首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Single nucleotide polymorphisms (SNPs) represent the most common form of DNA sequence variation in mammalian livestock genomes. While the past decade has witnessed major advances in SNP genotyping technologies, genotyping errors caused, in part, by the biochemistry underlying the genotyping platform used, can occur. These errors can distort project results and conclusions and can result in incorrect decisions in animal management and breeding programs; hence, SNP genotype calls must be accurate and reliable. In this study, 263 Bos spp. samples were genotyped commercially for a total of 16 SNPs. Of the total possible 4,208 SNP genotypes, 4,179 SNP genotypes were generated, yielding a genotype call rate of 99.31% (standard deviation?±?0.93%). Between 110 and 263 samples were subsequently re-genotyped by us for all 16 markers using a custom-designed SNP genotyping platform, and of the possible 3,819 genotypes a total of 3,768 genotypes were generated (98.70% genotype call rate, SD?±?1.89%). A total of 3,744 duplicate genotypes were generated for both genotyping platforms, and comparison of the genotype calls for both methods revealed 3,741 concordant SNP genotype call rates (99.92% SNP genotype concordance rate). These data indicate that both genotyping methods used can provide livestock geneticists with reliable, reproducible SNP genotypic data for in-depth statistical analysis.  相似文献   

2.
We developed a 384 multiplexed SNP array, named CitSGA-1, for the genotyping of Citrus cultivars, and evaluated the performance and reliability of the genotyping. SNPs were surveyed by direct sequence comparison of the sequence tagged site (STS) fragment amplified from genomic DNA of cultivars representing the genetic diversity of citrus breeding in Japan. Among 1497 SNPs candidates, 384 SNPs for a high-throughput genotyping array were selected based on physical parameters of Illumina’s bead array criteria. The assay using CitSGA-1 was applied to a hybrid population of 88 progeny and 103 citrus accessions for breeding in Japan, which resulted in 73,726 SNP calls. A total of 351 SNPs (91 %) could call different genotypes among the DNA samples, resulting in a success rate for the assay comparable to previously reported rates for other plant species. To confirm the reliability of SNP genotype calls, parentage analysis was applied, and it indicated that the number of reliable SNPs and corresponding STSs were 276 and 213, respectively. The multiplexed SNP genotyping array reported here will be useful for the efficient construction of linkage map, for the detection of markers for marker-assisted breeding, and for the identification of cultivars.  相似文献   

3.
There are little independent data available about how well single nucleotide polymorphism (SNP) genotyping technologies perform in the typical molecular genetics laboratory. We evaluated the utility and accuracy of a widely used technology, template-directed dye-terminator incorporation with fluorescence-polarization detection (FP-TDI), in a sample of 177 SNPs selected solely on the basis of map location. Genotypes were generated without optimization using standard protocols. Overall, 81% of the SNPs we studied generated readable genotypes by FP-TDI. Thirty-two SNPs were genotyped in duplicate by PCR-RFLP orfluorescent dye-terminator sequencing. Out of a total of 631 duplicate genotypes, no true discrepancies were detected. The true error rate has a 95% chance of lying between 0 and 6 out of 1000 genotypes. We also tested for deviations from Hardy-Weinberg Equilibrium in 33 SNPs genotyped in 50 unrelated individuals, and no significant deviations were detected. Our FP-TDI data were readily adaptable to automated genotype calling using our own method of cluster analysis, which assigns a probability score to each genotype call. We conclude that FP-TDI is both efficient and accurate. The method can easily fill the needs of SNP genotyping projects at the scale typically used for regional or candidate-gene association studies.  相似文献   

4.
Saunders IW  Brohede J  Hannan GN 《Genomics》2007,90(3):291-296
A simple method of inferring the genotyping error rate of SNP arrays and similar high-throughput genotyping methods from Mendelian errors is described. Application to genotypes from small families using the Affymetrix GeneChip Human Mapping 50 k Array indicates an error rate of about 0.1%, and this rate can be reduced by increasing the quality criterion for calls, though at the cost of a reduced genotype call rate, which limits the benefit available. Simulated data are used to show that the number of SNPs on this array is sufficient for such a low error rate to have little impact on identical by descent-based inference for disease linkage in sib-pair studies.  相似文献   

