首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 577 毫秒
1.
2.
Proline accumulations in abiotically stressed plants is generally considered to benefit their stress tolerance. The Δ1-Pyrroline-5-carboxylate synthetase (P5CS) gene family, which encodes the rate-limiting enzyme in proline biosynthesis pathway, usually contains two duplicated genes in most plants. However, three P5CS genes including LrP5CS1, LrP5CS2 as well as a third one, LrP5CS3, were isolated from Lilium regale. LrP5CS3 is highly identical to LrP5CS1 in amino acid sequences, indicating they could come from a paralogous duplication. The phylogenetic tree suggested that the duplication of LrP5CS occurred independently after the divergence of Liliales and commelinoids. The expression of LrP5CS1 was strongly induced in leaves and roots both under drought and salinity, while that of LrP5CS3 was upregulated more moderately. LrP5CS2 stayed almost constitutive under stress. LrP5CS1 exhibited the highest activity after expressed in E. coli. Overexpression of LrP5CS genes conferred enhanced osmotic, drought and salt tolerance on transgenic Arabidopsis without negative effects in unstressed condition. Under salt stress, lines LrP5CS2 accumulated fewer proline than others, and lines LrP5CS1 grew better in root elongation. The roots of lines LrP5CS3 grew better than all others under unstressed condition and osmotic stress. Our study suggests that the three LrP5CS genes play distinct roles respectively in proline accumulation and abiotic stress tolerance.  相似文献   

3.
Many plants synthesize and accumulate proline in response to osmotic stress conditions. A central enzyme in the proline biosynthesis is the bifunctional enzyme Δ1-pyrroline-5-carboxylate synthase (P5CS) that includes two functional catalytic domains: the γ-glutamyl kinase and the glutamic-γ-semialdehyde dehydrogenase. This enzyme catalyzes the first two steps of the proline biosynthetic pathway and plays a central role in the regulation of this process in plants. To determine the evolutionary events that occurred in P5CS genes, partial sequences from four Neotropical trees were cloned and compared to those of other plant taxa. Molecular phylogenetic analysis indicated that P5CS duplication events have occurred several times following the emergence of flowering plants and at different frequencies throughout the evolution of monocots and dicots. Despite the high number of conserved residues in plant P5CS sequences, positive selection was observed at different regions of P5CS paralogous genes and also when dicots and monocots were contrasted.  相似文献   

4.
5.
Several functional and regulatory proteins play important roles in controlling plant stress tolerance. Proline (Pro) is one of the most accumulated osmolytes correlated with tolerance to stresses. Δ1-Pyrroline-5-carboxylate synthetase (P5CS) is a rate-limiting enzyme in Pro biosynthesis. In the present study, we isolated the cDNA for a P5CS gene (NtP5CS) from the halophyte Nitraria tangutorum. Phylogenetic analysis and subcellular localization analysis of NtP5CS-GFP protein in onion cells showed that NtP5CS was a new P5CS gene and was involved in Pro synthesis in N. tangutorum. Expression of the NtP5CS gene was induced by salt stress, dehydration, and high and low temperatures. Escherichia coli overexpressing AtP5CS or NtP5CS exhibited better growth in all treatments, including high salinity, high alkalinity, dehydration, osmotic, heat and cold stresses. Additionally, NtP5CS recombinant E. coli cells grew better than did AtP5CS recombinant cells in response to abiotic stresses. Our data demonstrate that the P5CS from a halophytic species functions more efficiently than its homologue from a glycophytic species in improving the stress tolerance of E. coli.  相似文献   

