inbreeding depression appeared to be the primary factor limiting self-fertility in all three species. Evidence for early- acting inbreeding depression included the presence and higher proportion of aborted ovules in self fruit than in outcross fruit, a correlation between levels of self and outcross seed set, and pollen chase experiments demonstrating that self-pollen does fertilize the ovules. Self-fertility in the three species was probably influenced by levels of genetic load, ploidy level and outcrossing rates. Received: 10 December 1999 / Revision accepted: 20 June 2000  相似文献   

14.
Most models of mating-system evolution predict inbreeding depression to be low in inbred populations due to the purging of deleterious recessive alleles. This paper presents estimates of outcrossing rates and inbreeding depression for two highly selfing, monoecious annuals Begonia hirsuta and B. semiovata. Outcrossing rates were estimated using isozyme polymorphisms, and the magnitude of inbreeding depression was quantified by growing progeny in the greenhouse produced through controlled selfing and outcrossing. The estimated single-locus outcrossing rate was 0.03 ± 0.01 (SE) for B. hirsuta and 0.05 ± 0.02 for B. semiovata. In both species, the seed production of selfed flowers was on average 12% lower than that of outcrossed flowers (B. hirsuta P = 0.07, B. semiovata P < 0.05, mixed model ANOVAs). There was no significant effect of crosstype on germination rate or survival, but selfed offspring had a lower dry mass than outcrossed offspring 18 weeks after planting in both species (on average 18% lower in B. hirsuta and 31% lower in B. semiovata). Plants that were the products of selfing began flowering later than plants produced through outcrossing in B. semiovata, but not in B. hirsuta. The effects of crosstype on seed production (B. semiovata), days to first flower and offspring dry mass (both species) varied among maternal parents, as indicated by significant crosstype x maternal parent interactions for these characters. Both species showed significant inbreeding depression for total fitness (estimated as the product of seed production, germination rate, survival and dry mass at 18 weeks). In B. hirsuta, the average total inbreeding depression was 22% (range -57%-98%; N = 23 maternal parents), and in B. semiovata, it was 42% (-11%-84%; N = 21). This study demonstrates that highly selfing populations can harbor substantial inbreeding depression. Our findings are consistent with the hypothesis that a high mutation rate to mildly deleterious alleles contributes to the maintenance of inbreeding depression in selfing populations.  相似文献   

15.
Flowers frequently receive both self (S) and outcross (OC) pollen, but S pollen often sires proportionally fewer seeds. Failure of S pollen can reflect evolved mechanisms that promote outcrossing and/or inbreeding depression expressed during seed development. The relative importance of these two processes was investigated in Aquilegia caerulea, a self-compatible perennial herb. In the field I performed single-donor (S or OC) and mixed-donor (S plus OC) pollinations to compare the relative success of both pollen types at various stages from pollen germination to seed maturity. Single-donor S pollinations produced significantly fewer and lighter seeds (x decrease = 12% and 3%, respectively) than OC pollinations. Abortion rates differed by an average of 38% whereas fertilization rates differed by only 5%, indicating that most differences in seed number arose postzygotically. This suggests that inbreeding depression was responsible for most failure of S pollen. One prezygotic effect measured was that 10% fewer S than OC pollen tubes reached ovaries after 42 hr, suggesting S pollen might fertilize proportionately fewer ovules after mixed pollination. Using allozyme markers, I found mixed-donor pollinations produced significantly more and heavier outcrossed than selfed seeds. However, the proportion of selfed seed, fertilized ovules, and aborted seeds for mixed-donor fruits were each predictable from pollen performance in single-donor fruits, suggesting that differential paternity is best explained by inbreeding depression during seed development. Even given these similarities between mixed- and single-donor fruits in the relative performance of S and OC pollen, both individual seed weight and seed set were significantly higher in multiply-sired fruits.  相似文献   

16.
Throughout southeastern North America, the annual morning glory Ipomoea purpurea exhibits a polymorphism at a locus that influences the intensity of floral pigmentation. Previous studies have shown that when rare, the homozygous white genotype has a greater selfing rate than the homozygous dark genotype. In the absence of pollen discounting (a reduction in transmission of pollen to other plants by genotypes that exhibit increased selfing) and inbreeding depression, this increased selfing rate should favor the white allele. Experiments reported here confirm that the white genotype has elevated selfing rates when rare but indicate pollen discounting is not associated with elevated selfing. Rather, white genotypes contribute more pollen to the outcross pollen pool. The disparity between genotypes in both selfing rates and success at pollen contribution to other plants disappears at intermediate to high frequencies of the white allele. Pollinator movements are consistent with the pattern of selfing. These results suggest that elevated selfing and enhanced success at pollen donation contribute to maintenance of the white allele in natural populations of morning glories.  相似文献   

17.
In plants capable of both self-fertilization and outcrossing, the selfing rate depends on the proportion of self pollen in pollen loads and on the relative postpollination success of self pollen in siring offspring. While the composition of pollen loads is subject to unpredictable variation, paternity success of self vs. outcross pollen following pollen deposition may be controlled by maternal plants. This study examined postpollination paternity success in Clarkia gracilis ssp. sonomensis, in which deposition of self pollen is common. Pure loads of self and outcross pollen produced similar numbers of mature seeds, but equal mixtures of self and outcross pollen yielded more than three times as many outcrossed offspring as selfed offspring. The finding that the paternity success of self pollen depends on whether it is in competition with outcross pollen helps to explain an earlier finding that the selfing rate in experimental populations was highest when pollinator activity was lowest. Cryptic self-incompatibility allows paternity by self pollen when outcross pollen is unavailable.  相似文献   