5.
Recent advances in nanofluidic technologies have enabled the use of Integrated Fluidic Circuits (IFCs) for high-throughput Single Nucleotide Polymorphism (SNP) genotyping (GT). In this study, we implemented and validated a relatively low cost nanofluidic system for SNP-GT with and without Specific Target Amplification (STA). As proof of principle, we first validated the effect of input DNA copy number on genotype call rate using well characterised, digital PCR (dPCR) quantified human genomic DNA samples and then implemented the validated method to genotype 45 SNPs in the humpback whale, Megaptera novaeangliae, nuclear genome. When STA was not incorporated, for a homozygous human DNA sample, reaction chambers containing, on average 9 to 97 copies, showed 100% call rate and accuracy. Below 9 copies, the call rate decreased, and at one copy it was 40%. For a heterozygous human DNA sample, the call rate decreased from 100% to 21% when predicted copies per reaction chamber decreased from 38 copies to one copy. The tightness of genotype clusters on a scatter plot also decreased. In contrast, when the same samples were subjected to STA prior to genotyping a call rate and a call accuracy of 100% were achieved. Our results demonstrate that low input DNA copy number affects the quality of data generated, in particular for a heterozygous sample. Similar to human genomic DNA, a call rate and a call accuracy of 100% was achieved with whale genomic DNA samples following multiplex STA using either 15 or 45 SNP-GT assays. These calls were 100% concordant with their true genotypes determined by an independent method, suggesting that the nanofluidic system is a reliable platform for executing call rates with high accuracy and concordance in genomic sequences derived from biological tissue.  相似文献   

6.

Background

Runs of homozygosity are long, uninterrupted stretches of homozygous genotypes that enable reliable estimation of levels of inbreeding (i.e., autozygosity) based on high-throughput, chip-based single nucleotide polymorphism (SNP) genotypes. While the theoretical definition of runs of homozygosity is straightforward, their empirical identification depends on the type of SNP chip used to obtain the data and on a number of factors, including the number of heterozygous calls allowed to account for genotyping errors. We analyzed how SNP chip density and genotyping errors affect estimates of autozygosity based on runs of homozygosity in three cattle populations, using genotype data from an SNP chip with 777 972 SNPs and a 50 k chip.

Results

Data from the 50 k chip led to overestimation of the number of runs of homozygosity that are shorter than 4 Mb, since the analysis could not identify heterozygous SNPs that were present on the denser chip. Conversely, data from the denser chip led to underestimation of the number of runs of homozygosity that were longer than 8 Mb, unless the presence of a small number of heterozygous SNP genotypes was allowed within a run of homozygosity.

Conclusions

We have shown that SNP chip density and genotyping errors introduce patterns of bias in the estimation of autozygosity based on runs of homozygosity. SNP chips with 50 000 to 60 000 markers are frequently available for livestock species and their information leads to a conservative prediction of autozygosity from runs of homozygosity longer than 4 Mb. Not allowing heterozygous SNP genotypes to be present in a homozygosity run, as has been advocated for human populations, is not adequate for livestock populations because they have much higher levels of autozygosity and therefore longer runs of homozygosity. When allowing a small number of heterozygous calls, current software does not differentiate between situations where these calls are adjacent and therefore indicative of an actual break of the run versus those where they are scattered across the length of the homozygous segment. Simple graphical tests that are used in this paper are a current, yet tedious solution.  相似文献   