6.
Many plants accumulate proline (Pro) when suffered from drought; thus, the relationship between Pro accumulation and plant drought tolerance becomes an increasing concern. Pro is synthesized from either glutamine or ornithine, and the former pathway dominates under osmotic stress conditions. In this study, the dynamic accumulation of free Pro under drought stress in 10 genotypes of Tibetan hulless barley (Hordeum vulgare var. nudum) with water lose rate (WLR) of 0.3304 to 0.5839 g/(h g dry wt) was investigated. However, no correlation between Pro accumulation and drought tolerance was found. Furthermore, the barley stripe mosaic virus establisheding virus-induced gene silencing was employed to suppress the expression of the encoding gene Δ1-Pyrroline-5-Carboxylate Synthetase (P5CS), which catalyzes the ratelimiting step of Glu pathway in Pro biosynthesis. By the quantitative real-time polymerase chain reaction, the decrease of the P5CS expression was found, and a consequent Pro degradation was also detected in P5CS-silenced plants. However, neither increased WLR of detached leaves nor decreased survival rate under drought stress was found compared with control plants. These results suggested that the repressed expression of P5CS and decreased content of free Pro may not interfere with the drought tolerance of Tibetan hulless barley.  相似文献   

7.
The objective of the present study was to assess the role of salinity-induced expression of pyrrolline 5-carboxylate synthetase (P5CS), P5CS activity, and proline accumulation on salinity tolerance in Brassica genotypes. A pot culture experiment was conducted with four Brassica genotypes viz. CS 52, CS 54, Varuna, (B. juncea) and T 9 (B. campestris) under control and two salinity levels, i.e., 1.65, 4.50 and 6.76?dS?m?1. Proline contents increased with increasing levels of salinity, and the highest content were recorded at post-flowering stage in CS 52 and CS 54. Activity of P5CS recorded at flowering stage was highest at higher level of salinity, with CS 52 and CS 54 recording highest activity. Gene expression of P5CS, which regulates the synthesis of proline, was higher in CS 52 and CS 54 under salt stress than Varuna and T 9. Comparison of partial nucleotide as well as amino acid sequence showed conserved domains, and inter and intra generic relatedness of these genes. The study suggests that salinity-induced expression of P5CS, pyrrolline-phosphate synthetase activity and proline accumulation may serve as one of the mechanism of salinity stress tolerance in Brassica genotypes.  相似文献   

8.
9.
10.
11.
Cold acclimation is necessary for chrysanthemum to achieve its genetically determined maximum freezing tolerance, but the underlying physiological and molecular mechanisms are unclear. The aim of this study was to discover whether changes in antioxidative enzymes, proline metabolism and frost-related gene expression induced by cold acclimation are related to freezing tolerance. Our results showed that the semi-lethal temperature (LT50) decreased from ?7.3 to ?23.5 °C in Chrysanthemum dichrum and ?2.1 to ?7.1 °C in Chrysanthemum makinoi, respectively, after cold acclimation for 21 days. The activities of SOD, CAT and APX showed a rapid and transient increase in the two chrysanthemum species after 1 day of cold acclimation, followed by a gradual increase during the subsequent days and then stabilization. qRT-PCR analysis showed that the expression levels of some isozyme genes (Mn SOD, CAT and APX) were upregulated, which was consistent with the SOD, CAT and APX activities, while others remained relatively constant (Fe SOD and Cu/Zn SOD). P5CS and PDH expression were increased under cold acclimation and the level of P5CS presented similar trends as proline content, indicating proline accumulation was via P5CS and PDH cooperation. Cold acclimation also promoted DREB, COR413 and CSD gene expression. The activities of three enzymes and gene expression were higher in C. dichrum than in C. makinoi after cold acclimation. Our data suggested that cold-inducible freezing-tolerance could be attributed to higher activity of antioxidant enzymes, and increased proline content and frost-related gene expression during different periods.  相似文献   

