首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
The anatomy and organization of the stem vascular system was analyzed in representative taxa of Nymphaea (subgenera Anecphya, Lotos, and Brachyceras). The stem vascular system consists of a series of concentric axial stem bundles from which traces to lateral organs depart. At the node each leaf is supplied with a median and two lateral leaf traces. At the same level a root trace supplies vascular tissue to adventitious roots borne on the leaf base. Flowers and vegetative buds occupy leaf sites in the genetic spiral and in the parastichies seen on the stem exterior. Certain leaves have flowers related to them spatially and by vascular association. Flowers (and similarly vegetative buds) are vascularized by a peduncle trace that arises from a peduncle fusion bundle located in the pith. The peduncle fusion bundle is formed by the fusion of vascular tissue derived from axial stem bundles that supply traces to certain leaves. The organization of the vascular system in the investigated taxa of Nymphaea is unique to angiosperms but similar to other subgenera of Nymphaea.  相似文献   

2.
Six species of Cabomba have been examined although the anatomy of the vegetative axes is based on the study of only C. caroliniana and C. palaeformis. A plant consists of an erect short shoot with decussate leaves which bears axillary flowering shoots and rhizomes. A rhizome bears decussate leaves and may also form axillary flowering shoots or turn upward and become a new short shoot. The phyllotaxies of the flowering shoots are proximately decussate or ternate (C. piauhyensis). The flowering shoots with decussate phyllotaxy change to 1/3 phyllotaxy distally; they bear axillary flowers proximally, and extra-axillary flowers distally. Flowering shoots with ternate phyllotaxy do not change distally but each produces first axillary and then extra-axillary flowers. Decussate vegetative axes and flowering shoots have four vascular bundles; ternate vegetative axes and flowering shoots have six vascular bundles, distantly paired into two or three vascular bundle-pairs, respectively. An elliptical vascular plexus occurs at each node. Each leaf receives one bundle-pair from one trace and each flower three bundle-pairs. A two-level receptacular vascular plexus occurs in flowers; the proximal, larger portion provides traces to perianth and stamens and the distal, smaller portion becomes carpellary traces. Each of the three sepals typically receives five branch traces from a basal principal trace, and each of the three petals receives, typically, three branch traces from a basal principal trace. Sepals and petals generally occur in a single, basally connate whorl. Each stamen receives one trace. Each stamen of three-stamen flowers is opposite a petal; each stamen of six-stamen flowers is aligned with an interval between a petal and adjacent sepal. Each staminal trace, which is just above the principal petal trace, in a three-petal flower, is frequently adnate to the latter trace. Each carpel receives one principal trace from the distal, small extension of the receptacular plexus, and each principal trace becomes three conventional veins of a carpel. Ovules may be borne directly over one of the veins or in any position between veins and are supplied by branches of the nearest vein or nearest two veins. All traces, ovular supply veins and the proximal portions of all veins are amphicribral. The several anatomical and morphological differences in vegetative axes and flowers between Cabomba and Brasenia suggest a greater taxonomic distance between the two genera than commonly supposed. It is suggested that extra-axillary flowers in 1/3 helical and ternate flowering shoots of Cabomba might be advantageous in preventing anthesis of flowers beneath peltate leaves. The aberrant position might be the initial evolutionary step toward what, in other nymphaeaceous genera, has shifted each flower to an adjacent helix. It is proposed that the zigzag stem accompanying the trigonal and sympodial flowering shoots may offer greater stability and floatability in water than the monopodial form. Several suggestions are offered for the variability of ovular positions: 1) the variability is a vestige of former laminar placentation in conduplicate carpels; 2) it is a vestige of a primitive condition antedating the current close association of ovules with ventral carpellary veins; 3) it is an early stage of evolution which might have terminated in laminar placentation and cantharophily, but which was replaced by a trend toward myophily.  相似文献   

