首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Pollinator attraction, pollen limitation, resource limitation, pollen donation and selective fruit abortion have all been proposed as processes explaining why hermaphroditic plants commonly produce many more flowers than mature fruit. We conducted a series of experiments in Arizona to investigate low fruit-to-flower ratios in senita cacti, which rely exclusively on pollinating seed-consumers. Selective abortion of fruit based on seed predators is of particular interest in this case because plants relying on pollinating seed-consumers are predicted to have such a mechanism to minimize seed loss. Pollinator attraction and pollen dispersal increased with flower number, but fruit set did not, refuting the hypothesis that excess flowers increase fruit set by attracting more pollinators. Fruit set of natural- and hand-pollinated flowers were not different, supporting the resource, rather than pollen, limitation hypothesis. Senita did abort fruit, but not selectively based on pollen quantity, pollen donors, or seed predators. Collectively, these results are consistent with sex allocation theory in that resource allocation to excess flower production can increase pollen dispersal and the male fitness function of flowers, but consequently results in reduced resources available for fruit set. Inconsistent with sex allocation theory, however, fruit production and the female fitness function of flowers may actually increase with flower production. This is because excess flower production lowers pollinator-to-flower ratios and results in fruit abortion, both of which limit the abundance and hence oviposition rates, of pre-dispersal seed predators.  相似文献   

2.
Abstract For hermaphroditic plant species whose fruit production is limited by maternal resources, the "pollen donation hypothesis" views large floral displays as an adaptation to enhance the probability of fathering seeds on other plants. This hypothesis has frequently been used to describe the evolution of large floral displays in milkweeds ( Asclepias ). Most tests of the pollen donation hypothesis, however, have used indirect measures, such as flower production or pollen removal, to estimate male reproductive success. To test the pollen donation hypothesis directly, we performed a paternity analysis and determined the number of seeds sired by individual genotypes in a natural population of poke milkweed, A. exaltata , in southwestern Virginia. Seeds sired (male success) and seeds produced (female success) were significantly correlated with flower number per plant (for male success: r = 0.32, P < 0.05; for female success: r = 0.66, P < 0.0001). Functional gender of plants that reproduced both as males and females (N = 17) was not correlated with flower number per plant ( r = 0.35, P>0.05), indicating that plants with large floral displays did not reproduce primarily as males. Percent fruit-set and seed number per fruit were higher in 1986, when levels of pollinarium removal also were higher. Furthermore, several umbels that experienced high pollinator activity selectively matured fruits that contained many seeds. We argue that the evolution of large floral displays in milkweeds is the result of selection to increase overall reproductive success rather than male reproductive success alone.  相似文献   

3.
Floral traits that increase attractiveness to pollinators are predicted to evolve through selection on male function rather than on female function. To determine the importance of male-biased selection in dioecious Wurmbea dioica, we examined sexual dimorphism in flower size and number and the effects of these traits on pollinator visitation and reproductive success of male and female plants. Males produced more and larger flowers than did females. Bees and butterflies responded to this dimorphism and visited males more frequently than females, although flies did not differentiate between the sexes. Within sexes, insect pollinators made more visits to and visited more flowers on plants with many flowers. However, visits per flower did not vary with flower number, indicating that visitation was proportional to the number of flowers per plant. When flower number was experimentally held constant, visitation increased with flower size under sunny but not overcast conditions. Flower size but not number affected pollen removal per flower in males and deposition in females. In males, pollen removal increased with flower size 3 days after flowers opened, but not after 6 days when 98% of pollen was removed. Males with larger flowers therefore, may have higher fitness not because pollen removal is more complete, but because pollen is removed more rapidly providing opportunities to pre-empt ovules. In females, pollen deposition increased with flower size 3 days but not 6 days after flowers opened. At both times, deposition exceeded ovule production by four-fold or more, and for 2 years seed production was not limited by pollen. Flower size had no effect on seed production per plant and was negatively related to percent seed set, implying a tradeoff between allocation to attraction and reproductive success. This indicates that larger flower size in females is unlikely to increase fitness. In both sexes, gamete production was positively correlated with flower size. In males, greater pollen production would increase the advantage of large flowers, but in females more ovules may represent a resource cost. Selection to increase flower size and number in W. dioica has probably occurred through male rather than female function. Received: 15 June 1997 / Accepted: 12 February 1998  相似文献   