12.
Proline plays a significant role in plant resistance to abiotic stresses, and its level is determined by a combination of synthesis, catabolism and transport. The primary proteins involved are Δ1-pyrroline-5-carboxylate synthetase (P5CS), proline dehydrogenase (PDH) and proline transporter (ProT). To utilise proline metabolism to improve the stress resistance of Chrysanthemum × morifolium, we isolated two P5CS-homologous genes (ClP5CS1 and ClP5CS2), one PDH gene (ClPDH) and four ProT-homologous genes (ClProT1-4) (GenBANK accession numbers: KF743136–KF743142) from Chrysanthemum lavandulifolium, which is closely related to chrysanthemums and exhibits strong resistance to stresses. Expression analysis of these genes in different organs and under various stresses indicated that ClP5CSs showed substantial constitutive expression, while ClPDH was only strongly expressed in the capitulum and was inhibited under most stresses. The expression patterns of four ClProT genes presented characteristics of organ specificity and disparity under stresses. Above all, the expression of ClProT2 was restricted to above-ground organs, especially strong in the capitulum and could be obviously induced by various stress conditions. Promoters of ClPDH and ClProTs contained many cis-acting regulatory elements involved in stress responses and plant growth and development. High levels of free proline were found in flower buds, the capitulum under the non-stress condition and later periods of stress conditions except cold treatment. Interestingly, organ specificity and disparity also exist in the level of free proline under different stress conditions. Our study indicates that ClProTs play significant roles in proline accumulation and stress responses, and that ClProT2 could be used to genetically modify the stress resistance of chrysanthemums. In addition, proline metabolism might be closely related to plant flowering and floral development.  相似文献   

13.
14.
15.
Plants generally accumulate free proline under osmotic stress conditions. Upon removal of the osmotic stress, the proline levels return to normal. In order to understand the mechanisms involved in regulating the levels of proline, we cloned and characterized a proline dehydrogenase (PDH) cDNA from Arabidopsis thaliana (AtPDH). The 1745?bp cDNA contains a major open reading frame encoding a peptide of 499 amino acids. The deduced amino acid sequence has high homology with both Saccharomyces cerevisiae and Drosophila melanogaster proline oxidases and contains a putative mitochondrial targeting sequence. When expressed in yeast, the AtPDH cDNA complemented a yeast put1 mutation and exhibited proline oxidase activity. We also determined the free proline contents and the Δ1-pyrroline-5-carboxylate synthetase (P5CS) and PDH mRNA levels under different osmotic stress and recovery conditions. The results demonstrated that the removal of free proline during the recovery from salinity or dehydration stress involves an induction of the PDH gene while the activity of P5CS declines. The reciprocal regulation of P5CS and PDH genes appears to be a key mechanism in the control of the levels of proline during and after osmotic stress. The PDH gene was also significantly induced by exogenously applied proline. The induction of PDH by proline, however, was inhibited by salt stress.  相似文献   

16.
Previous studies have shown that ubiquitination plays important roles in plant abiotic stress responses. In the present study, the ubiquitin-conjugating enzyme gene GmUBC2, a homologue of yeast RAD6, was cloned from soybean and functionally characterized. GmUBC2 was expressed in all tissues in soybean and was up-regulated by drought and salt stress. Arabidopsis plants overexpressing GmUBC2 were more tolerant to salinity and drought stresses compared with the control plants. Through expression analyses of putative downstream genes in the transgenic plants, we found that the expression levels of two ion antiporter genes AtNHX1 and AtCLCa, a key gene involved in the biosynthesis of proline, AtP5CS, and the copper chaperone for superoxide dismutase gene AtCCS, were all increased significantly in the transgenic plants. These results suggest that GmUBC2 is involved in the regulation of ion homeostasis, osmolyte synthesis, and oxidative stress responses. Our results also suggest that modulation of the ubiquitination pathway could be an effective means of improving salt and drought tolerance in plants through genetic engineering.  相似文献   