18.
Floral traits that increase self-fertilization are expected to spread unless countered by the effects of inbreeding depression, pollen discounting (reduced outcross pollen success by individuals with increased rates of self-fertilization), or both. Few studies have attempted to measure pollen discounting because to do so requires estimating the male outcrossing success of plants that differ in selfing rate. In natural populations of tristylous Eichhornia paniculata, selfing variants of the mid-styled morph are usually absent from populations containing all three style morphs but often predominate in nontrimorphic populations. We used experimental garden populations of genetically marked plants to investigate whether the effects of population morph structure on relative gamete transmission by unmodified (M) and selfing variants (M‘) of the mid-styled morph could explain their observed distribution. Transmission through ovules and self and outcross pollen by plants of the M and M’ morphs were compared under trimorphic, dimorphic (S morph absent), and monomorphic (L and S morphs absent) population structures. Neither population structure nor floral morphology affected female reproductive success, but both had strong effects on the relative transmission of male gametes. The frequency of self-fertilization in the M' morph was consistently higher than that of the M morph under all morph structures, and the frequency of self-fertilization by both morphs increased as morph diversity of experimental populations declined. In trimorphic populations, total transmission by the M and M' morphs did not differ. The small, nonsignificant increase in selfing by the M' relative to the M morph was balanced by decreased outcross siring success, particularly on the S morph. In populations lacking the S morph, male gamete transmission by the M' morph was approximately 1.5 times greater than that by the M morph because of both increased selfing and increased success through outcross pollen donation. Therefore, gamete transmission strongly favored the M' morph only in the absence of the S morph, a result consistent with the distribution of the M' morph in nature. This study indicates that floral traits that alter the selfing rate can have large and context-dependent influences on outcross pollen donation.  相似文献   

19.
Several recent theoretical considerations of mating-system evolution predict within-population covariation between levels of inbreeding depression and genetically controlled mating-system characters. If inbreeding depression is caused by deleterious recessive alleles, families with characters that promote self-pollination should show lower levels of inbreeding depression than families with characters that promote outcrossing. The converse is expected if inbreeding depression is due to overdominant allelic interactions. Whether these associations between mating-system and viability loci evolve will have important consequences for mating-system evolution. The evolution of selfing within the genus Mimulus is associated with a reduction in stigma-anther separation (i.e., a loss of herkogamy) and high autogamous seed set. In this study we compared families from two M. guttatus populations that differed genetically in their degree of stigma-anther separation. In one of these populations we also compared families that differed genetically in the degree to which they autogamously set seed in a pollinator-free greenhouse. Dams often differed significantly in levels of inbreeding depression for aboveground biomass and flower production, but variation in inbreeding depression was never explained by herkogamy class or autogamy class. Several factors might account for why families with traits associated with selfing did not show lower inbreeding depression, and these are discussed. Our study also demonstrated significant variation among self progeny from a given female likely due to differences in pollination date and position of fruit maturation. The detection of significant dam × sire interactions suggests biparental inbreeding or differences in combining ability for specific pairs of parents.  相似文献   

20.
Estimates of inbreeding depression obtained from the literature were used to evaluate the association between inbreeding depression and the degree of self-fertilization in natural plant populations. Theoretical models predict that the magnitude of inbreeding depression will decrease with inbreeding as deleterious recessive alleles are expressed and purged through selection. If selection acts differentially among life history stages and deleterious effects are uncorrelated among stages, then the timing of inbreeding depression may also evolve with inbreeding. Estimates of cumulative inbreeding depression and stage-specific inbreeding depression (four stages: seed production of parent, germination, juvenile survival, and growth/reproduction) were compiled for 79 populations (using means of replicates, N = 62) comprising 54 species from 23 families of vascular plants. Where available, data on the mating system also were collected and used as a measure of inbreeding history. A significant negative correlation was found between cumulative inbreeding depression and the primary selfing rate for the combined sample of angiosperms (N = 35) and gymnosperms (N = 9); the correlation was significant for angiosperms but not gymnosperms examined separately. The average inbreeding depression in predominantly selfing species (δ = 0.23) was significantly less (43%) than that in predominantly outcrossing species (δ = 0.53). These results support the theoretical prediction that selfing reduces the magnitude of inbreeding depression. Most self-fertilizing species expressed the majority of their inbreeding depression late in the life cycle, at the stage of growth/reproduction (14 of 18 species), whereas outcrossing species expressed much of their inbreeding depression either early, at seed production (17 of 40 species), or late (19 species). For species with four life stages examined, selfing and outcrossing species differed in the magnitude of inbreeding depression at the stage of seed production (selfing δ = 0.05, N = 11; outcrossing δ = 0.32, N = 31), germination (selfing δ = 0.02, outcrossing δ = 0.12), and survival to reproduction (selfing δ = 0.04, outcrossing δ = 0.15), but not at growth and reproduction (selfing δ = 0.21, outcrossing δ = 0.27); inbreeding depression in selfers relative to outcrossers increased from early to late life stages. These results support the hypothesis that most early acting inbreeding depression is due to recessive lethals and can be purged through inbreeding, whereas much of the late-acting inbreeding depression is due to weakly deleterious mutations and is very difficult to purge, even under extreme inbreeding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号