首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Kinetics and mechanism in the reaction of gene regulatory proteins with DNA   总被引:28,自引:0,他引:28  
We have measured the kinetic properties of the Escherichia coli cAMP receptor protein (CAP) and lac repressor interacting with lac promoter restriction fragments. Under our reaction conditions (10 mM-Tris X HCl (pH 8.0 at 21 degrees C), 1 mM-EDTA, 10 microM-cAMP, 50 micrograms bovine serum albumin/ml, 5% glycerol), the association of CAP is at least a two-step process, with an initial, unstable complex formed with rate constant kappa a = 5(+/- 2.5) X 10(7) M-1 s-1. Subsequent formation of a stable complex occurs with an apparent bimolecular rate constant kappa a = 6.7 X 10(6) M-1 s-1. At low total DNA concentration, the dissociation rate constant for the specific CAP-DNA complex is 1.2 X 10(-4) s-1. The ratio of formation and dissociation rate constants yields an estimate of the equilibrium constant, Keq = 5 X 10(10) M-1, in good agreement with static results. We observed that the dissociation rate constant of both CAP-DNA and repressor-DNA complexes is increased by adding non-specific "catalytic" DNA to the reaction mixture. CAP dissociation by the concentration-dependent pathway is second-order in added non-specific DNA, consistent with either the simultaneous or the sequential participation of two DNA molecules in the reaction mechanism. The results imply a role for distal DNA in assembly-disassembly of specific CAP-DNA complexes, and are consistent with a model in which the subunits in the CAP dimer separate in the assembly-disassembly process. The dissociation of lac repressor-operator complexes was found to be DNA concentration-dependent as well, although in contrast to CAP, the reaction is first-order in catalytic DNA. Added excess operator-rich DNA gave more rapid dissociation than equivalent concentrations of non-specific DNA, indicating that the sequence content of the competing DNA influences the rate of repressor dissociation. The simplest interpretation of these observations is that lac repressor can be transferred directly from one DNA molecule to another. A comparison of the translocation rates calculated for direct transfer with those predicted by the one-dimensional sliding model indicates that direct transfer may play a role in the binding site search of lac repressor.  相似文献   

2.
P A Whitson  K S Matthews 《Biochemistry》1986,25(13):3845-3852
The dissociation kinetics for repressor-32P-labeled operator DNA have been examined by adding unlabeled operator DNA to trap released repressor or by adding a small volume of concentrated salt solution to shift the Kd of repressor-operator interaction. The dissociation rate constant for pLA 322-8, an operator-containing derivative of pBR 322, was 2.4 X 10(-3) s-1 in 0.15 M KCl. The dissociation rate constant at 0.15 M KCl for both lambda plac and pIQ, each of which contain two pseudooperator sequences, was approximately 6 X 10(-4) s-1. Elimination of flanking nonspecific DNA sequences by use of a 40 base pair operator-containing DNA fragment yielded a dissociation rate constant of 9.3 X 10(-3) s-1. The size and salt dependences of the rate constants suggest that dissociation occurs as a multistep process. The data for all the DNAs examined are consistent with a sliding mechanism of facilitated diffusion to/from the operator site. The ability to form a ternary complex of two operators per repressor, determined by stoichiometry measurements, and the diminished dissociation rates in the presence of intramolecular nonspecific and pseudooperator DNA sites suggest the formation of an intramolecular ternary complex. The salt dependence of the dissociation rate constant for pLA 322-8 at high salt concentrations converges with that for a 40 base pair operator. The similarity in dissociation rate constants for pLA 322-8 and a 40 base pair operator fragment under these conditions indicates a common dissociation mechanism from a primary operator site on the repressor.  相似文献   

3.
The interaction of Tet repressor protein with the inducer tetracycline was studied by fluorescence measurements, equilibrium dialysis and nitrocellulose filter binding. The repressor-tetracycline complex was formed from two molecules of tetracycline and one Tet repressor dimer. Formation of the complex requires divalent cations, and results in drastic effects upon the fluorescence spectra of both compounds. The fluorescence of Tet repressor was quenched about 70%, while that of tetracycline was increased between three- and eightfold, depending upon pH. In addition, the emission maximum of the protein was shifted from 330 to 340 nm, and the excitation maximum of tetracycline dropped from 380 to 370 nm. The latter shift is accompanied by a similar change in the absorption spectra. An analogous effect was observed upon changing the environment of the drug by the addition of sodium dodecyl sulphate. These results suggest that tetracycline binds to a hydrophobic region of the protein. A new excitation band in the fluorescence spectrum of the complex is observed. This presumably arises from energy transfer from a tryptophan to the drug. The association rate constant for formation of the complex is 3.3(+/- 0.3) X 10(5) M-1 s-1, and the equilibrium association constant is 2.8(+/- 0.5) X 10(9) M-1. These results are discussed with respect to the biological function of the Tet repressor.  相似文献   