17.
Pyrroline-5-carboxylate reductase (P5CR) lies at the converging point of the glutamate and ornithine pathways and is the last and critical enzyme in proline biosynthesis. In the present study, a P5CR gene, named IbP5CR, was isolated from salt-tolerant sweetpotato line ND98. Expression of IbP5CR was up-regulated in sweetpotato under salt stress. The IbP5CR-overexpressing sweetpotato (cv. Kokei No. 14) plants exhibited significantly higher salt tolerance compared with the wild-type. Proline content and superoxide dismutase and photosynthetic activities were significantly increased, whereas malonaldehyde content was significantly decreased in the transgenic plants. H2O2 was also found to be significantly less accumulated in the transgenic plants than in the wild-type. Overexpression of IbP5CR up-regulated pyrroline-5-carboxylate synthase gene and down-regulated proline dehydrogenase and P5C dehydrogenase genes under salt stress. The systemic up-regulation of reactive oxygen species (ROS) scavenging genes was found in the transgenic plants under salt stress. These findings suggest that overexpression of IbP5CR increases proline accumulation, which enhances salt tolerance of the transgenic sweetpotato plants by regulating osmotic balance, protecting membrane integrity and photosynthesis and activating ROS scavenging system. This study indicates that IbP5CR gene has the potential to be used for improving salt tolerance of plants.  相似文献   

18.
Abiotic stress is the major limiting factor of plant growth and crop yield which can be improved by osmoprotectants. Proline acts as an osmoprotectant and plays an important role in osmotic balancing, protection of sub-cellular structures, enzymes and in increasing cellular osmolarity that provide the turgor necessary for cell expansion under stress conditions. ?1-pyrroline-5-carboxylate synthetase (P5CS), a rate-limiting enzyme in proline biosynthesis which is known for conferring enhanced salt and drought stress is subjected to feedback inhibition by proline. Therefore, in the present study, we used a mutagenized version P5CSF129A of wild P5CS which is not subjected to feedback control. Efficient in vitro transformation of embryonic structures of pigeonpea (Cajanus cajan (L.) Millsp.) was obtained using Agrobacterium tumefaciens strain LBA4404 harbouring a modified binary vector pCAMBIA 1301 carrying the hptII gene for resistance to hygromycin sulphate, GUS reporter gene, encoding β-glucuronidase, and the Vigna aconitifolia P5CSF129A genes under a constitutive 35S promoter. Embryonic structures showed blue color when tested for GUS after first cycle of antibiotic selection. Integration of T-DNA into nuclear genome of transformed plants and its sexual transmission to the progeny of the transgenic plants are confirmed by PCR amplification of 340 bp hptII, 800 bp P5CSF129A fragments and Southern blot hybridization analysis. The resultant primary transgenic plants showed more proline accumulation than their non-transformed plants. Levels of proline were also elevated in T1 transgenic plants when grown in the presence of 200 mM NaCl. In addition to their enhanced growth performance, more chlorophyll and relative water content under high salinity, these plants also had lower levels of lipid peroxidation. This suggests that overproduction of proline might play an important role against salt shock and cellular integrity.  相似文献   

19.
20.
Drought is the most important abiotic stress, challenging sustainable agriculture globally. For desiccation being the multigenic trait, a combination of identified genes from the appropriate organism may render crop tolerant to the water stress. Among the compatible solutes, proline plays multifaceted role in counteracting such stress. The genes encoding proline biosynthesizing enzymes, glutamate 5-kinase (G5K), and pyrroline-5-carboxylate reductase (P5CR) from the low-desiccation-tolerant cyanobacterium Anabaena sp. PCC 7120, were cloned and overexpressed in Escherichia coli BL21(DE3) individually. The recombinant E. coli cells harboring G5K, failed to exhibit enhanced desiccation tolerance relative to those with P5CR that showed increased growth/survival over the wild type. This may be ascribed to the overexpression of the reductase gene. Multiple sequence alignment showed P5CR to be conserved in all the organisms. We hypothesize that P5CR gene from high-desiccation-tolerant cyanobacteria may be adopted as the candidate for making transgenic N2-fixing cyanobacterium for paddy fields and/or crop development in future.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号