首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
The objective of this study was to identify specific bovine genes expressed within skeletal muscle that are associated with intramuscular fat deposition. Twenty-eight Angus-Simmental cross steers and heifers were harvested at the University of Illinois Meat Science Laboratory. Four pairs of animals were identified based on similar adjusted backfat thickness but differing amounts of intramuscular fat within each pair. RNA was extracted from muscle samples devoid of visible fat and microarray analysis was performed. Based on this analysis, 9 genes were selected and expression was subsequently confirmed by qPCR. Expression levels of MYH3, HOXD10, MXRA8, and CASQ2 were increased in animals with high marbling, whereas levels of NPNT, MRC1, DNER, and CYPB4 were decreased in high marbled animals. The remaining gene, ACTN2 was determined to be a false positive and was, therefore, excluded from further study. Despite the positive results of the preliminary study, associations between gene expression and intramuscular fat content did not extend to the larger population of cattle. A significant negative association existed between expression of MRC1 and marbling level (P?=?0.04). Therefore, this study was unable to identify a particular skeletal muscle gene set whose expression correlated well with marbling levels in the larger population of beef cattle.  相似文献   

2.
3.
Marbling defined by the amount and distribution of intramuscular fat, so-called Shimofuri , is an economically important trait of beef cattle in Japan. The endothelial differentiation sphingolipid G-protein-coupled receptor 1 ( EDG1 ) gene, involved in blood vessel formation, has been previously shown to be expressed at different levels in musculus longissimus muscle between low-marbled and high-marbled steer groups. It is located within the genomic region of a quantitative trait locus for marbling, and thus was considered as a positionally functional candidate for the gene responsible for marbling. In this study, two single nucleotide polymorphisms (SNPs) in the 5' untranslated region (UTR) and the 3' UTR of EDG1 , referred to as c. - 312A>G and c.*446G>A , respectively, were detected between the two steer groups. The two SNPs were associated with the predicted breeding value for beef marbling standard number by analyses using a population of Japanese Black beef cattle. The effect of genotypes at each of the SNPs on the predicted breeding value for subcutaneous fat thickness was not statistically significant ( P  >   0.05). Reporter gene assays revealed no significant differences in gene expression between alleles at each of the SNPs. These findings suggest that EDG1 SNPs, although they may not be regarded as a causal mutation, may be useful for effective marker-assisted selection to increase the levels of marbling in Japanese Black beef cattle.  相似文献   

4.
5.
We used a 9.6 K cattle muscle/fat cDNA microarray to study gene expression differences between the longuissimus dorsi (LD) muscle of Japanese Black (JB) and Holstein (HOL) cattle. JB cattle exhibit an unusual ability to accumulate intramuscular adipose tissue with fat melting points lower than that in other breeds. The LD biopsies from three JB (Tajima strain) and three HOL animals were used in this breed comparison. Seventeen genes were identified as preferentially expressed in LD samples from JB and seven genes were found to be expressed more highly in HOL. The expression of six selected differentially expressed genes was confirmed by quantitative real-time PCR. The genes more highly expressed in JB are associated with unsaturated fatty acid synthesis, fat deposition, and the thyroid hormone pathway. These results are consistent with the increased amounts and proportions of monounsaturated fatty acids observed in the muscle of JB animals. By discovering as yet uncharacterized genes that are differentially regulated in this comparison, the work may lead us to a better understanding of the regulatory pathways involved in the development of intramuscular adipose tissue.  相似文献   

6.
Among several potential animal models that can be used for adipogenic studies, Wagyu cattle is the one that presents unique molecular mechanisms underlying the deposit of substantial amounts of intramuscular fat. As such, this review is focused on current knowledge of such mechanisms related to adipose tissue deposition using Wagyu cattle as model. So abundant is the lipid accumulation in the skeletal muscles of these animals that in many cases, the muscle cross-sectional area appears more white (adipose tissue) than red (muscle fibers). This enhanced marbling accumulation is morphologically similar to that seen in numerous skeletal muscle dysfunctions, disease states and myopathies; this might indicate cross-similar mechanisms between such dysfunctions and fat deposition in Wagyu breed. Animal models can be used not only for a better understanding of fat deposition in livestock, but also as models to an increased comprehension on molecular mechanisms behind human conditions. This revision underlies some of the complex molecular processes of fat deposition in animals.  相似文献   