4.
A Cornélis  P Laszlo 《Biochemistry》1979,18(10):2004-2007
In ethanol-water mixtures (90:10), the gramicidin dimer binds Na+ cations at well-defined sites, with a binding constant K = 4 M-1. Partial desolvation of Na+ occurs upon binding, as judged from the magnitude of the quadrupolar coupling constant (1.7 MHz) for bound sodium. The binding sites are identified with the outer sites flanking the channel entrances. The rate constants for binding and release are k+ less than or equal to 2.2 X 10(9) M-1 s-1 and k- less than or equal to 5.5 X 10(8) s-1, respectively.  相似文献   

5.
The acid-basic properties of ellipticine have been re-estimated. The apparent pK of protonation at 3 microM drug concentration is 7.4 +/- 0.1. The ellipticine free base (at pH 9, I = 25 mM) intercalates into calf-thymus DNA with an affinity constant of 3.3 +/- 0.2 X 10(5) M-1, and a number of binding sites per phosphate of 0.23. The ellipticinium cation (pH 5, I = 25 mM) binds also to DNA with a constant of 8.3 +/- 0.2 x 10(5) M-1 and at a number of binding sites (n = 0.19). It is postulated that the binding of the drug to DNA at pH 9 is driven by hydrophobic and/or dipolar effects. Even at pH 5, where ellipticine exists as a cation, it is thought that the hydrophobic interaction is the main contribution to binding. The neutral and cationic forms share common binding within DNA sites but yield to structurally different complexes. The free base has 0.04 additional specific binding sites per phosphate. As determined from temperature-jump experiments, the second-order rate constant of the binding of the free base (pH 9) is 3.4 x 10(7) M-1 s-1 and the residence time of the base within the DNA is 8 ms. The rate constant for the binding of the ellipticinium cation is 9.8 x 10(7) M-1 s-1 when it is assumed that drug attachment occurs via a pathway in which the formation of an intermediate ionic complex is not involved (competitive pathway).  相似文献   

6.
The equilibrium constant for binding of the gelsolin-actin complex to the barbed ends of actin filaments was measured by the depolymerizing effect of the gelsolin-actin complex on actin filaments. When the gelsolin-actin complex blocks monomer consumption at the lengthening barbed ends of treadmilling actin filaments, monomers continue to be produced at the shortening pointed ends until a new steady state is reached in which monomer production at the pointed ends is balanced by monomer consumption at the uncapped barbed ends. By using this effect the equilibrium constant for binding was determined to be about 1.5 X 10(10) M-1 in excess EGTA over total calcium (experimental conditions: 1 mM MgCl2, 100 mM KCl, pH 7.5, 37 degrees C). In the presence of Ca2+ the equilibrium constant was found to be in the range of or above 10(11) M-1. The rate constant of binding of the gelsolin-actin complex to the barbed ends was measured by inhibition of elongation of actin filaments. Nucleation of new filaments by the gelsolin-actin complex towards the pointed ends was prevented by keeping the monomer concentration below the critical monomer concentration of the pointed ends where the barbed ends of treadmilling actin filaments elongate and the pointed ends shorten. The gelsolin-actin complex was found to bind fourfold faster to the barbed ends in the presence of Ca2+ (10 X 10(6) M-1 s-1) than in excess EGTA (2.5 X 10(6) M-1 s-1). Dissociation of the gelsolin-actin complex from the barbed ends can be calculated to be rather slow. In excess EGTA the rate constant of dissociation is about 1.7 X 10(-4) s-1. In the presence of Ca2+ this dissociation rate constant is in the range of or below 10(-4) s-1.  相似文献   