7.
SNP chips are commonly used for genotyping animals in genomic selection but strategies for selecting low-density (LD) SNPs for imputation-mediated genomic selection have not been addressed adequately. The main purpose of the present study was to compare the performance of eight LD (6K) SNP panels, each selected by a different strategy exploiting a combination of three major factors: evenly-spaced SNPs, increased minor allele frequencies, and SNP-trait associations either for single traits independently or for all the three traits jointly. The imputation accuracies from 6K to 80K SNP genotypes were between 96.2 and 98.2%. Genomic prediction accuracies obtained using imputed 80K genotypes were between 0.817 and 0.821 for daughter pregnancy rate, between 0.838 and 0.844 for fat yield, and between 0.850 and 0.863 for milk yield. The two SNP panels optimized on the three major factors had the highest genomic prediction accuracy (0.821–0.863), and these accuracies were very close to those obtained using observed 80K genotypes (0.825–0.868). Further exploration of the underlying relationships showed that genomic prediction accuracies did not respond linearly to imputation accuracies, but were significantly affected by genotype (imputation) errors of SNPs in association with the traits to be predicted. SNPs optimal for map coverage and MAF were favorable for obtaining accurate imputation of genotypes whereas trait-associated SNPs improved genomic prediction accuracies. Thus, optimal LD SNP panels were the ones that combined both strengths. The present results have practical implications on the design of LD SNP chips for imputation-enabled genomic prediction.  相似文献   

8.
Highly parallel SNP genotyping platforms have been developed for some important crop species, but these platforms typically carry a high cost per sample for first-time or small-scale users. In contrast, recently developed genotyping by sequencing (GBS) approaches offer a highly cost effective alternative for simultaneous SNP discovery and genotyping. In the present investigation, we have explored the use of GBS in soybean. In addition to developing a novel analysis pipeline to call SNPs and indels from the resulting sequence reads, we have devised a modified library preparation protocol to alter the degree of complexity reduction. We used a set of eight diverse soybean genotypes to conduct a pilot scale test of the protocol and pipeline. Using ApeKI for GBS library preparation and sequencing on an Illumina GAIIx machine, we obtained 5.5 M reads and these were processed using our pipeline. A total of 10,120 high quality SNPs were obtained and the distribution of these SNPs mirrored closely the distribution of gene-rich regions in the soybean genome. A total of 39.5% of the SNPs were present in genic regions and 52.5% of these were located in the coding sequence. Validation of over 400 genotypes at a set of randomly selected SNPs using Sanger sequencing showed a 98% success rate. We then explored the use of selective primers to achieve a greater complexity reduction during GBS library preparation. The number of SNP calls could be increased by almost 40% and their depth of coverage was more than doubled, thus opening the door to an increase in the throughput and a significant decrease in the per sample cost. The approach to obtain high quality SNPs developed here will be helpful for marker assisted genomics as well as assessment of available genetic resources for effective utilisation in a wide number of species.  相似文献   

9.
With an increased emphasis on genotyping of single nucleotide polymorphisms (SNPs) in disease association studies, the genotyping platform of choice is constantly evolving. In addition, the development of more specific SNP assays and appropriate genotype validation applications is becoming increasingly critical to elucidate ambiguous genotypes. In this study, we have used SNP specific Locked Nucleic Acid (LNA) hybridization probes on a real-time PCR platform to genotype an association cohort and propose three criteria to address ambiguous genotypes. Based on the kinetic properties of PCR amplification, the three criteria address PCR amplification efficiency, the net fluorescent difference between maximal and minimal fluorescent signals and the beginning of the exponential growth phase of the reaction. Initially observed SNP allelic discrimination curves were confirmed by DNA sequencing (n = 50) and application of our three genotype criteria corroborated both sequencing and observed real-time PCR results. In addition, the tested Caucasian association cohort was in Hardy-Weinberg equilibrium and observed allele frequencies were very similar to two independently tested Caucasian association cohorts for the same tested SNP. We present here a novel approach to effectively determine ambiguous genotypes generated from a real-time PCR platform. Application of our three novel criteria provides an easy to use semi-automated genotype confirmation protocol.  相似文献   