4.
Pollen limitation and resource limitation were invoked to account for the pattern that flowering plants produce more flowers and ovules than fruits and seeds. This study aimed to determine their relative importance in Veratrum nigrum, a self-compatible, perennial, andromonoecious herb. In order to determine whether female production was limited by pollen grains on stigmas or by available resources, we performed supplemental hand pollination in three populations, male-flower-bud removal in three other populations, and emasculation of hermaphroditic flowers in still another population, resulting in a total of seven populations experimentally manipulated. Across the three populations, supplemental hand pollination did not significantly increase fruit set, seed number per fruit, and total seed production per individual, nor did emasculation of hermaphroditic flowers. Taken together, our results suggest that pollen grains deposited on stigmas were abundant enough to fertilize all the ovules. Male-flower-bud removal significantly increased the mean size of hermaphroditic flowers in all three populations. Female reproductive success was increased in one population, but not in the other two populations possibly due to heavy flower/seed predation. We concluded that the female reproductive success of V. nigrum was not limited by pollen grains but by available resources, which is consistent with Bateman's principle. Furthermore, the female reproduction increase of male-flower-bud removal individuals might suggest a trade-off between male and female sexual functions.  相似文献   

5.
Plants from three Lobelia cardinalis populations were grown under common garden conditions to assess intra- and interplant variation in seed and pollen production. Seed number per flower and mean seed weight varied systematically with floral position on the inflorescence (lowest values were from terminal flowers) but pollen grain number per flower did not vary systematically with floral position. Most of the remaining variance in seed and pollen grain number per flower and mean seed weight was distributed among plants; clones produced very similar amounts of pollen and seed. Seed yield was positively correlated with seed production per flower and with total flower production, but not with mean seed weight; pollen yield was also positively correlated with pollen grain production per flower and total flower production. Seed and pollen yield were simple linear functions of plant size but only pollen yield was a simple linear function of flower production; seed yield was a quadratic function in which the second order term was negative. This quadratic relationship resulted from a negative correlation between seed number per flower and total flower production. This correlation, in addition to the wide variation among plants in pollen number per flower, accounts for the weak correlation of seed and pollen yield. I conclude from these data that it is unlikely that plants in natural L. cardinalis populations transmit genes to the population's seed crop equally through pollen and ovules—emphasizing the importance of measuring both male and female components of reproductive success.  相似文献   

6.
Floral gender in angiosperms often varies within and among populations. We conducted a field survey to test how predispersal seed predation affects sex allocation in an andromonoecious alpine herb Peucedanum multivittatum. We compared plant size, male and perfect flower production, fruit set, and seed predation rate over three years among nine populations inhabiting diverse snowmelt conditions in alpine meadows. Flowering period of individual populations varied from mid‐July to late August reflecting the snowmelt time. Although perfect flower and fruit productions increased with plant size, size dependency of male flower production was less clear. The number of male flowers was larger in the early‐flowering populations, while the number of perfect flowers increased in the late‐flowering populations. Thus, male‐biased sex allocation was common in the early‐flowering populations. Fruit‐set rates varied among populations and between years, irrespective of flowering period. Fruit‐set success of individual plants increased with perfect flower number, but independent of male flower number. Seed predation by lepidopteran larvae was intense in the early‐flowering populations, whereas predation damage was absent in the late‐flowering populations, reflecting the extent of phenological matching between flowering time of host plants and oviposition period of predator moths. Seed predation rate was independent of male and perfect flower numbers of individual plants. Thus, seed predation is a stochastic event in each population. There was a clear correlation between the proportion of male flowers and the intensity of seed predation among populations. These results suggest that male‐biased sex allocation could be a strategy to reduce seed predation damage but maintain the effort as a pollen donor under intensive seed predation.  相似文献   

