首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have previously described enrichment of antigen-presenting HLA-DR+ nuclear RelB+ dendritic cells (DCs) in rheumatoid arthritis (RA) synovium. CD123+HLA-DR+ plasmacytoid DCs (pDCs) and their precursors have been identified in human peripheral blood (PB), lymphoid tissue, and some inflamed tissues. We hypothesized recruitment of pDCs into the inflamed RA synovial environment and their contribution as antigen-presenting cells (APCs) and inflammatory cells in RA. CD11c+ myeloid DCs and CD123+ pDCs were compared in normal and RA PB, synovial fluid (SF), and synovial tissue by flow cytometry, immunohistochemistry, and electron microscopy and were sorted for functional studies. Nuclear RelB-CD123+ DCs were located in perivascular regions of RA, in a similar frequency to nuclear RelB+CD123- DCs, but not normal synovial tissue sublining. Apart from higher expression of HLA-DR, the numbers and phenotypes of SF pDCs were similar to those of normal PB pDCs. While the APC function of PB pDCs was less efficient than that of PB myeloid DCs, RA SF pDCs efficiently activated resting allogeneic PB T cells, and high levels of IFN-γ, IL-10, and tumor necrosis factor α were produced in response to incubation of allogeneic T cells with either type of SF DCs. Thus, pDCs are recruited to RA synovial tissue and comprise an APC population distinct from the previously described nuclear RelB+ synovial DCs. pDCs may contribute significantly to the local inflammatory environment.  相似文献   

2.
Rheumatoid arthritis (RA) is characterized by the accumulation of CD4(+) memory T cells in the inflamed synovium. To address the mechanism, we analyzed chemokine receptor expression and found that the frequency of CXC chemokine receptor (CXCR)4 expressing synovial tissue CD4(+) memory T cells was significantly elevated. CXCR4 expression could be enhanced by IL-15, whereas stromal cell-derived factor (SDF)-1, the ligand of CXCR4, was expressed in the RA synovium and could be increased by CD40 stimulation. SDF-1 stimulated migration of rheumatoid synovial T cells and also inhibited activation-induced apoptosis of T cells. These results indicate that SDF-1-CXCR4 interactions play important roles in CD4(+) memory T cell accumulation in the RA synovium, and emphasize the role of stromal cells in regulating rheumatoid inflammation.  相似文献   

3.
Telocytes (TCs), a novel interstitial cell entity promoting tissue regeneration, have been described in various tissues. Their role in inter-cellular signalling and tissue remodelling has been reported in almost all human tissues. This study hypothesizes that TC also contributes to tissue remodelling and regeneration of the human thoracic aorta (HTA). The understanding of tissue homeostasis and regenerative potential of the HTA is of high clinical interest as it plays a crucial role in pathogenesis from aortic dilatation to lethal dissection. Therefore, we obtained twenty-five aortic specimens of heart donors during transplantation. The presence of TCs was detected in different layers of aortic tissue and characterized by immunofluorescence and transmission electron microscopy. Further, we cultivated and isolated TCs in highly differentiated form identified by positive staining for CD34 and c-kit. Aortic-derived TC was characterized by the expression of PDGFR-α, PDGFR-β, CD29/integrin β-1 and αSMA and the stem cell markers Nanog and KLF-4. Moreover, TC exosomes were isolated and characterized for soluble angiogenic factors by Western blot. CD34+/c-kit+ TCs shed exosomes containing the soluble factors VEGF-A, KLF-4 and PDGF-A. In summary, TC occurs in the aortic wall. Correspondingly, exosomes, derived from aortic TCs, contain vasculogenesis-relevant proteins. Understanding the regulation of TC-mediated aortic remodelling may be a crucial step towards designing strategies to promote aortic repair and prevent adverse remodelling.  相似文献   

4.

Introduction

TNF-like weak inducer of apoptosis (TWEAK) has been proposed as a mediator of inflammation and bone erosion in rheumatoid arthritis (RA). This study aimed to investigate TWEAK and TWEAK receptor (Fn14) expression in synovial tissue from patients with active and inactive rheumatoid arthritis (RA), osteoarthritis (OA) and normal controls and assess soluble (s)TWEAK levels in the synovial fluids from patients with active RA and OA. Effects of sTWEAK on osteoclasts and osteoblasts were investigated in vitro.