7.
The contractile protein troponin I (TnI), a constituent protein of the troponin complex located on the thin filaments of striated muscle, is involved in inhibition of calcium-induced myosin AT Pase activity (and thus contraction). TnI-slow (slow-twitch skeletal muscle isoform, named TNNI1) and TnI-fast (fast-twitch skeletal muscle isoform, named TNNI2) are muscle-fiber-type-specific proteins, and expression of their genes may affect the composition of muscle fiber, thereby influencing the meat quality traits. Thus, the TnI genes are potential candidate genes for traits related to meat quality in animals. Association of 2 SNPs (EU743939:g.5174T>C in intron 4, and EU743939:g.8350C>A in intron 7) of theTNNI1 gene and a SNP (EU696779:g.1167C>T in intron 3) of theTNNI2 gene with 11 meat quality traits were studied on 334 Large White × Meishan F2 pigs. In theTNNI1 gene, g.5174T>C and g.8350C>A were found to be significantly associated with intramuscular fat content and meat color value of biceps femoris. The g.5174T>C also showed significant effects on meat color value and marbling score of longissimus dorsi, as well as pH of longissimus dorsi and semispinalis capitis. The g.1167C>T polymorphism in theTNNI2 gene affected significantly the pH of longissimus dorsi, meat color value of longissimus dorsi and semispinalis capitis, marbling score of longissimus dorsi, and intramuscular fat.  相似文献   

8.
9.
The Wnt signaling pathway is involved in lipid metabolism and obesity development. Skeletal muscle, a pivotal tissue for metabolism, is regulated by the Wnt signaling. However, little is known of this pathway's involvement in insulin sensitivity and myogenesis in animals. The current study focused on the potential role of Wnt signaling in insulin sensitivity and myogenic events and its further impact on intramuscular fat accumulation. Obesity resistant (OR) and obesity prone (OP) rats were fed a high-fat (HF, 45% kcal fat) diet for 13 weeks. Body weight and circulating triglyceride (TG) were measured and gastrocnemius muscle was collected for analysis of gene expression and protein amount. OP rats had higher body weight and blood TG than OR, and our study demonstrated that the skeletal muscle of OR and OP rats had different levels of β-catenin, which also corresponded to the expression of Wnt downstream genes. The expression of insulin receptor substrate (IRS) was significantly lower in OP than OR skeletal muscle, as was the protein amount of phosphorylated Akt, myocyte enhancer factor-2 (MEF2), and GLUT4. Expression of Myogenic regulatory factor (Myf) 5 and Myf3 (MyoD) were decreased significantly in OP skeletal muscle when compared to OR. Additionally, intramuscular fat was higher in OP than in OR rats. Thus, we propose that the differential Wnt signaling in the skeletal muscle of OR and OP rats is highly likely associated with the differences in insulin sensitivity and myogenic capability in these two strains.  相似文献   

10.
The growth hormone receptor (GHR) is a membrane transmitter for the growth hormone signal transduction pathway that regulates various metabolic activities, including cell growth and expressions of cytokine genes. The presence or absence of a genetic polymorphism for the LINE-1 retroposon in the PI promoter, which specifically regulates theGHR gene expression in the liver, was screened by a novel detection method and examined for its relationships with carcass traits in Hanwoo cattle. Han woo cattle had taurine type LINE-1 present (alleleI) as well as incidine type LINE-1 absent (alleleA) promoter sequences. Three genotypes,I/I, I/A andA/A, showed frequencies of 49.1, 36.7 and 14.2%, respectively. The effects of allele A were significant on mean differences for final weight, eye muscle area, marbling score and fat color (p<0.05), but not for carcass weight, backfat thickness, final meat quality grade or meat color (p>0.05). Most 30-month old Hanwoo steers bearing the LINE-1 absent promoter had whiter fat color, heavier live weight and higher marbling score, reflecting intramuscular fat deposition inM. longissimus dorsi, compared to animals bearing a LINE-1 present promoter. This suggests that aGHR polymorphism could be a potential genetic marker for improving beef production of Hanwoo cattle.  相似文献   

11.
12.
13.

Background

This study aimed to identify markers for muscle growth rate and the different cellular contributors to cattle muscle and to link the muscle growth rate markers to specific cell types.