10.
MOTIVATION: The technology to genotype single nucleotide polymorphisms (SNPs) at extremely high densities provides for hypothesis-free genome-wide scans for common polymorphisms associated with complex disease. However, we find that some errors introduced by commonly employed genotyping algorithms may lead to inflation of false associations between markers and phenotype. RESULTS: We have developed a novel SNP genotype calling program, SNiPer-High Density (SNiPer-HD), for highly accurate genotype calling across hundreds of thousands of SNPs. The program employs an expectation-maximization (EM) algorithm with parameters based on a training sample set. The algorithm choice allows for highly accurate genotyping for most SNPs. Also, we introduce a quality control metric for each assayed SNP, such that poor-behaving SNPs can be filtered using a metric correlating to genotype class separation in the calling algorithm. SNiPer-HD is superior to the standard dynamic modeling algorithm and is complementary and non-redundant to other algorithms, such as BRLMM. Implementing multiple algorithms together may provide highly accurate genotyping calls, without inflation of false positives due to systematically miss-called SNPs. A reliable and accurate set of SNP genotypes for increasingly dense panels will eliminate some false association signals and false negative signals, allowing for rapid identification of disease susceptibility loci for complex traits. AVAILABILITY: SNiPer-HD is available at TGen's website: http://www.tgen.org/neurogenomics/data.  相似文献   

11.
MOTIVATION: A high density of single nucleotide polymorphism (SNP) coverage on the genome is desirable and often an essential requirement for population genetics studies. Region-specific or chromosome-specific linkage studies also benefit from the availability of as many high quality SNPs as possible. The availability of millions of SNPs from both Perlegen and the public domain and the development of an efficient microarray-based assay for genotyping SNPs has brought up some interesting analytical challenges. Effective methods for the selection of optimal subsets of SNPs spanning the genome and methods for accurately calling genotypes from probe hybridization patterns have enabled the development of a new microarray-based system for robustly genotyping over 100,000 SNPs per sample. RESULTS: We introduce a new dynamic model-based algorithm (DM) for screening over 3 million SNPs and genotyping over 100,000 SNPs. The model is based on four possible underlying states: Null, A, AB and B for each probe quartet. We calculate a probe-level log likelihood for each model and then select between the four competing models with an SNP-level statistical aggregation across multiple probe quartets to provide a high-quality genotype call along with a quality measure of the call. We assess performance with HapMap reference genotypes, informative Mendelian inheritance relationship in families, and consistency between DM and another genotype classification method. At a call rate of 95.91% the concordance with reference genotypes from the HapMap Project is 99.81% based on over 1.5 million genotypes, the Mendelian error rate is 0.018% based on 10 trios, and the consistency between DM and MPAM is 99.90% at a comparable rate of 97.18%. We also develop methods for SNP selection and optimal probe selection. AVAILABILITY: The DM algorithm is available in Affymetrix's Genotyping Tools software package and in Affymetrix's GDAS software package. See http://www.affymetrix.com for further information. 10 K and 100 K mapping array data are available on the Affymetrix website.  相似文献   

12.
Khan MA  Han Y  Zhao YF  Korban SS 《Gene》2012,494(2):196-201
EST data generated from 14 apple genotypes were downloaded from NCBI and mapped against a reference EST assembly to identify Single Nucleotide Polymorphisms (SNPs). Mapping of these SNPs was undertaken using 90% of sequence similarity and minimum coverage of four reads at each SNP position. In total, 37,807 SNPs were identified with an average of one SNP every 187 bp from a total of 6888 unique EST contigs. Identified SNPs were checked for flanking sequences of ≥ 60 bp along both sides of SNP alleles for reliable design of a custom high-throughput genotyping assay. A total of 12,299 SNPs, representing 6525 contigs, fit the selected criterion of ≥ 60 bp sequences flanking a SNP position. Of these, 1411 SNPs were validated using four apple genotypes. Based on genotyping assays, it was estimated that 60% of SNPs were valid SNPs, while 26% of SNPs might be derived from paralogous regions.  相似文献   

