首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Reservoirs of antibiotic resistance genes   总被引:1,自引:0,他引:1  
A potential concern about the use of antibiotics in animal husbundary is that, as antibiotic resistant bacteria move from the farm into the human diet, they may pass antibiotic resistance genes to bacteria that normally reside in a the human intestinal tract and from there to bacteria that cause human disease (reservoir hypothesis). In this article various approaches to evaluating the risk of agricultural use of antibiotics are assessed critically. In addition, the potential benefits of applying new technology and using new insights from the field of microbial ecology are explained.  相似文献   

2.
抗生素耐药性的研究进展与控制策略   总被引:2,自引:1,他引:1  
抗生素是治疗细菌感染的有效药物,然而抗生素在人类医学及农业生产中的大规模使用催生了细菌耐药性在环境中的快速扩散和传播,特别是多种抗生素的联合使用更是促进了多重耐药性的产生,严重威胁着人类和动物健康及食品与环境安全,相关问题已经引起人们的警觉。因此新研究主要集中在以下几方面:利用组学及合成生物学等方法挖掘并合成新型抗生素;利用高通量技术等系统分析环境中耐药菌及耐药基因新的传播途径及产生的新耐药机制;减抗、替抗及控制耐药基因的策略及其相关工艺。因此,在全面认识耐药基因在环境中传播规律的基础上,如何绿色高效地切断传播途径仍是目前研究的热点。基于此,本文在细菌水平上阐述了抗生素的研发历程、耐药性的发展及控制策略,从而为有效遏制细菌耐药性的发展提供思路。  相似文献   

3.
The alarming growth of the number of antibiotic resistant bacteria and in the same time limited possibilities to develop new antimicrobial compounds, lead to an urgent need to keep the sensitivity of bacteria against currently used antibiotics. Bacterial efflux pumps are an important mechanism of antibiotic resistance as the bacteria use efflux pumps for the extrusion of different types of antibiotics and chemicals. The knowledge about inhibitors of efflux pumps from natural sources suggests that this mechanism may be a good target for new drugs based on synergistic interactions of antibiotics with plant extracts, essential oils, or their constituents with efflux pump inhibitory activity. This review summarizes the current knowledge of staphylococcal efflux pumps and potential strategies to overcome them. Natural inhibitors of efflux pumps and their synergistic interactions with antibiotics are summarized.  相似文献   

4.
Methicillin-resistant Staphylococcus aureus (MRSA) is the most problematic Gram-positive bacterium in the context of public health due to its resistance against almost all available antibiotics except vancomycin and teicoplanin. Moreover, glycopeptide-resistant S. aureus have been emerging with the increasing use of glycopeptides. Recently, resistant strains against linezolid and daptomycin, which are alternative drugs to treat MRSA infection, have also been reported. Thus, the development of new drugs or alternative therapies is clearly a matter of urgency. In response to the antibiotic resistance, many researchers have studied for alternative antibiotics and therapies. In this review, anti-MRSA substances isolated from marine bacteria, with their potential antibacterial effect against MRSA as potential anti-MRSA agents, are discussed and several strategies for overcoming the antibiotic resistance are also introduced. Our objective was to highlight marine bacteria that have potential to lead in developing novel antibiotics or clinically useful alternative therapeutic treatments.  相似文献   

5.
Antibiotic-resistant bacterial infections result in higher patient mortality rates, prolonged hospitalizations, and increased health care costs. Extensive use of antibiotics as growth promoters in the animal industry represents great pressure for evolution and selection of antibiotic-resistant bacteria on farms. Despite growing evidence showing that antibiotic use and bacterial resistance in food animals correlate with resistance in human pathogens, the proof for direct transmission of antibiotic resistance is difficult to provide. In this review, we make a case that insects commonly associated with food animals likely represent a direct and important link between animal farms and urban communities for antibiotic resistance traits. Houseflies and cockroaches have been shown to carry multidrug-resistant clonal lineages of bacteria identical to those found in animal manure. Furthermore, several studies have demonstrated proliferation of bacteria and horizontal transfer of resistance genes in the insect digestive tract as well as transmission of resistant bacteria by insects to new substrates. We propose that insect management should be an integral part of pre- and postharvest food safety strategies to minimize spread of zoonotic pathogens and antibiotic resistance traits from animal farms. Furthermore, the insect link between the agricultural and urban environment presents an additional argument for adopting prudent use of antibiotics in the food animal industry.  相似文献   