3.
Leaves of Gleditsia triacanthos L. are served by three leaf traces that subdivide in the node to produce subsidiary bundles. The subsidiary bundles differentiate basipetally in the stem and acropetally in the petiole using the original leaf trace bundles (those that developed acropetally) as templates for their development. Within the pulvinus, the acropetal bundle components merge to form the rachis vasculature consisting of a semicircular arc and a ventral chord; several small bundles diverge to form ventral ridge bundles. Mixing of bundles occurs during vascularization of the lateral rachillae axes. Each diverging rachilla axis receives bundles from the semicircular arc, the ventral chord, and a ridge bundle in a relatively reproducible and predictable pattern. During this process the main rachis vasculature is gradually depleted, but the ridge bundles are reconstituted following divergence of each rachilla pair. The distal rachilla pair is vascularized by a bilateral partitioning of the entire rachis vasculature; a remnant of the central leaf trace terminates in a subulate terminal appendage. Vascularization of the bipinnate G. triacanthos leaf is compared to that of the simple Populus deltoides leaf.  相似文献   

4.
Organization of the stem vascular system was analyzed in Victoria species and Euryale ferox. The stem vascular system consists of a number of concentrically-organized continuing axial stem bundles. At the node each leaf is supplied with a root trace, two lateral leaf traces, and a median leaf trace. A peduncle fusion bundle is also present at each node. The peduncle fusion bundle supplies vascular tissue to the median leaf trace and to the peduncle trace. Flowers are nonmedian axillary but have specific vascular, spatial, and developmental relationships to leaves in a manner that resembles the genus Nymphaea. On the basis of the analysis of the stem vascular system, Victoria and Euryale are more similar to each other than to Nymphaea. However, the vascular system in Victoria and Euryale is similar enough to Nymphaea to suggest that Nymphaea, Victoria, and Euryale form a natural taxon of unique angiosperms. The organization of the stem vascular system in Victoria and Euryale is dicotyledonous.  相似文献   

5.
Twenty-two genera representing sixty-two species of Cunoniaceae and Davidsonia were examined with respect to floral anatomy. Sepals are vascularized by three traces with the lateral traces of adjacent sepals united. Pancheria is unique for the family with species in which the sepals are vascularized by a single, undivided bundle. Petals, when present, and stamens, are uniformly one-trace structures. A general tendency exists within the family for the principal floral bundles to unite in various ways, with fusions evident between calyx, corolla, and androecial vascular supplies. Carpel number ranges from two to five and the gynoecium is generally surrounded by a prominent disc. Gynoecia of Ceratopetalum and Pullea are “half-inferior.” The number of ovules per carpel locule ranges from one to numerous. Ventral carpel sutures range from open to completely sealed at the level of placentation. Carpels of the apocarpous genus Spiraeanthemum (incl. Acsmithia) are vascularized by a dorsal bundle and either three or four bundles constituting the ovular and wing vasculation in the ventral position, a condition unlike other members of the family. Ovules are supplied by the median ventral bundle. More advanced bicarpellate gynoecia within the family are predominately vascularized by a dorsal and two ventral bundles although a variable number of additional lateral wall traces may be present. A major trend exists toward fusion of the ventral bundles of adjacent carpels in the ovary of both bicarpellate and multicarpellate plants. At the base of the styles the fused ventral strands separate and extend along with the dorsal carpellary bundles into styles of adjacent carpels. In Pullea the ventral bundles terminate within the ovules. The united ventral carpellary bundles in Aphanopetalum, Gillbeea, and Aistopetalum lie in the plane of the septa separating adjacent carpels. Ovules are vascularized by traces originating from the vascular cylinder at the base of the gynoecium or by traces branching from the ventral bundles. Ovular traces in each carpel are united, or remain as discrete bundles, prior to entering the placenta. Tannin and druses are common throughout all floral parts. Although floral anatomy generally supports the position of Cunoniaceae near Saxifragaceae and Davidsoniaceae, the evolutionary relationship of the Cunoniaceae to the Dilleniaceae is uncertain.  相似文献   