13.
We describe the application of complexity reduction of polymorphic sequences (CRoPS®) technology for the discovery of SNP markers in tetraploid durum wheat (Triticum durum Desf.). A next-generation sequencing experiment was carried out on reduced representation libraries obtained from four durum cultivars. SNP validation and minor allele frequency (MAF) estimate were carried out on a panel of 12 cultivars, and the feasibility of genotyping these SNPs in segregating populations was tested using the Illumina Golden Gate (GG) technology. A total of 2,659 SNPs were identified on 1,206 consensus sequences. Among the 768 SNPs that were chosen irrespective of their genomic repetitiveness level and assayed on the Illumina BeadExpress genotyping system, 275 (35.8%) SNPs matched the expected genotypes observed in the SNP discovery phase. MAF data indicated that the overall SNP informativeness was high: a total of 196 (71.3%) SNPs had MAF >0.2, of which 76 (27.6%) showed MAF >0.4. Of these SNPs, 157 were mapped in one of two mapping populations (Meridiano × Claudio and Colosseo × Lloyd) and integrated into a common genetic map. Despite the relatively low genotyping efficiency of the GG assay, the validated CRoPS-derived SNPs showed valuable features for genomics and breeding applications such as a uniform distribution across the wheat genome, a prevailing single-locus codominant nature and a high polymorphism. Here, we report a new set of 275 highly robust genome-wide Triticum SNPs that are readily available for breeding purposes.  相似文献   

14.
Microarrays to characterize single nucleotide polymorphisms (SNPs) provide a cost-effective and rapid method (under 24 h) to genotype microbes as an alternative to sequencing. We developed a pipeline for SNP discovery and microarray design that scales to 100's of microbial genomes. Here we tested various SNP probe design strategies against 8 sequenced isolates of Bacillus anthracis to compare sequence and microarray data. The best strategy allowed probe length to vary within 32–40 bp to equalize hybridization free energy. This strategy resulted in a call rate of 99.52% and concordance rate of 99.86% for finished genomes. Other probe design strategies averaged substantially lower call rates (94.65–96.41%) and slightly lower concordance rates (99.64–99.80%). These rates were lower for draft than finished genomes, consistent with higher incidence of sequencing errors and gaps. Highly accurate SNP calls were possible in complex soil and blood backgrounds down to 1000 copies, and moderately accurate SNP calls down to 100 spiked copies. The closest genome to the spiked strain was correctly identified at only 10 spiked copies. Discrepancies between sequence and array data did not alter the SNP-based phylogeny, regardless of the probe design strategy, indicating that SNP arrays can accurately place unsequenced isolates on a phylogeny.  相似文献   

15.
The number of polymorphisms identified with next‐generation sequencing approaches depends directly on the sequencing depth and therefore on the experimental cost. Although higher levels of depth ensure more sensitive and more specific SNP calls, economic constraints limit the increase of depth for whole‐genome resequencing (WGS). For this reason, capture resequencing is used for studies focusing on only some specific regions of the genome. However, several biases in capture resequencing are known to have a negative impact on the sensitivity of SNP detection. Within this framework, the aim of this study was to compare the accuracy of WGS and capture resequencing on SNP detection and genotype calling, which differ in terms of both sequencing depth and biases. Indeed, we have evaluated the SNP calling and genotyping accuracy in a WGS dataset (13X) and in a capture resequencing dataset (87X) performed on 11 individuals. The percentage of SNPs not identified due to a sevenfold sequencing depth decrease was estimated at 7.8% using a down‐sampling procedure on the capture sequencing dataset. A comparison of the 87X capture sequencing dataset with the WGS dataset revealed that capture‐related biases were leading with the loss of 5.2% of SNPs detected with WGS. Nevertheless, when considering the SNPs detected by both approaches, capture sequencing appears to achieve far better SNP genotyping, with about 4.4% of the WGS genotypes that can be considered as erroneous and even 10% focusing on heterozygous genotypes. In conclusion, WGS and capture deep sequencing can be considered equivalent strategies for SNP detection, as the rate of SNPs not identified because of a low sequencing depth in the former is quite similar to SNPs missed because of method biases of the latter. On the other hand, capture deep sequencing clearly appears more adapted for studies requiring great accuracy in genotyping.  相似文献   

16.