Results

The expression of two groups of genes in the longissimus muscle (LM) of 48 Brahman steers of similar age, significantly enriched for “cell cycle” and “ECM (extracellular matrix) organization” Gene Ontology (GO) terms was correlated with average daily gain/kg liveweight (ADG/kg) of the animals. However, expression of the same genes was only partly related to growth rate across a time course of postnatal LM development in two cattle genotypes, Piedmontese x Hereford (high muscling) and Wagyu x Hereford (high marbling). The deposition of intramuscular fat (IMF) altered the relationship between the expression of these genes and growth rate. K-means clustering across the development time course with a large set of genes (5,596) with similar expression profiles to the ECM genes was undertaken. The locations in the clusters of published markers of different cell types in muscle were identified and used to link clusters of genes to the cell type most likely to be expressing them. Overall correspondence between published cell type expression of markers and predicted major cell types of expression in cattle LM was high. However, some exceptions were identified: expression of SOX8 previously attributed to muscle satellite cells was correlated with angiogenesis. Analysis of the clusters and cell types suggested that the “cell cycle” and “ECM” signals were from the fibro/adipogenic lineage. Significant contributions to these signals from the muscle satellite cells, angiogenic cells and adipocytes themselves were not as strongly supported. Based on the clusters and cell type markers, sets of five genes predicted to be representative of fibro/adipogenic precursors (FAPs) and endothelial cells, and/or ECM remodelling and angiogenesis were identified.

Conclusions

Gene sets and gene markers for the analysis of many of the major processes/cell populations contributing to muscle composition and growth have been proposed, enabling a consistent interpretation of gene expression datasets from cattle LM. The same gene sets are likely to be applicable in other cattle muscles and in other species.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-015-1403-x) contains supplementary material, which is available to authorized users.  相似文献   

14.
Studies have shown that intramuscular adipogenesis and fibrogenesis may concomitantly occur in skeletal muscle of beef cattle. Thus, we hypothesized that the discrepancy of intramuscular fat content in beef from Nellore and Angus was associated with differences in intramuscular adipogenesis and fibrogenesis during the finishing phase. To test our hypothesis, longissimus muscle samples of Nellore (n = 6; BW = 372.5 ± 37.3 kg) and Angus (n = 6; BW = 382.8 ± 23.9 kg) cattle were collected for analysis of gene and protein expression, and quantification of intramuscular fat and collagen. Least-squares means were estimated for the effect of Breed and differences were considered at P ≤ 0.05. A greater intramuscular fat content was observed in skeletal muscle of Angus compared to Nellore cattle (P≤0.05). No differences were observed for mRNA expression of lipogenic and lipolytic markers ACC, FAS, FABP4, SERBP–1, CPT–2, LPL, and ACOX (P > 0.05) in skeletal muscle of Nellore and Angus cattle. Similarly, no differences were observed in mRNA expression of adipogenic markers Zfp423, PPARγ, and C/EBPα (P>0.05) However, a greater PPARγ protein content was observed in skeletal muscle of Angus compared to Nellore cattle (P≤0.05). A greater abundance of adipo/fibrogenic cells, evaluated by the PDGFRα content, was observed in skeletal muscle of Angus than Nellore cattle (P≤0.05). No differences in fibrogenesis were observed in skeletal muscle of Angus and Nellore cattle, which is in accordance with the lack of differences in intramuscular collagen content in beef from both breeds (P>0.05). These findings demonstrate that difference in intramuscular fat content is associated with a slightly enhanced adipogenesis in skeletal muscle of Angus compared to Nellore cattle, while no difference in fibrogenesis.  相似文献   

15.
Marbling, as defined by the amount of intramuscular fat, is an economically important trait in beef cattle. Intramuscular fat deposition is postulated to arise mainly from a series of adipogenic events in intramuscular adipocyte-lineage cells and in the physiological or anatomical milieux surrounding them. This study was designed to investigate gene-expression patterns associated with fat deposition in musculus longissimus muscle, including adipocyte-lineage cells and part of the milieux. Differential-display PCR (ddPCR) was used to examine expression differences between low-marbled and high-marbled steer groups at 8, 10, 12 and 14 months of age, encompassing the time that marbling starts to appear. Seventy-four of 2114 total bands on ddPCR gel-bands were significant (P < 0.05) for the group effect, the interaction effect between group and age, or both the group and the interaction effects. Sequence analysis of 72 of these bands revealed 77 genes, including 35 annotated genes and 42 novel sequences. Among the 35 annotated genes, 6 (BTG2, PDHB, SORBS1, TRDN, TTN and MGP) have been related to changes in intramuscular fat deposition, possibly by exerting effects on adipocyte-lineage cells or on the milieux surrounding them.  相似文献   