6.
The vascular system in the stems of Nymphaea odorata and N. mexicana subgenus Castalia, and N. blanda subgenus Hydrocallis consists of continuing axial stem bundles with eight being the usual number. The stem bundles are concentric and xylem maturation is mesarch. Xylem elements consist of tracheids with spirally or weakly reticulated secondary wall thickenings. The phloem is made up of companion cells and short sieve tube members with simple sieve plates that are nearly transverse. At the node each leaf is supplied with two lateral leaf traces and a median leaf trace. A root trace is also present and supplies a series of adventitious roots borne on the leaf base. Flowers and vegetative buds develop directly from the apical meristem and occupy leaf sites in a single genetic spiral. Each flower or vegetative bud is related to a leaf through specific spatial and vascular association. The related leaf is separated from the related flower by three members of the genetic spiral and occupies an adjacent orthostichy. Vascular tissue for the related flower arises from the inner surfaces of the four stem bundles supplying leaf traces to the related leaf and extends through the pith to the flower or vegetative bud via a peduncle fusion bundle. The vascular system organization in the investigated species of Castalia and Hydrocallis is not typically monocotyledonous or dicotyledonous, nor can it be considered transitional between them. The ontogeny of the vascular system is similar to typical dicotyledons and the investigated species of Nymphaea can, therefore, be considered to represent highly specialized and modified dicotyledons.  相似文献   

7.
The floral anatomy and morphology of 26 species from the Saxifragoideae and three from the Iteoideae are described and compared. The flowers of the Saxifragoideae are predominantly actinomorphic, partially epigynous and/or perigynous, and pentamerous, with two carpels which bear numerous ovules. There is usually some degree of independence between carpels, and the normally separate styles possess both a canal and transmitting tissue. Generally, staminodia are absent and nectariferous tissue, which is not vascularized, is present. The subfamily is characterized by large multicellular trichomes with globular, often glandular, heads. Placentation may be parietal, axile, or transitional between the two; parietal appears to be a derived condition in the subfamily. The vascular cylinder in the pedicel generally consists of several to many discrete bundles from which diverge ten compound traces at the base of the receptacle, leaving an inner cylinder of vascular strands that coalesce at a higher level into either as many ventral bundles as carpels or twice that number. In the former case, each ventral bundle consists of one-half of the vascular supply to each adjacent carpel and separates into individual ventral strands in the distal half of the ovary. The ventral bundles provide vascular traces to the ovules and, along with the dorsals, extend up the style to the stigma. Each trace diverging in a sepal plane typically supplies one or more carpel-wall bundles, a median sepal bundle, and a stamen bundle. Each petal-plane trace usually provides one or more carpel-wall bundles, a lateral trace to each adjacent sepal, a petal bundle and, in flowers with ten stamens, a stamen bundle. Dorsal carpel bundles are usually recognizable and may originate from traces in either perianth plane. While the position of Ribes remains problematical, its floral structure does not easily exclude it from the Saxifragoideae. Floral structure in the Iteoideae is remarkably similar to that in the Saxifragoideae, the main differences being a lesser degree of independence between carpels, generally narrower placentae with somewhat fewer ovules, and the presence of only unicellular, acutely pointed epidermal hairs as opposed to the relatively complex, multicellular trichomes prevalent in the Saxifragoideae.  相似文献   

8.
Parke , Robert V. (Colorado State U., Fort Collins.) Initial vascularization of the vegetative shoot, of Abies concolor. Amer. Jour. Bot. 50(5): 464–469. Illus. 1963.—In the dormant winter bud, the future vascular system of the shoot exists as a rather ill-defined system of procambial strands, which extends acropetally from the scale traces through a plate of thick-walled, deeply staining cells, the crown, and into the axis and the numerous foliar primordia making up the telescoped shoot. Each foliar primordium receives a single procambial strand or leaf trace. The procambial strands differentiate acropetally. No differentiated vascular tissue was observed in the dormant shoot. As the shoot elongates in the spring, vascular differentiation progresses at a rapid rate. In the leaf traces, protophloem differentiates acropetally. The protoxylem, which appears first in the axial region of the trace, differentiates acropetally into the foliar primordium and basipetally into the stem. The first-formed phloem elements are short-lived. They are nucleate and without sieve areas. In the protoxylem, the first-formed tracheids are mostly of the annular or spiral-thickened type.  相似文献   