Background

Large epidemiologic studies have the potential to make valuable contributions to the assessment of gene-environment interactions because they prospectively collected detailed exposure data. Some of these studies, however, have only serum or plasma samples as a low quantity source of DNA.

Methods

We examined whether DNA isolated from serum can be used to reliably and accurately genotype single nucleotide polymorphisms (SNPs) using Sequenom multiplex SNP genotyping technology. We genotyped 81 SNPs using samples from 158 participants in the NYU Women’s Health Study. Each participant had DNA from serum and at least one paired DNA sample isolated from a high quality source of DNA, i.e. clots and/or cell precipitates, for comparison.

Results

We observed that 60 of the 81 SNPs (74%) had high call frequencies (≥95%) using DNA from serum, only slightly lower than the 85% of SNPs with high call frequencies in DNA from clots or cell precipitates. Of the 57 SNPs with high call frequencies for serum, clot, and cell precipitate DNA, 54 (95%) had highly concordant (>98%) genotype calls across all three sample types. High purity was not a critical factor to successful genotyping.

Conclusions

Our results suggest that this multiplex SNP genotyping method can be used reliably on DNA from serum in large-scale epidemiologic studies.  相似文献   

17.
Application of imputation methods to accurately predict a dense array of SNP genotypes in the dog could provide an important supplement to current analyses of array-based genotyping data. Here, we developed a reference panel of 4,885,283 SNPs in 83 dogs across 15 breeds using whole genome sequencing. We used this panel to predict the genotypes of 268 dogs across three breeds with 84,193 SNP array-derived genotypes as inputs. We then (1) performed breed clustering of the actual and imputed data; (2) evaluated several reference panel breed combinations to determine an optimal reference panel composition; and (3) compared the accuracy of two commonly used software algorithms (Beagle and IMPUTE2). Breed clustering was well preserved in the imputation process across eigenvalues representing 75 % of the variation in the imputed data. Using Beagle with a target panel from a single breed, genotype concordance was highest using a multi-breed reference panel (92.4 %) compared to a breed-specific reference panel (87.0 %) or a reference panel containing no breeds overlapping with the target panel (74.9 %). This finding was confirmed using target panels derived from two other breeds. Additionally, using the multi-breed reference panel, genotype concordance was slightly higher with IMPUTE2 (94.1 %) compared to Beagle; Pearson correlation coefficients were slightly higher for both software packages (0.946 for Beagle, 0.961 for IMPUTE2). Our findings demonstrate that genotype imputation from SNP array-derived data to whole genome-level genotypes is both feasible and accurate in the dog with appropriate breed overlap between the target and reference panels.  相似文献   

18.
MOTIVATION: Modern strategies for mapping disease loci require efficient genotyping of a large number of known polymorphic sites in the genome. The sensitive and high-throughput nature of hybridization-based DNA microarray technology provides an ideal platform for such an application by interrogating up to hundreds of thousands of single nucleotide polymorphisms (SNPs) in a single assay. Similar to the development of expression arrays, these genotyping arrays pose many data analytic challenges that are often platform specific. Affymetrix SNP arrays, e.g. use multiple sets of short oligonucleotide probes for each known SNP, and require effective statistical methods to combine these probe intensities in order to generate reliable and accurate genotype calls. RESULTS: We developed an integrated multi-SNP, multi-array genotype calling algorithm for Affymetrix SNP arrays, MAMS, that combines single-array multi-SNP (SAMS) and multi-array, single-SNP (MASS) calls to improve the accuracy of genotype calls, without the need for training data or computation-intensive normalization procedures as in other multi-array methods. The algorithm uses resampling techniques and model-based clustering to derive single array based genotype calls, which are subsequently refined by competitive genotype calls based on (MASS) clustering. The resampling scheme caps computation for single-array analysis and hence is readily scalable, important in view of expanding numbers of SNPs per array. The MASS update is designed to improve calls for atypical SNPs, harboring allele-imbalanced binding affinities, that are difficult to genotype without information from other arrays. Using a publicly available data set of HapMap samples from Affymetrix, and independent calls by alternative genotyping methods from the HapMap project, we show that our approach performs competitively to existing methods. AVAILABILITY: R functions are available upon request from the authors.  相似文献   