6.
Embedded in an extracellular matrix, biofilm-residing bacteria are protected from diverse physicochemical insults. In accordance, in the human host the general recalcitrance of biofilm-grown bacteria hinders successful eradication of chronic, biofilm-associated infections. In this study, we demonstrate that upon addition of promethazine, an FDA approved drug, antibiotic tolerance of in vitro biofilm-grown bacteria can be abolished. We show that following the addition of promethazine, diverse antibiotics are capable of efficiently killing biofilm-residing cells at minimal inhibitory concentrations. Synergistic effects could also be observed in a murine in vivo model system. PMZ was shown to increase membrane potential and interfere with bacterial respiration. Of note, antibiotic killing activity was elevated when PMZ was added to cells grown under environmental conditions that induce low intracellular proton levels. Our results imply that biofilm-grown bacteria avoid antibiotic killing and become tolerant by counteracting intracellular alkalization through the adaptation of metabolic and transport functions. Abrogation of antibiotic tolerance by interfering with the cell’s bioenergetics promises to pave the way for successful eradication of biofilm-associated infections. Repurposing promethazine as a biofilm-sensitizing drug has the potential to accelerate the introduction of new treatments for recalcitrant, biofilm-associated infections into the clinic.  相似文献   

7.
The use of antibiotics, in particular, the use of a single dose of antibiotics during electronic tag implantation is of unproven value, and carries with it the potential for the development of antibiotic resistance in bacteria and the alteration of the immune response of the fish. Antibiotic use during electronic tag implantation must conform to relevant drug laws and regulations in the country where work is being done, including the requirements for withdrawal times before human consumption is a possibility. Currently, the choice of antibiotics (most often tetracycline or oxytetracycline) and the use of a single dose of the drug are decisions made without knowledge of the basic need for antibiotic usage and of the bacteria involved in infections that occur following electronic tag implantation. Correct perioperative use of an antibiotic is to apply the drug to the animal before surgery begins, to assure serum and tissue levels of the drug are adequate before the incision is made. However, the most common perioperative application of antibiotics during implantation of an electronic tag is to delay the administration of the drug, injecting it into the coelom after the electronic tag is inserted, just prior to closure of the incision. There is little empirical evidence that the present application of antibiotics in fish being implanted with electronic tags is of value. Improvements should first be made to surgical techniques, especially the use of aseptic techniques and sterilized instruments and electronic tags, before resorting to antibiotics.  相似文献   

8.
In this paper the ecological aspects of widespread antibiotic consumption are described. Many practitioners, veterinarians, breeders, farmers and analysts work on the assumption that a antibiotics undergo spontaneous degradation. It is well documented that the indiscriminate use of antibiotics has led to the water contamination, selection and dissemination of antibiotic-resistant organisms, alteration of fragile ecology of the microbial ecosystems. The damages caused by the overuse of antibiotics include hospital, waterborne and foodborne infections by resistant bacteria, enteropathy (irritable bowel syndrome, antibiotic-associated diarrhea etc.), drug hypersensitivity, biosphere alteration, human and animal growth promotion, destruction of fragile interspecific competition in microbial ecosystems etc. The consequences of heavy antibiotic use for public and environmental health are difficult to assess: utilization of antibiotics from the environment and reduction of irrational use is the highest priority issue. This purpose may be accomplished by bioremediation, use of probenecid for antibiotic dosage reduction and by adoption of hospital infections methodology for control resistance in natural ecosystems.  相似文献   

9.
Microbial environments confound antibiotic efficacy   总被引:1,自引:0,他引:1  
The increasing prevalence of bacteria that are insensitive to our current antibiotics emphasizes the need for new antimicrobial therapies. Conventional approaches to antibacterial development that are based on the inhibition of essential processes seem to have reached the point of diminishing returns. The discovery that diverse antibiotics stimulate a common oxidative cell-death pathway represents a fundamental shift in our understanding of bactericidal antibiotic modes of action. A number of studies, as discussed above, also provide hints about how intra- and extracellular metabolism can enable antibiotic resistance and tolerance. We have, nonetheless, just begun to understand the repertoire of tactics that bacteria use to evade antibiotics. Biosynthetic pathways for natural antibiotics are ancient, and numerous mechanisms for antibiotic resistance and tolerance are likely to have evolved over the past few million years. Unraveling these mechanisms will require concerted efforts by chemical biologists, microbiologists and clinicians. These efforts will benefit from the use of metabolic models and other network-biology approaches to guide investigation of processes that modulate antibiotic susceptibility. Importantly, by helping to identify common points of vulnerability as well as key differences between pathogens, these models may lead to the development of effective adjuvants, novel antibiotics and new antimicrobial strategies. There is also a crucial need to better understand how bacteria within a population cooperate to overcome antibiotic treatments. Such investigations may benefit from the use of novel chemical probes and experimental techniques to interrogate the physiology and functional dynamics of natural microbial communities. Insights gained from these studies will augment metagenomic models that can be used to identify biomolecules responsible for these cooperative strategies. Leveraging chemical biology methodologies and systems-biology approaches for further studies of microbial environments may reveal a wealth of untapped targets for the development of novel compounds to counter the growing threat of resistant and tolerant bacterial infections.  相似文献   