7.
Herbivory is an important selection pressure in the life history of plants. Most studies use seed or fruit production as an indication of plant fitness, but the impact of herbivory on male reproductive success is usually ignored. It is possible that plants compensate for resources lost to herbivory by shifting the allocation from seed production to pollen production and export, or vice versa. This study examined the impact of herbivory by Helix aspersa on both male and female reproductive traits of a monoecious plant, Cucumis sativus. The effects of herbivory on the relative allocation to male and female flowers were assessed through measurements of the number and size of flowers of both sexes, and the amount of pollinator visitation. We performed two glasshouse experiments; the first looked at the impact of three levels of pre-flowering herbivory, and the second looked at four levels of herbivory after the plants had started to flower. We found that herbivory during the flowering phase led to a significant increase in the number of plants without male flowers. As a consequence there was significantly less pollen export from this population, as estimated by movement of a pollen analog. The size of female flowers was reduced by severe herbivory, but there was no affect on pollen receipt by the female flowers of damaged plants. The decrease in allocation to male function after severe herbivory may be adaptive when male reproductive success is very unpredictable.  相似文献   

8.
Sex-allocation trade-offs have long been invoked as a primary factor underlying the evolution of separate sexes and the reduction of pollen production accompanying the evolution of selfing. In the present study, I conducted stamen and style removal experiments to explore the existence of such trade-offs in Nigella sativa, a hermaphroditic plant species whose flower structure allows early manipulation of both male and female function. Plants on which all stamens were removed at the bud stage had a higher rate of flower initiation and produced significantly heavier seeds than did plants whose flowers remained intact, apparently by using resources that were released when the stamens were removed. However, there was no effect of stamen removal on the number of flowers that reached anthesis, the total biomass allocated to seed production, or the vigour of plants in the progeny generation. In contrast, prevention of fruit production (style removal) increased the amount of biomass invested in stamen by 57% relative to plants whose flowers were allowed to set fruit. These observations verify the existence of a sexual trade-off in N. sativa but also raise the possibility that stamen-suppressing mutations sometimes lack the pleiotropic consequences of increasing female function, at least in species with large, expensive fruits.  相似文献   

9.
Many factors may affect reproduction of animal-pollinated species. In this study, the effects of pollen limitation, attractive traits (flower number, plant height and flower width) and flowering phenological traits (flowering onset, duration and synchrony) on female reproduction, as well as the patterns of variation in fruit and seed production within plants, were investigated in Paeonia ostii “Feng Dan” over two flowering seasons (2018 and 2019). Fruit set was very high (90%), and pollen supplementation did not increase fruit and seed production in either year, indicating no pollen limitation. Fruit set, ovule number per fruit and mean individual seed weight per fruit were not affected by any of the six attractive and phenological traits in either year, whereas seed number per fruit was related to the three attractive traits in one or both years. Seed number per plant was positively affected by the three attractive traits and best explained by flower number in both years, but the effect of each of the three phenological traits on seed number per plant differed between years. Within plants, the fruit set, ovule number, seed set and seed number per fruit declined from early- to late-opening flowers, presumably because of resource preemption, but the mean individual seed weight did not vary across the flowering sequence. Our study shows that attractive traits of Paeonia ostii “Feng Dan” are more important than flowering phenological traits in the prediction of total seed production per plant.  相似文献   