9.
The floral vascular systems are compared among all six taxa of Saururaceae, including the two species of Gymnotheca which have not been studied previously. All are zygomorphic (dorsiventrally symmetrical), not radial as sometimes reported, in conformity with dorsiventral symmetry during organogenesis. Apocarpy in the two species of Saururus (with four carpels and six free stamens) is accompanied by a vascular system of four sympodia, each of which supplies a dorsal carpellary bundle, two ventral carpellary bundles, and one or two stamen traces. The level at which the ventral bundles diverge is the major difference in vasculature between the two species. The other four taxa are all syncarpous, and share some degree of stamen adnation and/or connation. The vascular systems also show varying degrees of fusion. The two species of Gymnotheca (with four carpels and six stamens) are very similar to each other; in both, the ventral traces of adjacent carpels fuse to form a placental bundle, which supplies the ovules and then splits into a pair of ventral strands. The flowers of Houttuynia cordata (with only three carpels and three adnate stamens) are sessile. Each flower is vascularized by three sympodia; the median adaxial sympodium is longer than the other two sympodia before it diverges to supply the adaxial organs. Three placental bundles also are formed in Houttuynia, but the three bundles differ in their origin. The median abaxial placental bundle diverges at the same level as the three sympodial bundles of the flower, while the other two lateral placental bundles diverge at a higher level from the median adaxial sympodium. Anemopsis californica, with an inferior ovary of three carpels, sunken in the inflorescence axis, and six stamens adnate to the carpels, has a vascular system very similar to that of Houttuynia cordata. The modular theory of floral evolution is criticized, on the bases of the known behavior of apical meristems and properties of vascular systems. The hypothesis is supported that saururaceous plants may represent a line of angiosperms which diverged very early.  相似文献   

10.
BELL  A. D. 《Annals of botany》1976,40(2):241-250
The leaf trace system in the region of congested internodesat the base of Lolium multiflorum is described. A typical major trace in a leaf consists of a collateral bundlehaving a double bundle sheath and incorporating a certain amountof sclerenchyma. As such a leaf trace is followed down intothe stem it increases in diameter, loses the inner (mestome)bundle sheath, and the xylem becomes associated with xylem transfercells. Lower down, the bundle diameter is reduced although nowit has become amphivasal. The internal xylem only is still associatedwith transfer cells. The proximal portions of the bundle aremuch reduced, transfer cells, mestome sheath, and sclerenchymaare lacking and the now insignificant bundle merges with a lowerleaf trace or some other vascular tissue. Such a bundle in thestem may be in direct contact via bridges with other leaf traces,with the nodal plexus, and with the peripheral plexus that surroundsthe inner leaf trace system. In the base of a typical young plant, approximately one-halfof all leaf traces, including all the median veins, join bundlesfrom the next oldest leaf. Approximately one-third join thenodal plexus, and the remainder variously join bundles fromthe same or next but one oldest leaf to join the peripheralplexus. The differentiation of tiller insertions into the pre-existingmain stem system is highly variable. In a very young tillera number of traces were seen to terminate before the main systemwas reached suggesting basipetal differentiation. The actualconnections made by the tiller traces may occur with any nearbyleaf trace, the nodal plexus, or with the peripheral plexus.Later differentiating leaf traces in a tiller join leaf tracesof the tiller itself. Occasional bundles from secondary tillers by-pass the vasculartissue of the primary tiller to join directly with that of theparent plant. Vascular connections between parent and tiller,although very variable, appear to be totally comprehensive froma functional standpoint.  相似文献   