10.
11.
Resistance to antibiotics and other antimicrobial compounds continues to increase. There are several possibilities for protection against pathogenic microorganisms, for instance, preparation of new vaccines against resistant bacterial strains, use of specific bacteriophages, and searching for new antibiotics. The antibiotic search includes: (1) looking for new antibiotics from nontraditional or less traditional sources, (2) sequencing microbial genomes with the aim of finding genes specifying biosynthesis of antibiotics, (3) analyzing DNA from the environment (metagenomics), (4) reexamining forgotten natural compounds and products of their transformations, and (5) investigating new antibiotic targets in pathogenic bacteria.  相似文献   

12.
目的:分析我院的抗生素的使用频率以及细菌耐药率的变化,为规范临床用药提供参考资料。方法:采用回顾性分析的方法对我院2009年3月-2013年3月收治的8000例住院患者的抗生素使用情况进行调查,并对我院临床上常见革兰阴性菌和阳性菌的耐药率变化进行比较,分析抗生素的使用频率与细菌耐药率变化之间的关系。结果:临床上抗生素的使用频率最大的是β-内酰胺酶抑制剂以及头孢菌素类。金葡菌对环丙沙星的耐药率与青霉素类抗生素的DDDs呈正相关,大肠埃希菌对亚胺培南的耐药率与头孢菌素类抗生素的DDDs呈负相关。结论:抗生素的用药频率与病原菌对抗生素的耐药率有相关性,并且,单一的抗生素并不能引起病原菌的耐药性,而会同时影响其他类型的抗生素的耐药情况。  相似文献   

13.
Veterinary antibiotics in the aquatic and terrestrial environment   总被引:1,自引:0,他引:1  
The fate of antibiotics in the environment, and especially antibiotics used in animal husbandry, is subject to recent studies and the issue of this review. The assumed quantity of antibiotics excreted by animal husbandry adds up to thousands of tonnes per year. Administered medicines, their metabolites or degradation products reach the terrestrial and aquatic environment by the application of manure or slurry to areas used agriculturally, or by pasture-reared animals excreting directly on the land, followed by surface run-off, driftage or leaching in deeper layers of the earth. The scientific interest in antimicrobially active compounds in manure and soil, but also in surface and ground water, has increased during the last decade. On the one side, scientific interest has focused on the behaviour of antibiotics and their fate in the environment, on the other hand, their impact on environmental and other bacteria has become an issue of research. Analytical methods have now been developed appropriately and studies using these new techniques provide accurate data on concentrations of antimicrobial compounds and their residues in different organic matters. Some antibiotics seem to persist a long time in the environment, especially in soil, while others degrade very fast. Not only the fate of these pharmaceuticals but their origin as well is an object of scientific interest. Besides human input via wastewater and other effluents, livestock production has been recognised as a source of contamination. One main concern with regard to the excessive use of antibiotics in livestock production is the potential promotion of resistance and the resulting disadvantages in the therapeutic use of antimicrobials. Since the beginning of antibiotic therapy, more and more resistant bacterial strains have been isolated from environmental sources showing one or multiple resistance. There have been several attempts to use antibiotic resistance patterns in different bacteria as indicators for various sources of faecal pollution. This review gives an overview of the available data on the present use of veterinary antibiotics in agriculture, on the occurrence of antibiotic compounds and resistant bacteria in soil and water and demonstrates the need for further studies.  相似文献   

14.
The antibiotic resistome: the nexus of chemical and genetic diversity   总被引:3,自引:0,他引:3  
Over the millennia, microorganisms have evolved evasion strategies to overcome a myriad of chemical and environmental challenges, including antimicrobial drugs. Even before the first clinical use of antibiotics more than 60 years ago, resistant organisms had been isolated. Moreover, the potential problem of the widespread distribution of antibiotic resistant bacteria was recognized by scientists and healthcare specialists from the initial use of these drugs. Why is resistance inevitable and where does it come from? Understanding the molecular diversity that underlies resistance will inform our use of these drugs and guide efforts to develop new efficacious antibiotics.  相似文献   

15.
New antibiotics from bacterial natural products   总被引:4,自引:0,他引:4  
For the past five decades, the need for new antibiotics has been met largely by semisynthetic tailoring of natural product scaffolds discovered in the middle of the 20(th) century. More recently, however, advances in technology have sparked a resurgence in the discovery of natural product antibiotics from bacterial sources. In particular, efforts have refocused on finding new antibiotics from old sources (for example, streptomycetes) and new sources (for example, other actinomycetes, cyanobacteria and uncultured bacteria). This has resulted in several newly discovered antibiotics with unique scaffolds and/or novel mechanisms of action, with the potential to form a basis for new antibiotic classes addressing bacterial targets that are currently underexploited.  相似文献   