10.
Recently, some evolutionary biologists have argued that selection on the male component of fitness shapes the evolution of reproductive characters in angiosperms. Floral features, such as inflorescence size, that lead to increased insect visitation without a concomitant increase in seed production are viewed as adaptations to enhance the probability of fathering seeds on other plants. In tests of this “pollen donation hypothesis,” male reproductive success has usually been measured indirectly by flower production, pollinator visitation, or pollen removal. We tested the pollen donation hypothesis directly by quantifying the number of seeds sired by individual genotypes in a natural population of poke milkweed, Asclepias exaltata, in southwestern Virginia. Multiple paternity was low within fruits, a fact which allowed us to use genotypes of progeny arrays to identify a unique pollen parent for 85% of the fruits produced in the population. Seeds sired (male success) and seeds produced (female success) were significantly correlated with flower number per plant (for male success, r = 0.32, P > 0.05; for female success, r = 0.66, P > 0.001). While the number of pollinaria removed, the usual estimator of male success in milkweeds, was highly correlated with numbers of seeds sired (r = 0.47; P > 0.001), it was even more highly correlated with numbers of seeds produced (r = 0.71, P > 0.001). Analysis of functional gender indicated that plants with many flowers did not behave primarily as males. In fact, individuals with the highest total reproductive success contributed equally as males and females. Furthermore, estimates of gender based on numbers of flowers produced or pollinaria removed overestimated the number of functional males in the population. In pollen-limited species, such as many milkweeds, proportional increases in both male and female reproductive success indicate the potential for selection to shape the evolution of large floral displays through both male and female functions.  相似文献   

11.
徐旭剑  孙杉  操国兴 《广西植物》2017,37(3):335-341
两性花植物花序内的性分配常存在差异,资源竞争、结构效应、交配环境(雌雄异熟、传粉者定向访花行为等)或授粉不均匀等几种假说可以解释这种现象。为验证上述假说,该研究以云南草寇两种表型(雄先熟型和雌先熟型)为材料,分析了其花序内不同部位(基部、中部和顶部)的每花花粉数、胚珠数、花粉/胚珠比、结实率和结籽率,花序内传粉者的定向访花行为,以及人工辅助授粉和去花处理对结实率和结籽率的影响。结果表明:两种表型花序内每花花粉数不随部位而变化,每花胚珠数、结实率和结籽率由基部到顶部依次降低,每花花粉/胚珠比由基部到顶部依次增加,表明顶部花存在偏雄的性分配。人工辅助授粉后,结实率、结籽率仍由基部到顶部依次降低,表明授粉不均匀假说不能解释云南草寇花序内不同部位结实率、结籽率的差异。去除基部和中部花后,顶部花人工辅助授粉条件下的结实率、结籽率与基部花人工辅助授粉条件下的结实率、结籽率无差异,表明云南草寇花序内不同部位结实率、结籽率的差异主要由资源竞争引起。雌先熟表型每花花粉数、花粉/胚珠比高于雄先熟表型,表明两种表型存在性分配差异。传粉者主要先访问云南草寇基部的花,然后向顶部移动。云南草寇花序内顶部偏雄的性分配可能是由资源竞争和传粉者定向访花造成的。  相似文献   

12.
The evolution of large floral displays in hermaphroditic flowering plants has been attributed to natural selection acting to enhance male, rather than female, reproductive success. Proponents of the “pollen-donation hypothesis” have assumed that maternal resources, rather than levels of effective pollination, limit fruit set. We investigated the pollen-donation hypothesis in an experimental population of poke milkweed, Asclepias exaltata, where effective pollination did not limit fruit set. Specifically, we examined the effects of flower number per plant, and flower number per umbel on male reproductive success (number of fruits sired) and female reproductive success (number of fruits matured). In 1990, a paternity analysis was performed on fruits collected from 53 plants whose inflorescences were not manipulated. Flower number per plant was significantly correlated with male success, but not with plant gender. Flower number per plant was also significantly correlated with female success, but umbel number and stem number per plant together explained more than half (58%) the variation in female success. The percentage of fruit set was not significantly correlated with flower number per plant. Plants with large floral displays did not disproportionately increase in male reproductive success, relative to female success, as predicted by the pollen-donation hypothesis. In 1991, the effect of flower number per umbel on male and female reproductive success was investigated. Flower number per umbel was manipulated on four umbels per plant by removing flowers to leave 6, 12, or 18 flowers in each umbel. Plants with the largest umbels effectively pollinated twice as many flowers on other plants, but produced only 1.35 times as many fruits as plants with 6 and 12 flowers per umbel. Relative maleness of plants with large umbels was nearly twice that of small and medium umbels. Although these observations are consistent with the pollen-donation hypothesis at the level of umbels, they are problematic, because much of the variation in flower number per umbel exists within, rather than among, plants in natural populations. Thus, plants consist of both reproductively male (large) and female (small) inflorescences, which act to increase total reproductive success. It is therefore inappropriate to explain the evolution of large floral displays in milkweeds solely in terms of potential male reproductive success.  相似文献   