7.
An analytical method for determining very high binding constants at equilibrium for reactions requiring an effector is proposed and applied to study the interaction of tetracycline with the repressor of the tetracycline resistance gene from Tn10. In this method complex formation is limited by low concentrations of the effector, which is Mg2+ for the interaction of tetracycline and Tet repressor. The binding of Mg2+ to tetracycline and subsequent formation of the ternary repressor-Mg(2+)-tetracycline complex are coupled reactions yielding a dependence of repressor-tetracycline-Mg2+ complex formation on the concentration of free Mg2+. The binding constants can be determined from the quantitative analysis of ternary complex formation with increasing Mg2+ concentrations. This method allows the determination of very high association constants at equilibrium in a large range of protein concentrations. In the case of repressor and tetracycline, the same affinity constant of 3 +/- 2 x 10(9) M-1 was found in the range of 0.1 to 5 microM of repressor. This result indicates that no association or dissociation of the repressor subunits occurs upon binding of tetracycline. Furthermore, the results show that a repressor dimer binds two effector molecules without significant cooperativity.  相似文献   

8.
Analysis of trp repressor-operator interaction by filter binding.   总被引:6,自引:1,他引:5       下载免费PDF全文
A filter binding assay was developed that allows measurement of specific binding of trp repressor to operator DNA. The most important feature of this procedure is the concentration and type of salt present in the binding buffer. Using this assay the dissociation constant of the repressor-operator complex was determined to be 2.6 X 10(-9) M, and 1.34 repressor dimers were found to be bound to each operator-containing DNA molecule. These values agree with those obtained by more complex methods. The dissociation constant of the repressor for the corepressor L-tryptophan in the presence of operator DNA was shown to be 2.5 X 10(-5) M. A synthetic 48 bp operator fragment was used to determine the repressor-operator dissociation constant in the presence of tryptophan or tryptophan analogs which have higher or lower affinities for aporepressor. The rate of dissociation of repressor from operator DNA also was determined. Our findings indicate that dissociation is influenced by the concentration of tryptophan or tryptophan analogs and suggest that release of the corepressor may be the first step in dissociation of the repressor-operator complex.  相似文献   

9.
A series of computer simulations of gel patterns assuming non-cooperative binding of a protein to two targets on the same DNA fragment was performed and applied to interprete gel mobility shift experiments of Tet repressor-tet operator binding. While a high binding affinity leads to the expected distribution of free DNA, DNA bound by one repressor dimer and DNA bound by two repressor dimers, a lower affinity or an increased electrophoresis time results in the loss of the band corresponding to the singly occupied complex. The doubly occupied complex remains stable under these conditions. This phenomenon is typical for protein binding to DNA fragments with two identical sites. It results from statistical disproportionation of the singly occupied complex in the gel. The lack of the singly occupied complex is commonly taken to indicate cooperative binding, however, our analysis shows clearly, that cooperativity is not needed to interprete these results. Tet repressor proteins and small DNA fragments with two tet operator sites have been prepared from four classes of tetracycline resistance determinants. The results of gel mobility shift analyses of various complexes of these compounds confirm the predictions. Furthermore, calculated gel patterns assuming different gel mobilities of the two singly occupied complexes show discrete bands only if the electrophoresis time is shorter than the inverse of the microscopic dissociation rate constant. Simulations assuming increasing dissociation rates predict that the two bands first merge into one, which then disappears. This behavior was verified by gel mobility analyses of Tet repressor-tet operator titrations at increased salt concentrations as well as by direct footprinting of the complexes in the gel. It is concluded that comparison of the intensities of the single and the double occupation bands allow a rough estimation of the dissociation rate constant. On this basis the sixteen possible Tet repressor-tet operator combinations can be ordered with decreasing binding affinities by a simple gel shift experiment. The implications of these results for gel mobility analyses of other protein-DNA complexes are discussed.  相似文献   