11.
A survey was made of the distribution of stem vascular bundles in representatives of ten genera of the tropical monocotyledonous family Cyclanthaceae. Films of series of serial transverse sections were used to reconstruct the stem vasculature. Each leaf trace, followed in a basipetal direction from its level of insertion at the stem periphery, describes an obliquely downward course, initially contacting from 1 to 4 (or more) existing axial bundles. The associated bundles form a compound vascular bundle in which the original bundles initially remain discrete, most commonly in a tetrapolar arrangement, with four separate strands. Followed further in the basipetal direction, the strands eventually fuse partly or completely, usually to form a collateral or amphivasal axial bundle which participates in a new structural cycle. Quantitative variation between different taxa includes a simple pattern in Ludovia, in which only bipolar bundles are developed. More elaborate forms have multipolar bundles with more than four separate strands. A systematically useful observation is that stem vasculature in Cyclanthus, representing the subfamily Cyclanthoideae, does not differ significantly from that in subfamily Carludovicoideae although there are some distinctive structural features.  相似文献   

12.
Primary shoot vasculature has been studied for 31 species of Pereskioideae and Opuntioideae from serial transections and stained, decorticated shoot tips. The eustele of all species is interpreted as consisting of sympodia, one for each orthostichy. A sympodium is composed of a vertically continuous axial bundle from which arise leaf- and areole-trace bundles and, in many species, accessory bundles and bridges between axial bundles. Provascular strands for leaf traces and axial bundles are initiated acropetally and continuously within the residual meristem, but differentiation of procambium for areole traces and bridges is delayed until primordia form on axillary buds. The differentiation patterns of primary phloem and xylem are those typically found in other dicotyledons. In all species vascular supply for a leaf is principally derived from only one procambial bundle that arises from axial bundles, whereas traces from two axial bundles supply the axillary bud. Two structural patterns of primary vasculature are found in the species examined. In four species of Pereskia that possess the least specialized wood in the stem, primary vascular systems are open, and leaf traces are mostly multipartite, arising from one axial bundle. In other Pereskioideae and Opuntioideae the vascular systems are closed through a bridge at each node that arises near the base of each leaf, and leaf traces are generally bipartite or single. Vascular systems in Pereskiopsis are relatively simple as compared to the complex vasculature of Opuntia, in which a vascular network is formed at each node by fusion of two sympodia and a leaf trace with areole traces and numerous accessory bundles. Variations in nodal structure correlate well with differences in external shoot morphology. Previous reports that cacti have typical 2-trace, unilacunar nodal structure are probably incorrect. Pereskioideae and Opuntioideae have no additional medullary or cortical systems.  相似文献   

13.
The vascular system of the floret of Leersia is unified yet is segmented according to the appendages it serves. The rachilla at the floret base contains a collateral bundle related to the median trace of the lemma. The palea median trace joins the posterior of this bundle in the rachilla as the lemma laterals merge with the anterior. Although the stamen traces enter at the flanks of this rachilla bundle, they do not become fully incorporated into the system until near the floret base where the rachilla bundle, lemma laterals, and palea laterals converge. Traces from the lodicules attach to the anterior of the stamen traces. The base of the vascular system of the pistil, the pistil plexus, attaches tenuously by a bundle to the lower system between the entrance of the stamen traces. A bundle from each style attaches near the anterior of the pistil plexus below the level where the posterior of the pistil plexus rises, as the placental bundle, to merge with the ovule. Characteristics of the vascular system of Leersia, such as the relative discreteness of the staminal and stylar traces and the lack of both the anterior pistil bundle and the xylem discontinuity, are useful for delimiting the Oryzoideae from the Festucoideae.  相似文献   

14.
Floral morphology ofBrasenia schreberi Gmel. andCabomba caroliniana A. Gray was observed chiefly from an anatomical point of view. The receptacle ofB. schreberi is rather flat and a vascular plexus is observable in the mature flower. The vasculature in this plexus is so complex taht it is not easy to trace its structure in detail. by observation on small buds, it can be seen that the receptacular vasculature consists of a girdling bundle in the basal area and usually nine receptacular strands from which traces to the petals and stamens branch off. The vasculature in the receptacle is reconstructed and diagramatically shown as though split longitudinally and spread out in one plane. Floral vasculature inCabomba caroliniana is simpler, and is probably related to the smaller number of stamens and carpels. It also has a girdling bundle at the bottom of receptacle and this vasculature is suggested to be derived by simplification from aBrasenia-type vasculature. Evidence from floral anatomy suggests that these two genera are closely related. InNymphaea, a vascular plexus in the receptacle is also observed (Moseley, 1961; Ito 1983). The plexus ofBrasenia andNymphaea are not the same in their construction. Nevertheless, their fundamental floral vasculature is comparable and it is preferable to place them in the same family or same order.  相似文献   