13.
Bateman’s principle states that male fitness is usually limited by the number of matings achieved, while female fitness is usually limited by the resources available for reproduction. When applied to flowering plants this principle leads to the expectation that pollen limitation of fruit and seed set will be uncommon. However, if male searching for mates (including pollen dissemination via external agents) is not sufficiently successful, then the reproductive success of both sexes (or both sex functions in hermaphroditic plants) will be limited by number of matings rather than by resources, and Bateman’s principle cannot be expected to apply. Limitation of female success due to inadequate pollen receipt appears to be a common phenomenon in plants. Using published data on 258 species in which fecundity was reported for natural pollination and hand pollination with outcross pollen, I found significant pollen limitation at some times or in some sites in 159 of the 258 species (62%). When experiments were performed multiple times within a growing season, or in multiple sites or years, the statistical significance of pollen limitation commonly varied among times, sites or years, indicating that the pollination environment is not constant. There is some indication that, across species, supplemental pollen leads to increased fruit set more often than increased seed set within fruits, pointing to the importance of gamete packaging strategies in plant reproduction. Species that are highly self-incompatible obtain a greater benefit relative to natural pollination from artificial application of excess outcross pollen than do self-compatible species. This suggests that inadequate pollen receipt is a primary cause of low fecundity rates in perennial plants, which are often self-incompatible. Because flowering plants often allocate considerable resources to pollinator attraction, both export and receipt of pollen could be limited primarily by resource investment in floral advertisement and rewards. But whatever investment is made is attraction, pollinator behavioral stochasticity usually produces wide variation among flowers in reproductive success through both male and female functions. In such circumstances the optimal deployment of resources among megaspores, microspores, and pollinator attraction may often require more flowers or more ovules per flower than will usually be fertilized, in order to benefit from chance fluctuations that bring in large number of pollen grains. Maximizing seed set for the entire plant in a stochastic pollination environment might thus entail a packaging strategy for flower number or ovule number per flower that makes pollen limitation of fruit or seed set likely. Pollen availability may limit female success in individual flowers, entire plants (in a season or over a lifetime), or populations. The appropriate level must be distinguished depending on the nature of the question being addressed.  相似文献   

14.
Disanthus cercidifolius Maxim.var.longipes H.T.Chang,a plant species that only occurs in a few counties in Hunan,Jiangxi and Zhejiang Provinces and with a relatively small number of individuals,is ranked as a second Class endangered species for conservation in China.We have studied the effect of pollen and resources available to female reproduction,and the reproductive mechanism of "excess flowers with low fruit set" in Disanthus cercidifolius Maxim.var.longipes H.T.Chang was discussed.Results are as follows:Pollen from different sources has significant effects on fruit set and seed set of Disanthus cercidifolius Maxim.var.longipes H.T.Chang.The pollen source rather than pollen numbers significantly affected reproduction of this species.In wild populations,producing one fruit needs about 54.8 flowers,and one satiation seed needs about 6.60 flowers or 83.19 ovules.After fertilizing,which was propitious to flower development,the abortion rate of flower buds was decreasing,but the flowering rate was increasing.The fruit set and seed set was also significantly increasing,while abortion rate of fruit was significantly decreasing.With the increasing percentages of cutting leaves,the fruit set decreased,but the abortion rate of fruit shows no significant differentiation among treatments.After cutting branches that were puny,broken and insectinfested branches,the flower number seemed to be decreasing,but the fruit set and seed set all increased significantly.After removing some flowers,the fruit set was calculated with respect to the number of flowers remaining after the treatment increased with increasing of percentages of flower removal,whereas fruit set calculated with respect to the initial number of flowers remained constant,and the mean weights of per fi'uit and per seed all decreased significantly.Sufficient spatial or temporal heterogeneities in nutrient levels might allow limitation of seed set by resources and pollen in a natural population,while supplying resources may indirectly affect pollination by increasing attraction of the flowers to pollinators.There were very low fruit and seed sets in natural populations ofDisanthus cercidifolius Maxim.var.longipes H.T.Chang.Different factors may have interacted to effect a low fruit set.A joint adoption of the "selection abortion hypothesis","ovary reserve hypothesis" and "male function hypothesis" seems to be the most likely explanation for the reproductive strategy of"excess flowers with few fruit sets" in Disanthus cercidifolius Maxim.var.longipes H.T.Chang.  相似文献   