16.
17.
本研究旨在探究生长激素(Growth hormone,GH)对贵州地方黄牛骨骼肌细胞增殖的表达调控,探明超表达GH基因对骨骼肌细胞增殖的影响。首先利用反转录PCR扩增黄牛GH基因的蛋白质编码区(Coding sequence,CDS),将其克隆至pUCM-T载体,并连接转化构建超表达载体pEGFP-N3-GH。同时使用实时荧光定量PCR检测GH基因在贵州地方黄牛骨骼肌相关组织(腰大肌与背最长肌)中的表达情况,然后培养牛原代骨骼肌细胞并进行鉴定,并将GH基因超表达载体导入细胞以研究GH基因对牛骨骼肌细胞增殖以及骨骼肌生长发育相关因子胰岛素样生长因子-1(Insulinlikegrowthfactor1,IGF-1)与胰岛素样生长因子-2(Insulinlikegrowth factor 2,IGF-2)基因表达的影响。实时荧光定量PCR结果显示,GH基因在贵州地方黄牛腰大肌中的表达量均高于背最长肌,其中在关岭牛和威宁牛腰大肌中的表达量显著高于背最长肌(P0.05)。细胞转染及增殖结果表明,相比于pEGFP-N3,pEGFP-N3-GH能极显著提高GH与IGF-1、IGF-2基因在骨骼肌细胞中的表达量,且在被检测的4个时期(6 h、12 h、24 h、48 h),超表达GH基因组也能够极显著地提高骨骼肌细胞的增殖速率(P0.01)。结果提示,GH基因可促进贵州地方黄牛骨骼肌细胞的增殖,对其具有正向的调控作用,这为进一步探究GH基因对贵州地方黄牛生长发育的影响机制奠定基础。  相似文献   

18.
19.
Intramuscular fat content, also assessed as marbling of meat, represents an important beef quality trait. Recent work has mapped a quantitative trait locus (QTL) with an effect on marbling to the centromeric region of bovine chromosome 14, with the gene encoding thyroglobulin (TG) being proposed as a positional and functional candidate gene for this QTL. Recently, the gene encoding diacylglycerol O-acyltransferase (DGAT1), which also has been mapped within the region of the marbling QTL, has been demonstrated to affect the fat content of milk. In the present study, the effects of a 5'-polymorphism of TG and of a lysine/alanine polymorphism of DGAT1 on the fat content of musculus (m.) semitendinosus and m. longissimus dorsi in 55 bovine animals (28 German Holstein and 27 Charolais) has been investigated. Significant effects were found for both candidate genes in both the breeds. These effects seem to be independent of one another because the alleles of the two polymorphisms showed no statistically significant disequilibrium. The DGAT1 effect is mainly on the m. semitendinosus. The TG polymorphism only affects m. longissimus dorsi. However, both intramuscular fat enhancing effects seem to be recessive. The possibility of two linked loci, acting recessively on intramuscular fat content, will require special strategies when selecting for higher marbling scores.  相似文献   

20.
Fatty acid composition, especially oleic acid (C18:1), plays an important role in the eating quality of meat in Japanese Black cattle. Therefore, the objective of this study was to identify loci associated with C18:1 in the intramuscular fat of the trapezius muscles in Japanese Black cattle using the Illumina BovineSNP50 BeadChip whole genome single nucleotide polymorphism (SNP) assay. We also evaluated the relationship between C18:1 and three fatty acid synthesis genes, fatty acid synthase (FASN), stearoyl‐CoA desaturase and sterol regulatory element‐binding protein‐1. In this experiment, we applied a mixed model and Genomic Control approach using selective genotyping to perform a genome‐wide association study. A total of 160 animals (80 animals with higher values and 80 animals with lower values), selected from 3356 animals based on corrected phenotype, were genotyped using the Illumina BovineSNP50 BeadChip and three fatty acid synthesis genes, and the quality of these SNPs was assessed. In this study, a total of 38 955 SNPs, which included SNPs in the three fatty acid synthesis genes, were used, and the estimated inflation factor was 1.06. In the studied population, a total of 32 SNPs, including the FASN gene, had significant effects, and in particular 30 SNPs of all significant SNPs were located between 49 and 55 Mbp on chromosome 19. This study is one of the first genome‐wide association studies for fatty acid composition in a cattle population using the recently released Illumina BovineSNP50 BeadChip.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号