Methods

TWEAK and Fn14 expression were detected in synovial tissues by immunohistochemistry (IHC). Selected tissues were dual labelled with antibodies specific for TWEAK and lineage-selective cell surface markers CD68, Tryptase G, CD22 and CD38. TWEAK mRNA expression was examined in human peripheral blood mononuclear cells (PBMC) sorted on the basis of their expression of CD22. sTWEAK was detected in synovial fluid from OA and RA patients by ELISA. The effect of sTWEAK on PBMC and RAW 264.7 osteoclastogenesis was examined. The effect of sTWEAK on cell surface receptor activator of NF Kappa B Ligand (RANKL) expression by human osteoblasts was determined by flow cytometry.

Results

TWEAK and Fn14 expression were significantly higher in synovial tissue from all patient groups compared to the synovial tissue from control subjects (P < 0.05). TWEAK was significantly higher in active compared with inactive RA tissues (P < 0.05). TWEAK expression co-localised with a subset of CD38+ plasma cells and with CD22+ B-lymphocytes in RA tissues. Abundant TWEAK mRNA expression was detected in normal human CD22+ B cells. Higher levels of sTWEAK were observed in synovial fluids isolated from active RA compared with OA patients. sTWEAK did not stimulate osteoclast formation directly from PBMC, however, sTWEAK induced the surface expression of RANKL by human immature, STRO-1+ osteoblasts.

Conclusions

The expression of TWEAK by CD22+ B cells and CD38+ plasma cells in RA synovium represents a novel potential pathogenic pathway. High levels of sTWEAK in active RA synovial fluid and of TWEAK and Fn14 in active RA tissue, together with the effect of TWEAK to induce osteoblastic RANKL expression, is consistent with TWEAK/Fn14 signalling being important in the pathogenesis of inflammation and bone erosion in RA.  相似文献   

5.
Telocyte (TC) as a special stromal cell exists in mammary gland and might play an important role in the balance of epithelium‐stroma of mammary gland. Considering that different types of breast interstitial cells influence the development and progression of breast cancer, TCs may have its distinct role in this process. We here studied the roles of TCs in the self‐assembly of reconstituted breast cancer tissue. We co‐cultured primary isolated TCs and other breast stromal cells with breast cancer EMT‐6 cells in collagen/Matrigel scaffolds to reconstitute breast cancer tissue in vitro. Using histology methods, we investigated the immunohistochemical characteristics and potential functions of TCs in reconstituted breast cancer tissue. TCs in primary mammary gland stromal cells with long and thin overlapping cytoplasmic processes, expressed c‐kit/CD117, CD34 and vimentin in reconstitute breast cancer tissue. The transmission electron microscopy showed that the telocyte‐like cells closely communicated with breast cancer cells as well as other stromal cells, and might serve as a bridge that directly linked the adjacent cells through membrane‐to‐membrane contact. Compared with cancer tissue sheets of EMT‐6 alone, PCNA proliferation index analysis and TUNEL assay showed that TCs and other breast stromal cells facilitated the formation of typical nest structure, promoted the proliferation of breast cancer cells, and inhibited their apoptosis. In conclusion, we successfully reconstituted breast cancer tissue in vitro, and it seems to be attractive that TCs had potential functions in self‐assembly of EMT‐6/stromal cells reconstituted breast cancer tissue.  相似文献   

6.
Telocytes (TCs) were identified as a distinct cellular type of the interstitial tissue and defined as cells with extremely long telopodes (Tps). Our previous data demonstrated patterns of mouse TC‐specific gene profiles on chromosome 1. The present study focuses on the identification of characters and patterns of TC‐specific or TC‐dominated gene expression profiles in chromosome 2 and 3, the network of principle genes and potential functional association. We compared gene expression profiles of pulmonary TCs, mesenchymal stem cells, fibroblasts, alveolar type II cells, airway basal cells, proximal airway cells, CD8+T cells from bronchial lymph nodes (T‐BL), and CD8+ T cells from lungs (T‐LL). We identified that 26 or 80 genes of TCs in chromosome 2 and 13 or 59 genes of TCs up‐ or down‐regulated in chromosome 3, as compared with other cells respectively. Obvious overexpression of Myl9 in chromosome 2 of TCs different from other cells, indicates that biological functions of TCs are mainly associated with tissue/organ injury and ageing, while down‐expression of Pltp implies that TCs may be associated with inhibition or reduction of inflammation in the lung. Dominant overexpression of Sh3glb1, Tm4sf1 or Csf1 in chromosome 3 of TCs is mainly associated with tumour promotion in lung cancer, while most down‐expression of Pde5 may be involved in the development of pulmonary fibrosis and other acute and chronic interstitial lung disease.  相似文献   