19.
Liu W  Zhao W  Chase GA 《Human heredity》2006,61(1):31-44
OBJECTIVE: Single nucleotide polymorphisms (SNPs) serve as effective markers for localizing disease susceptibility genes, but current genotyping technologies are inadequate for genotyping all available SNP markers in a typical linkage/association study. Much attention has recently been paid to methods for selecting the minimal informative subset of SNPs in identifying haplotypes, but there has been little investigation of the effect of missing or erroneous genotypes on the performance of these SNP selection algorithms and subsequent association tests using the selected tagging SNPs. The purpose of this study is to explore the effect of missing genotype or genotyping error on tagging SNP selection and subsequent single marker and haplotype association tests using the selected tagging SNPs. METHODS: Through two sets of simulations, we evaluated the performance of three tagging SNP selection programs in the presence of missing or erroneous genotypes: Clayton's diversity based program htstep, Carlson's linkage disequilibrium (LD) based program ldSelect, and Stram's coefficient of determination based program tagsnp.exe. RESULTS: When randomly selected known loci were relabeled as 'missing', we found that the average number of tagging SNPs selected by all three algorithms changed very little and the power of subsequent single marker and haplotype association tests using the selected tagging SNPs remained close to the power of these tests in the absence of missing genotype. When random genotyping errors were introduced, we found that the average number of tagging SNPs selected by all three algorithms increased. In data sets simulated according to the haplotype frequecies in the CYP19 region, Stram's program had larger increase than Carlson's and Clayton's programs. In data sets simulated under the coalescent model, Carlson's program had the largest increase and Clayton's program had the smallest increase. In both sets of simulations, with the presence of genotyping errors, the power of the haplotype tests from all three programs decreased quickly, but there was not much reduction in power of the single marker tests. CONCLUSIONS: Missing genotypes do not seem to have much impact on tagging SNP selection and subsequent single marker and haplotype association tests. In contrast, genotyping errors could have severe impact on tagging SNP selection and haplotype tests, but not on single marker tests.  相似文献   

20.
With the advent of next generation sequencing (NGS) technologies, single nucleotide polymorphisms (SNPs) have become the major type of marker for genotyping in many crops. However, the availability of SNP markers for important traits of bread wheat ( Triticum aestivum L.) that can be effectively used in marker-assisted selection (MAS) is still limited and SNP assays for MAS are usually uniplex. A shift from uniplex to multiplex assays will allow the simultaneous analysis of multiple markers and increase MAS efficiency. We designed 33 locus-specific markers from SNP or indel-based marker sequences that linked to 20 different quantitative trait loci (QTL) or genes of agronomic importance in wheat and analyzed the amplicon sequences using an Ion Torrent Proton Sequencer and a custom allele detection pipeline to determine the genotypes of 24 selected germplasm accessions. Among the 33 markers, 27 were successfully multiplexed and 23 had 100% SNP call rates. Results from analysis of "kompetitive allele-specific PCR" (KASP) and sequence tagged site (STS) markers developed from the same loci fully verified the genotype calls of 23 markers. The NGS-based multiplexed assay developed in this study is suitable for rapid and high-throughput screening of SNPs and some indel-based markers in wheat.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号