16.
Drug resistance in food-borne bacterial pathogens is an almost inevitable consequence of the use of antimicrobial drugs, used either therapeutically or to avoid infections in food-producing animals. In the past decades, the spread and inappropriate use of antibiotics have caused a considerable increase of antibiotics to which bacteria have developed resistance and, moreover, bacteria are becoming resistant to more than one antibiotic simultaneously. Understanding mechanisms at the molecular level is extremely important to control multi-resistant strains and to develop new therapeutic strategies. In the present study, comparative proteomics was applied to characterize membrane and cytosolic proteome in order to investigate the regulation of protein expression in multi-resistance E. coli isolated from young never vaccinated water buffalo. Results highlighted differentially expressed proteins under multi drug resistance conditions giving new insights about mechanisms involved in resistance, as quorum sensing mechanisms, and suggesting possible novel bacterial targets to develop alternative antibiotic drugs.  相似文献   

17.
The continuous emergence of antibiotic resistance demands that novel classes of antibiotics continue to be developed. The division machinery of bacteria is an attractive target because it comprises seven or more essential proteins that are conserved almost throughout the bacteria but are absent from humans. We describe the development of a cell-based assay for inhibitors of cell division and its use to isolate a new inhibitor of FtsZ protein, a key player in the division machinery. Biochemical, cytological, and genetic data are presented that demonstrate that FtsZ is the specific target for the compound. We also describe the effects of more potent analogues of the original hit compound that act on important pathogens, again at the level of cell division. The assay and the compounds have the potential to provide novel antibiotics with no pool of pre-existing resistance. They have provided new insight into cytokinesis in bacteria and offer important reagents for further studies of the cell division machinery.  相似文献   

18.

To date, probiotic bacteria are used in the diet and have various clinical applications. There are reports of antibiotic resistance genes in these bacteria that can transfer to other commensal and pathogenic bacteria. The aim of this study was to use whole-genome sequence analysis to identify antibiotic resistance genes in a group of bacterial with probiotic properties. Also, this study followed existing issues about the importance and presence of antibiotic resistance genes in these bacteria and the dangers that may affect human health in the future. In the current study, a collection of 126 complete probiotic bacterial genomes was analyzed for antibiotic resistance genes. The results of the current study showed that there are various resistance genes in these bacteria that some of them are transferable to other bacteria. The tet(W) tetracycline resistance gene was more than other antibiotic resistance genes in these bacteria and this gene was found in Bifidobacterium and Lactobacillus. In our study, the most numbers of antibiotic resistance genes were transferred with mobile genetic elements. We propose that probiotic companies before the use of a micro-organism as a probiotic, perform an antibiotic susceptibility testing for a large number of antibiotics. Also, they perform analysis of complete genome sequence for prediction of antibiotic resistance genes.

  相似文献   

19.
There is concern that antibiotic resistance can potentially be transferred from animals to humans through the food chain. The relationship between specific antibiotic resistant bacteria and the genes they carry remains to be described. Few details are known about the ecology of antibiotic resistant genes and bacteria in food production systems, or how antibiotic resistance genes in food animals compare to antibiotic resistance genes in other ecosystems. Here we report the distribution of antibiotic resistant genes in publicly available agricultural and non-agricultural metagenomic samples and identify which bacteria are likely to be carrying those genes. Antibiotic resistance, as coded for in the genes used in this study, is a process that was associated with all natural, agricultural, and human-impacted ecosystems examined, with between 0.7 to 4.4% of all classified genes in each habitat coding for resistance to antibiotic and toxic compounds (RATC). Agricultural, human, and coastal-marine metagenomes have characteristic distributions of antibiotic resistance genes, and different bacteria that carry the genes. There is a larger percentage of the total genome associated with antibiotic resistance in gastrointestinal-associated and agricultural metagenomes compared to marine and Antarctic samples. Since antibiotic resistance genes are a natural part of both human-impacted and pristine habitats, presence of these resistance genes in any specific habitat is therefore not sufficient to indicate or determine impact of anthropogenic antibiotic use. We recommend that baseline studies and control samples be taken in order to determine natural background levels of antibiotic resistant bacteria and/or antibiotic resistance genes when investigating the impacts of veterinary use of antibiotics on human health. We raise questions regarding whether the underlying biology of each type of bacteria contributes to the likelihood of transfer via the food chain.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号