15.
The topologic arrangement of petiolar bundles varies within the length of the cottonwood petiole. Each petiolar bundle is formed by the subdivision and aggregation of acropetally differentiating subsidiary bundles in a predictable pattern. The subsidiary bundles provide vascular continuity between the stem and specific portions of the leaf lamina. Spot-labeling of individual veins with 14CO2, freeze substitution, and microautoradiography were used to establish the relation between the secondary veins of the lamina and the vasculature of the petiole. Within the petiole vasculature each subsidiary bundle was continuous with a specific portion of the lamina and seemed to have a separate function. Subsidiary bundles continuous with the central leaf trace were closely related functionally to the tip region of the lamina, while the subsidiary bundles continuous with the lateral leaf traces were functionally related to the middle and basal portions of the lamina.  相似文献   

16.
The ontogeny of vascular bundles in the nodal region of Populus deltoides Bartr. was examined to understand more thoroughly the structure-function relation between leaf and stem. Three vascular traces from the stem independently enter each leaf in the nodal region. At the base of each developing leaf a region was observed in which both bundle size and vascular development was reduced; this region was referred to as the constricted zone. The constricted zone was described quantitatively at 13 locations within the nodal region of a leaf at LPI 5 by determining the number of metaxylem vessels and the total metaxylem vessel area in each of the three leaf traces. A plot of these data showed a distinct minimum value for total metaxylem vessel area within the constricted zone of each trace; the location of this minimum value was referred to as the constriction plane. Each vascular bundle within the nodal region is composed of independent subsidiary bundles that originate within the constricted zone. These bundles provide a direct connection between the leaf lamina and the stem. The node was defined anatomically on the basis of the ontogenetic development of the subsidiary bundles. The node began at the initial exit point of the central trace from the vascular cylinder and extended distally to the constriction plane. This definition allowed us to quantify the limits of each node. The origin of the initiating layer and metacambium was also examined within the nodal region. These precursors of the cambium develop continuously and acropetally from the stem into the leaf. The developmental implications of the constricted zone and the metacambium within the nodal region are discussed with respect to wood formation.  相似文献   

17.
Comparative studies of the nodal and vascular anatomy in the Cyatheaceae are discussed as they relate to the taxonomy and phylogeny of the family. There is in the Cyatheaceae (excluding Metaxya and Lophosoria) a basic nodal pattern consisting of four major phases of leaf trace separations. Abaxial traces arise from the leaf gap margins, and the last abaxial traces from each side of the gap are larger and undergo numerous divisions. Distally adaxial traces separate from the gap margins, and the last adaxial traces are usually larger and undergo multiple divisions. In addition, medullary bundles frequently become petiole strands of the adaxial arc in the petiole. Rarely, cortical bundles form petiole strands in the abaxial arc in the petiole. Leaf gaps of the squamate genera of the Cyatheaceae are fusiform and possess prominent lateral constrictions which result from medullary bundle fusions and the separation of leaf traces. A characteristic petiole pattern is found in all members of the Cyatheaceae. There is an increase in the complexity of the petiole vascular tissue which results in a gradation from the undivided strand in Metaxya, to the three-parted petiole pattern in Lophosoria, and finally to the much-dissected petiole vascular tissue in the advanced genera. Nodal and vascular anatomy data basically support Tryon's phyletic scheme for the family. The Sphaeropteris-Alsophila-Nephelea line shows certain tendencies toward increased complexity of nodal and vascular anatomy, whereas the Trichipteris-Cyathea-Cnemidaria line shows the same anatomical and morphological characters in a direction of increased simplification or reduction.  相似文献   