10.
Cooperative interaction of histone H1 with DNA.   总被引:4,自引:1,他引:3       下载免费PDF全文
The cooperative binding of histone H1 with DNA was studied using a fluorescently labelled histone H1. The titration data were analysed in terms of the large ligand model. The stoichiometric number, n = 65 +/- 10 bases/H1, was independent of NaCl concentration (0.02 - 0.35 M). The nucleation and the cooperative binding constants, K' and K, and the cooperativity parameter q were sensitive to salt concentration; K = 3.6 +/- 0.8 X 10(7) M-1 and q = 1.1 +/- 0.4 X 10(3) at 0.2 M NaCl. The dependence of K' on NaCl concentration revealed that 6 Na+ ions were released from DNA upon complex formation. An extrapolation of K' to 1M NaCl yielded a small value, K' = 5 +/- 2 M-1. Thus the binding of H1 is essentially electrostatic, being compatible with its independence of temperature. A calculation of K' based on the counterion release reproduced the salt concentration dependence of K'. Therefore, the binding of H1 is of an electrostatic territorial type. Thus, H1 may move along the DNA chain to a certain extent, when both salt concentration and the degree of saturation are sufficiently low. The condition is so restricted that the sliding would not play an important role in vivo. It was concluded from the DNA concentration independent binding isotherm that H1 can cooperatively bind onto a single DNA molecule. A simple power law dependence of the cooperativity parameter q upon NaCl concentration was found; q oc[NaCl]h with h = 0.72, though the physical basis of this dependence remains unknown.  相似文献   

11.
Comparison of the binding of Na+ and Ca2+ to bovine alpha-lactalbumin   总被引:2,自引:0,他引:2  
alpha-Lactalbumin is a metal-binding protein which binds Ca2+- and Na+-ions competitively to one specific site, giving rise to a large conformational change of the protein. For this reason, the enthalpy change of binding Ca2+ to apo-alpha-lactalbumin (delta Ho) is strongly dependent on the concentration of Na+ ions in the medium. From that relationship a molar enthalpy of -145 +/- 3 kJ X mol-1 is calculated for the Ca2+-binding at pH 7.4 and 25 degrees C, while a delta Ho of -5 +/- 3 kJ X mol-1 is found to substitute a complexed Na+ by a Ca2+-ion. These measurements also allowed us to calculate a binding constant for Na+ of 195 +/- 18 M-1. The molar enthalpy of Na+-loading was found to be -142 +/- 3 kJ X mol-1, a value very close to delta Ho of the binding of Ca2+ to alpha-lactalbumin. Both enthalpy changes in binding Ca2+ and Na+ are independent of the protein concentration. These exothermic values are in agreement with the hypothesis that both Na+- and Ca2+-ions are able to induce the same conformational change in alpha-lactalbumin upon which hydrophobic regions are removed from the solvent, yielding a less hydrophobic protein. The latter is confirmed by means of affinity measurements of the hydrophobic fluorescent probe 4,4'-bis[1-(phenylamino)-8-naphthalene sulphonate](bis-ANS) to alpha-lactalbumin. The association constant (Ka) decreased from (6.6 +/- 0.5) X 10(4) M-1 in the absence of NaCl to (2.7 +/- 0.2) X 10(4) M-1 in 75 mM NaCl, while the maximum intensity (Imax) of the binary bis-ANS-alpha-lactalbumin complex remained constant at 0.44 +/- 0.02 (arbitrary units). The Ka value of bis-ANS for Ca2+-alpha-lactalbumin was determined at (1.7 +/- 0.2) X 10(4) M-1 and Imax was 0.43 +/- 0.02 (arbitrary units). The difference in hydrophobicity between the two conformational states of the protein was further demonstrated by adsorption experiments of both conformers to phenyl-Sepharose. Apo-alpha-lactalbumin, hydrophobically bound to phenyl-Sepharose, can be eluted by adding Ca2- or Na+-solutions.  相似文献   

12.
Streptokinase reacts very rapidly with human plasmin (rate constant 5.4 S 10(7) M-1 s-1) forming a 1:1 stoichiometric complex which has a dissociation constant of 5 X 10(-11) M. This plasmin-streptokinase complex is 10(5) times less reactive towards alpha 2-antiplasmin than plasmin, the inhibition rate constant being 1.4 X 10(2) M-1 s-1. The loss of reactivity of the streptokinase-plasmin complex towards alpha 2-antiplasmin is independent of the lysine binding sites in plasmin since low-Mr plasmin, which lacks these sites, and plasmin in which the sites have been blocked by 6-aminohexanoic acid, are both equally unreactive towards alpha 2-antiplasmin on reaction with streptokinase. The plasmin-streptokinase complex binds to Sepharose-lysine and Sepharose-fibrin monomer in the same fashion as free plasmin, showing that the lysine binding sites are fully exposed in the complex. Bovine plasmin is rapidly inhibited by human alpha 2-antiplasmin (k1 = 1.6 X 10(6) M-1 s-1) and similarly loses reactivity towards the inhibitor on complex formation with streptokinase (50% binding at 0.4 microM streptokinase).  相似文献   