7.
Telocytes (TCs) are a unique type of interstitial cells with specific, extremely long prolongations named telopodes (Tps). Our previous study showed that TCs are distinct from fibroblasts (Fbs) and mesenchymal stem cells (MSCs) as concerns gene expression and proteomics. The present study explores patterns of mouse TC‐specific gene profiles on chromosome 1. We investigated the network of main genes and the potential functional correlations. We compared gene expression profiles of mouse pulmonary TCs, MSCs, Fbs, alveolar type II cells (ATII), airway basal cells (ABCs), proximal airway cells (PACs), CD8+ T cells from bronchial lymph nodes (T‐BL) and CD8+ T cells from lungs (T‐LL). The functional and feature networks were identified and compared by bioinformatics tools. Our data showed that on TC chromosome 1, there are about 25% up‐regulated and 70% down‐regulated genes (more than onefold) as compared with the other cells respectively. Capn2, Fhl2 and Qsox1 were over‐expressed in TCs compared to the other cells, indicating that biological functions of TCs are mainly associated with morphogenesis and local tissue homoeostasis. TCs seem to have important roles in the prevention of tissue inflammation and fibrogenesis development in lung inflammatory diseases and as modulators of immune cell response. In conclusion, TCs are distinct from the other cell types.  相似文献   

8.
9.
Telocytes (TCs), novel interstitial cells, have been identified in various organs of many mammals. However, information about TCs of lower animals remains rare. Herein, pancreatic TCs of the Chinese giant salamanders (Andrias davidianus) were identified by CD34 immunohistochemistry (IHC) and transmission electron microscopy (TEM). The IHC micrographs revealed CD34+ TCs with long telopodes (Tps) that were located in the interstitium of the pancreas. CD34+ TCs/Tps were frequently observed between exocrine acinar cells and were close to blood vessels. The TEM micrographs also showed the existence of TCs in the interstitium of the pancreas. TCs had distinctive ultrastructural features, such as one to three very long and thin Tps with podoms and podomers, caveolae, dichotomous branching, neighbouring exosomes and vesicles. The Tps and exosomes were found in close proximity to exocrine acinar cells and α cells. It is suggested that TCs may play a role in the regeneration of acinar cells and α cells. In conclusion, our results demonstrated the presence of TCs in the pancreas of the Chinese giant salamander. This finding will assist us in a better understanding of TCs functions in the amphibian pancreas.  相似文献   

10.
Considering the relation between synovial inflammation and global disease activity in rheumatoid arthritis (RA) and the distinct but heterogeneous histology of spondyloarthropathy (SpA) synovitis, the present study analyzed whether histopathological features of synovium reflect specific phenotypes and/or global disease activity in SpA. Synovial biopsies obtained from 99 SpA and 86 RA patients with active knee synovitis were analyzed for 15 histological and immunohistochemical markers. Correlations with swollen joint count, serum C-reactive protein concentrations, and erythrocyte sedimentation rate were analyzed using classical and multiparameter statistics. SpA synovitis was characterized by higher vascularity and infiltration with CD163+ macrophages and polymorphonuclear leukocytes (PMNs) and by lower values for lining-layer hyperplasia, lymphoid aggregates, CD1a+ cells, intracellular citrullinated proteins, and MHC–HC gp39 complexes than RA synovitis. Unsupervised clustering of the SpA samples based on synovial features identified two separate clusters that both contained different SpA subtypes but were significantly differentiated by concentration of C-reactive protein and erythrocyte sedimentation rate. Global disease activity in SpA correlated significantly with lining-layer hyperplasia as well as with inflammatory infiltration with macrophages, especially the CD163+ subset, and with PMNs. Accordingly, supervised clustering using these synovial parameters identified a cluster of 20 SpA patients with significantly higher disease activity, and this finding was confirmed in an independent SpA cohort. However, multiparameter models based on synovial histopathology were relatively poor predictors of disease activity in individual patients. In conclusion, these data indicate that inflammatory infiltration of the synovium with CD163+ macrophages and PMNs as well as lining-layer hyperplasia reflect global disease activity in SpA, independently of the SpA subtype. These data support a prominent role for innate immune cells in SpA synovitis and warrant further evaluation of synovial histopathology as a surrogate marker in early-phase therapeutic trials in SpA.  相似文献   