15.
I describe temporal patterns of seed production in the andromonoecious lily Zigadenus particulatus. Fruit set per flower and seed set per fruit declined through time within plants. Hand pollination experiments showed that this was not due to increasing pollen limitation. Nutrient supplementation had little effect on seed output, but leaf clipping reduced seed production, especially in late-blooming flowers, and removal of early-blooming flowers increased seed set by later flowers. Thus, the temporal pattern of seed output was due to declining availability of photosynthates. Plants with larger bulbs produced larger inflorescences, a greater proportion of hermaphrodite flowers, more fruits per hermaphrodite flower, and more seeds per fruit, but lost a greater fraction of their initial bulb mass as a consequence of fruiting. After controlling for the effects of bulb mass, plants with larger inflorescences produced a greater proportion of male flowers, and plants with more hermaphrodite flowers produced fewer fruits per hermaphrodite flower and fewer seeds per fruit. Thus, the female fitness gain curve was decelerating. The temporal decline in seed output provides a partial explanation for the parallel decline in allocation to pistils. However, a complete explanation for the pattern of gamete packaging requires an understanding of factors controlling male, as well as female, fitness.  相似文献   

16.
Floral sex ratios, disease and seed set in dioecious Silene dioica   总被引:5,自引:0,他引:5  
1 In the dioecious, perennial herb Silene dioica , the density of pollen donors in a population is determined by overall plant density, the sex ratio and the proportion of plants infected with the anther-smut fungus Microbotryum violaceum , which results in permanent sterility of both male and female plants.
2 Pollinators ( Bombus spp.) were found to prefer male flowers and to avoid diseased flowers. This may result in an overall lower visitation frequency and increased risk for pollen limitation in populations with a low density of males or a high incidence of disease.
3 Compared with open-pollinated flowers, hand pollination resulted in a significant increase in the number of seeds produced per fruit in populations with an experimentally reduced proportion of males (25% and 50% male flowers) but not in a naturally male-dominated population (75% male flowers). Seed production per plant was increased by hand pollination only in the most female-dominated population. Because the floral sex ratio is often male-biased, resources rather than pollen availability are likely to set the upper limit for total seed production per individual in most healthy populations of S. dioica.
4 There was a negative relationship between seed set and incidence of disease across 22 populations in both years of a field study. However, there was no consistent difference between the responses of highly diseased populations (incidence 30–56%) and populations with a low disease incidence (incidence 0–8%) to hand pollination.
5 In a greenhouse experiment with cloned hand-pollinated females, the presence of spores on healthy flowers was found to reduce seed set significantly. In highly diseased populations, therefore, the frequent deposition of spores by flower visitors onto remaining healthy plants may decrease seed production below the potential level determined by resources or pollen availability.  相似文献   

17.
Summary We used powdered fluorescent dyes to estimate receipt of self vs. outcross pollen in the self-incompatible species Ipomopsis aggregata (Polemoniaceae). Flowers on small and large plants received equal amounts of outcross pollen, whereas flowers on large plants received more self pollen, so the proportion of self pollen delivered through geitonogamy increased with plant size. In natural populations emasculation of all flowers on a plant raised average seed set per flower from 5.19 to 6.99 and also raised fruit set, though not significantly. From these results one expects a negative correlation between plant size and seeds per flower. The opposite trend was observed in a sample of plants in the field, suggesting that deleterious effects of geitonogamy on female fecundity in large plants can be overruled by other factors such as size-related fruit or seed abortion. Results are discussed in relation to the evolution of gynodioecy.  相似文献   