13.
Kinetics and mechanism of bilirubin binding to human serum albumin   总被引:3,自引:0,他引:3  
The kinetics of bilirubin binding to human serum albumin at pH 7.40, 4 degrees C, was studied by monitoring changes in bilirubin absorbance. The time course of the absorbance change at 380 nm was complex: at least three kinetic events were detected including the bimolecular association (k1 = 3.8 +/- 2.0 X 10(7) M-1 S-1) and two relaxation steps (52 = 40.2 +/- 9.4 s-1 and k3 = 3.8 +/- 0.5 s-1). The presence of the two slow relaxations was confirmed under pseudo-first order conditions with excess albumin. Curve-fitting procedures allowed the assignment of absorption coefficients to the intermediate species. When the bilirubin-albumin binding kinetics was observed at 420 nm, only the two relaxations were seen; apparently the second order association step was isosbestic at this wavelength. The rate of albumin-bound bilirubin dissociation was measured by mixing the pre-equilibrated human albumin-bilirubin complex with bovine albumin. The rate constant for bilirubin dissociation measured at 485 nm was k-3 = 0.01 s-1 at 4 degrees C. A minimum value of the equilibrium constant for bilirubin binding to human albumin determined from the ratio k1/k-3 is therefore approximately 4 X 10(9) M-1.  相似文献   

14.
An ethidium homodimer and acridine ethidium heterodimer have been synthesized (Gaugain, B., Barbet, J., Oberlin, R., Roques, B. P., & Le Pecq, J. B. (1978) Biochemistry 17 (preceding paper in this issue)). The binding of these molecules to DNA has been studied. We show that these dimers intercalate only one of their chromophores in DNA. At high salt concentration (Na+ greater than 1 M) only a single type of DNA-binding site exists. Binding affinity constants can then be measured directly using the Mc Ghee & Von Hippel treatment (Mc Ghee, J. D., & Von Hippel, P. H. (1974) J. Mol. Biol. 86, 469). In these conditions the dimers cover four base pairs when bound to DNA. Binding affinities have been deduced from competition experiments in 0.2 M Na+ and are in agreement with the extrapolated values determined from direct DNA-binding measurements at high ionic strength. As expected, the intrinsic binding constant of these dimers is considerably larger than the affinity of the monomer (ethidium dimer K = 2 X 10(8) M-1; ethidium bromide K = 1.5 X 10(5) M-1 in 0.2 M Na+). The fluorescence properties of these molecules have also been studied. The efficiency of the energy transfer from the acridine to the phenanthridinium chromophore, in the acridine ethidium heterodimer when bound to DNA, depends on the square of the AT base pair content. The large increase of fluorescence on binding to DNA combined with a high affinity constant for nucleic acid fluorescent probes. In particular, such molecules can be used in competition experiments to determine the DNA binding constant of ligands of high binding affinity such as bifunctional intercalators.  相似文献   

15.
16.
p21 isolated under nondenaturing conditions is obtained as a complex with guanosine nucleotides and magnesium ions. We have developed a high performance liquid chromatography method which removes greater than 95% of bound nucleotide and the metal ion very rapidly under mild conditions. At the same time, p21 is purified from minor protein impurities. The protein thus prepared is thermally much less stable than the complexed p21, but can be used for studying its interaction with nucleotides and metal ions at low temperatures. The association rate constant for p21 and GDP is 1.47 X 10(6) M-1 s-1 and for GTP is 2.9 X 10(6) M-1 s-1 at 0 degree C. By using appropriately determined dissociation rate constants we have determined the binding constant for p21.GDP and p21.GTP in the presence of excess Mg2+ to be 5.7 X 10(10) M-1 and 6.0 X 10(10) M-1, respectively, at 0 degree C.  相似文献   