11.
Inflammatory sites, such as rheumatoid arthritis (RA) synovial tissue, contain large numbers of activated B cells and plasma cells. However, the mechanisms maintaining B cell viability and promoting their differentiation are not known, but interactions with stromal cells may play a role. To examine this, purified human peripheral B cells were cultured with a stromal cell line (SCL) derived from RA synovial tissue, and the effects on apoptosis and expression of Bcl-2-related proteins were analyzed. As a control, B cells were also cultured with SCL from osteoarthritis synovium or skin fibroblasts. B cells cultured with medium alone underwent spontaneous apoptosis. However, B cells cultured with RA SCL cells exhibited less apoptosis and greater viability. Although SCL from osteoarthritis synovium and skin fibroblasts also rescued B cells from apoptosis, they were less effective than RA SCL. B cell expression of Bcl-xL was markedly increased by RA SCL in a contact-dependent manner, whereas B cell expression of Bcl-2 was unaffected. Protection of B cells from apoptosis and up-regulation of Bcl-xL by RA SCL were both blocked by mAbs to CD106 (VCAM-1), but not CD54 (ICAM-1). Furthermore, cross-linking of CD49d/CD29 (very late Ag-4) on the surface of B cells rescued them from apoptosis and up-regulated Bcl-xL expression. These results indicate that SCL derived from RA synovial tissue play a role in promoting B cell survival by inducing Bcl-xL expression and blocking B cell apoptosis in a CD49d/CD29-CD106-dependent manner.  相似文献   

12.
Natural killer T (NKT) cells have been implicated in the regulatory immune mechanisms that control autoimmunity. However, their precise role in the pathogenesis of rheumatoid arthritis (RA) remains unclear. The frequency, cytokine profile and heterogeneity of NKT cells were studied in peripheral blood mononuclear cells (PBMCs) from 23 RA patients and 22 healthy control individuals, including paired PBMC–synovial fluid samples from seven and paired PBMC–synovial tissue samples from four RA patients. Flow cytometry revealed a decreased frequency of NKT cells in PBMCs from RA patients. NKT cells were present in paired synovial fluid and synovial tissue samples. Based on the reactivity of PBMC-derived NKT cells toward α-galactosylceramide, RA patients could be divided into responders (53.8%) and nonresponders (46.2%). However, NKT cells isolated from synovial fluid from both responders and nonresponders expanded upon stimulation with α-galactosylceramide. Analysis of the cytokine profile of CD4+ and CD4- PBMC derived NKT cell lines from RA patients revealed a significantly reduced number of IL-4 producing cells. In contrast, synovial fluid derived NKT cell lines exhibited a Th0-like phenotype, which was comparable to that in healthy control individuals. This suggests that synovial fluid NKT cells are functional, even in patients with nonresponding NKT cells in their blood. We conclude that, because the number of Vα24+Vβ11+CD3+ NKT cells is decreased and the cytokine profile of blood-derived NKT cells is biased toward a Th1-like phenotype in RA patients, NKT cells might be functionally related to resistance or progression of RA. Providing a local boost to the regulatory potential of NKT cells might represent a useful candidate therapy for RA.  相似文献   

13.
14.

Introduction

Psoriatic arthritis (PsA) is an inflammatory joint disease associated with psoriasis. Alefacept (a lymphocyte function-associated antigen (LFA)-3 Ig fusion protein that binds to CD2 and functions as an antagonist to T-cell activation) has been shown to result in improvement in psoriasis but has limited effectiveness in PsA. Interleukin-20 (IL-20) is a key proinflammatory cytokine involved in the pathogenesis of psoriasis. The effects of alefacept treatment on IL-20 expression in the synovium of patients with psoriasis and PsA are currently unknown.

Methods

Eleven patients with active PsA and chronic plaque psoriasis were treated with alefacept (7.5 mg per week for 12 weeks) in an open-label study. Skin biopsies were taken before and after 1 and 6 weeks, whereas synovial biopsies were obtained before and 4 and 12 weeks after treatment. Synovial biopsies from patients with rheumatoid arthritis (RA) (n = 10) were used as disease controls. Immunohistochemical analysis was performed to detect IL-20 expression, and stained synovial tissue sections were evaluated with digital image analysis. Double staining was performed with IL-20 and CD68 (macrophages), and conversely with CD55 (fibroblast-like synoviocytes, FLSs) to determine the phenotype of IL-20-positive cells in PsA synovium. IL-20 expression in skin sections (n = 6) was analyzed semiquantitatively.