18.
Pollen viability among genders and limitation of female seed production in a natural trioecious population of the circumpolar cushion plant Silene acaulis was examined. Pollen viability was estimated by an in vitro pollen germination experiment. Both male and hermaphrodite flowers displayed large variation in pollen viability (0–53% in hermaphrodite and 0–54% in male flowers). There was a significant difference between genders in pollen viability: male plants had on average higher pollen viability than hermaphrodite plants. Resource and pollen limitation of seed production was studied by an experiment consisting of three treatments; (I) hand-pollination and removal of all other flowers on the cushion, (II) hand-pollination without removal of other flowers, and (III) open pollination without removal of flowers. Hand-pollination increased seed production, whereas removal of flowers had no effect on seed production. Abortion of pollinated ovules during seed development and seed mass did not differ among treatments. To control for effect of fruit number on seed production, data from naturally pollinated individuals was used. There was a positive correlation between both total number of seeds and fruit number, mean seed number per fruit and fruit number, respectively. These results indicate that seed production of 5. acaulis is mainly limited by pollen availability whereas resource competition between fruits is not important as a limiting factor. The possible role of male quality differences between genders and pollen limitation of seed production for maintenance of trioecious reproductive systems is discussed.  相似文献   

19.
Some gynodioecious species have intermediate individuals that bear both female and hermaphroditic flowers. This phenomenon is known as a gynodioecious–gynomonoecious sexual system. Gender expression in such species has received little attention in the past, and the phenologies of male and female functions have also yet to be explored. In this study, we examined variations in gender patterns, their effects on female reproductive success and sex expression in depth throughout the flowering period in two populations. The studied populations of Silene littorea contained mostly gynomonoecious plants and the number of pure females was very low. The gynomonoecious plants showed high variability in the total proportion of female flowers. In addition, the proportion of female flowers in each plant varied widely across the flowering season. Although there was a trend towards maleness, our measures of functional gender suggested that most plants transmit their genes via both pollen and ovules. Fruit set and seed set were not significantly different among populations; in contrast, flower production significantly varied between the two populations – and among plants – with consequent variation in total seed production. Conversely, gender and sex expression were similar in both populations. Plants with higher phenotypic femaleness did not have higher fruit set, seed set or total female fecundity. The mating environment fluctuated little across the flowering period, but fluctuations were higher in the population with low flower production. We therefore conclude that the high proportion of gynomonoecious individuals in our studied populations of S. littorea may be advantageous for the species, providing the benefits of both hermaphroditic and female flowers.  相似文献   

20.
卢立娜  贺晓  李青丰  易津  何金军 《生态学报》2015,35(6):1706-1712
运用人工授粉、补充无机营养、去叶处理以及疏花处理研究了华北驼绒藜自然种群花粉和资源有效性对结实的影响,并进一步探讨了该植物的选择性败育现象和繁殖对策。结果表明:花粉来源而不是花粉数量对华北驼绒藜结实存在显著影响;同枝授粉结籽率和结实率均低于自然授粉,异株授粉则显著高于同枝授粉和自然授粉;异株授粉种子千粒重显著高于自然授粉和同株异枝授粉,极显著高于同枝授粉。华北驼绒藜结实存在资源限制,补充施肥提高了单枝开花数和结籽率。随摘除叶片数量的增加,结籽率明显降低,摘除叶片处理与对照之间均形成显著差异,摘除1/2叶、3/4叶以及去全叶处理使种子千粒重显著低于对照。人工疏花实验表明华北驼绒藜存在选择性败育现象。华北驼绒藜可根据花粉和资源的可利用性来调整性分配、授粉方式和结实以获得最大适合度,具有复杂的繁殖对策,表现出较好的环境适应性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号