17.
The binding constants for interaction of the anticancer agents mitoxantrone and ametantrone and several congeners with calf thymus DNA and the effects of ionic strength changes have been determined spectrophotometrically. The agents show a preference for certain sequences, particularly those with GC base pairs, and the magnitude of the specificity depends on the specific substituents on the anthraquinone ring system. The binding constant for mitoxantrone with calf thymus DNA in 0.1 M Na+, pH 7, is approximately 6 X 10(6) M-1, and the rate constant for the sodium dodecyl sulfate driven dissociation of mitoxantrone from its calf thymus DNA complex under the same solution conditions and 20 degrees C was determined to be 1.3 s-1. The unwinding angle of mitoxantrone determined independently by viscosity measurements and by a novel assay employing calf thymus topoisomerase shows excellent agreement for a value of 17.5 degrees. The viscosity increase of sonicated calf thymus DNA varies considerably with the substituent on the anthraquinone ring system. Binding studies employing T4 and phi w-14 DNAs in which the major groove is occluded and the reverse experiment with anthramycin-treated calf thymus DNA indicate at least part of the mitoxantrone molecule may lie in the minor groove.  相似文献   

18.
The Tn10-encoded Tet repressor contains two tryptophan residues at positions 43 and 75. The typical tryptophan fluorescence is decreased upon binding of tet operator. The Tet repressor gene was engineered to replace either or both of the Trp codons by Phe codons. The resulting single tryptophan mutants are called F43 and F75 and the double mutant F43F75. The mutant proteins were purified to homogeneity. They recognize tet operator DNA only in the absence of the inducer tetracycline, indicating an intact tertiary structure of the engineered proteins. F75 and wild-type bind tet operator with the same association constant. The association constants of F43 and F43F75 with tet operator are about 3 orders of magnitude smaller. This indicates that Trp43 is important for tet operator recognition. Trp43 fluorescence is completely quenched in the complex with tet operator DNA while Trp75 remains unaffected. Binding to nonspecific DNA leads only to a 40% decrease of Trp43 fluorescence. This is interpreted as the contribution of the changed environment while the complete quench reflects a tight sequence-specific contact of tryptophan 43 to tet operator DNA. Trp43 is solvent-exposed, while Trp75 is buried in the hydrophobic interior of the protein. These results are discussed in light of the alpha-helix turn-alpha-helix DNA binding motif deduced from homology to other repressor proteins.  相似文献   

19.
Modified trypsin kallikrein inhibitor (I*), with the reactive-site peptide bond Lys-15--Ala-16 split, reacts with alpha-chymotrypsin (E) via an intermediate X to the stable tetrahedral complex C:E + I in equilibrium X leads to C. Formation X constitutes a fast pre-equilibrium (equilibrium constant Kx = 7 X 10(-5) M, association rate constant kx = 4 X 10(3)M-1s-1) to the slow reaction X leads to C (rate constant kc = 2 X 10(-3) s-1), all values at pH 7.5. No intermediate X is observed when alpha-chymotrypsin reacts with I*-OMe in which the carboxyl group of Lys-15 is esterified by methanol. This observation as well as the different pH dependence of the overall association rate constants in the case of I* and I*-OMe indicate tha formation of X precedes formation of the acyl enzyme in the catalytic pathway. The data are compared to the similar results obtained with beta-trypsin and I* or I*-OMe.  相似文献   

20.
The kinetics of reduction and intracomplex electron transfer in electrostatically stabilized and covalently crosslinked complexes between ferredoxin-NADP+ reductase (FNR) and flavodoxin (Fld) from the cyanobacterium Anabaena PCC 7119 were compared using laser flash photolysis. The second-order rate constant for reduction by 5-deazariboflavin semiquinone (dRfH) of FNR within the electrostatically stabilized complex at 10 mM ionic strength (4.0 X 10(8) M-1 s-1) was identical to that for free FNR. This suggests that the FAD cofactor of FNR is not sterically hindered upon complex formation. A lower limit of approximately 7000 s-1 was estimated for the first-order rate constant for intracomplex electron transfer from FNRred to Fldox under these conditions. In contrast, for the covalently crosslinked complex, a smaller second-order rate constant (2.1 X 10(8) M-1 s-1) was obtained for the reduction of FNR by dRfH within the complex, suggesting that some steric hindrance of the FAD cofactor of FNR occurs due to crosslinking. A limiting rate constant of 1000 s-1 for the intracomplex electron transfer reaction was obtained for the covalent complex, which was unaffected by changes in ionic strength. The substantially diminished limiting rate constant, relative to that of the electrostatic complex, may reflect either a suboptimal orientation of the redox cofactors within the covalent complex or a required structural reorganization preceding electron transfer which is not allowed once the proteins have been covalently linked. Thus, although the covalent complex is biochemically competent, it is not a quantitatively precise model for the catalytically relevant intermediate along the reaction pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号