18.
The floral morphology and anatomy of one representative of the Parnassioideae and two of the Brexioideae are described, and some of the recent literature dealing with the Saxifragaceae sensu lato is reviewed. Comparison of the floral structure in Parnassia to that typical of the Saxifragoideae, the subfamily constituting the Saxifragaceae sensu stricto and which, therefore, may be considered to show the basic saxifragaceous characteristics, reveals little similarity. Parnassia differs in pattern of both sepal and androecial vascularization, vascularization and degree of connation of the carpels, height in the gynoecium to which ventral bundles remain compound, possession of nectariferous staminodia, and the absence of epidermal appendages. Brexia and Ixerba (both of the Brexioideae) are strikingly dissimilar in floral structure and probably should be dissociated. While the position of Ixerba is problematical, it shares more floral characters with the Escallonioideae than with either Brexia or the Saxifragoideae and is better associated with that taxon. In both Parnassia and Brexia the vascular pattern suggests derivation of the androecium from a fascicled condition: the vascular supply of each filament consists of a cylinder of closely associated collateral bundles, and each staminodial set receives a single vascular complex which subsequently divides into as many vascular strands as there are staminodia in the set.  相似文献   

19.
In species of Casuarina with multileaved whorls, each stem vascular bundle divides radially into two at the site of a leaf trace separation, and the same two bundles rejoin acropetally to where the trace supplies a leaf. Such divisions are divisions of a single vascular bundle, and the rejoining of bundles forms a single bundle. Proposals that the extant primary vascular systems of dicotyledons may have been derived as in conifers are incorrect in so far as Casuarina is concerned, or the system has evolved beyond that so far proposed for dicotyledons. Reasons are offered, however, for considering that fernlike leaf gaps are not present. Leaf traces supply leaves at the first nodes distal to their origins. The ways by which an increase or decrease of stem bundles occur are described. Phyllotactic patterns range from helical (rare) to whorled. In the embryo, where leaves occur decussately, of certain species with multileaved whorls, and in the shoot apices of species with tetramerous whorls, slight differences in the levels of leaf attachments and the bending of leaf traces indicate the probable evolution of extant whorled phyllotaxies from one or more helical arrangements. Stages in the evolution are suggested. The leaves in most species with multileaved whorls are in true whorls. The original periderm of branchlets lies internally to the internodal traces and chlorenchyma, but is otherwise external to the vascular system. It is concluded that each leaf originates at its level of separation from the axis despite several structural features suggesting that the leaf bases have become congenitally adnate to the stem.  相似文献   

20.
The leaf and stem of the potato plant (Solanum tuberosum L. cv. Russet Burbank) were studied by light microscopy to determine their morphology and vasculature; scanning electron microscopy provided supplemental information on the leaf's morphology. The morphology of the basal leaves of the potato shoot is quite variable, ranging from simple to pinnately compound. The upper leaves of the shoot are more uniform, being odd pinnate with three major pairs of lateral leaflets and a number of folioles. The primary vascular system of the stem is comprised of six bundles, three large and three small ones. The three large bundles form a highly interconnected system through a repeated series of branchings and arch-producing mergers. Two of the three large bundles give rise to short, lateral leaf traces at each node. Each of the small bundles in the stem is actually a median leaf trace which extends three internodes before diverging into a leaf. The three leaf traces enter the petiole through a single gap; thus the nodel anatomy is three-trace unilacunar. Upon entering the petiole, each of the laterals splits into an upper and a lower lateral. Whereas the upper laterals diverge entirely into the first pair of leaflets, the lower laterals feed all of the lateral leaflets through a series of bifurcations. Prior to their entering the terminal leaflet, the lower laterals converge on the median bundle to form a single vascular crescent which progresses acropetally into the terminal leaflet as the midvein, or primary vein. In the midrib, portions of the midvein diverge outward and continue as secondaries to the margin on either side of the lamina. Near the tip of the terminal leaflet, the midvein consists of a single vascular bundle which is a continuation of the median bundle. Six to seven orders of veins occur in the terminal leaflet.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号