Results

IL-20 was abundantly expressed in both PsA and RA synovial tissues. In inflamed PsA synovium, CD68+ macrophages and CD55+ FLSs coexpressed IL-20, and its expression correlated with the numbers of FLSs. IL-20 expression in lesional skin of PsA patients decreased significantly (P = 0.04) 6 weeks after treatment and correlated positively with the Psoriasis Area and Severity Index (PASI). IL-20 expression in PsA synovium was not affected by alefacept.

Conclusions

Conceivably, the relatively limited effectiveness of alefacept in PsA patients (compared with anti-tumor necrosis factor (TNF) therapy) might be explained in part by persistent FLS-derived IL-20 expression.  相似文献   

15.
Telocytes (TCs) are a distinct type of interstitial cells, which are featured with a small cellular body and long and thin elongations called telopodes (Tps). TCs have been widely identified in lots of tissues and organs including heart. Double staining for CD34/PDGFR‐β (Platelet‐derived growth factor receptor β) or CD34/Vimentin is considered to be critical for TC phenotyping. It has recently been proposed that CD34/PDGFR‐α (Platelet‐derived growth factor receptor α) is actually a specific marker for TCs including cardiac TCs although the direct evidence is still lacking. Here, we showed that cardiac TCs were double positive for CD34/PDGFR‐α in primary culture. CD34/PDGFR‐α positive cells (putative cardiac TCs) also existed in mice ventricle and human cardiac valves including mitral valve, tricuspid valve and aortic valve. Over 87% of cells in a TC‐enriched culture of rat cardiac interstitial cells were positive for PDGFR‐α, while CD34/PDGFR‐α double positive cells accounted for 30.25% of the whole cell population. We show that cardiac TCs are double positive for CD34/PDGFR‐α. Better understanding of the immunocytochemical phenotypes of cardiac TCs might help using cardiac TCs as a novel source in cardiac repair.  相似文献   

16.

Introduction

Rheumatoid arthritis (RA) is a chronic inflammatory disease leading to joint destruction and disability. Focal bone erosion is due to excess bone resorption of osteoclasts. Tumor necrosis factor receptor-associated factor 6 (TRAF6) is one of the critical mediators both in inflammatory signal pathway and differentiation and resorption activity of osteoclasts. Here we aimed to investigate TRAF6 expression in RA synovium and its correlation with histological synovitis severity and radiological joint destruction in RA.

Methods

Synovitis score was determined in needle biopsied synovium from 44 patients with active RA. Synovium from nine patients with osteoarthritis (OA) and seven with orthopedic arthropathies (Orth.A) were enrolled as "less inflamed" disease controls. Serial sections were stained immunohistochemically for TRAF6 as well as CD68 (macrophage), CD3 (T cell), CD20 (B cell), CD38 (plasmocyte), CD79a (B lineage cells from pre-B cell to plasmocyte stage), and CD34 (endothelial cell). Double immunofluorescence staining of TRAF6 and CD68 were tested. Densities of positive staining cells were determined and correlated with histological disease activity (synovitis score) and radiographic joint destruction (Sharp score).

Results

TRAF6 expression was found in the intimal and subintimal area of RA synovium, with intense staining found in the endochylema and nucleus of intimal synoviocytes and subintimal inflammatory cells. Double immunofluorescence staining showed TRAF6 was expressed in most of the intimal cells and obviously expressed in CD68+ cells and some other CD68- cells in subintimal area. Synovial TRAF6 was significantly over-expressed in the RA group compared with the OA and Orth.A group (2.53 ± 0.94 vs. 0.72 ± 0.44 and 0.71 ± 0.49, P < 0.0001). Synovial TRAF6 expression in RA correlated significantly with synovitis score (r = 0.412, P = 0.006), as well as the inflammatory cell infiltration (r = 0.367, P = 0.014). Significant correlation was detected between synovial TRAF6 expression and intimal CD68+ cells, as well as the cell density of subintimal CD68+ cells, CD3+ cells, CD20+ cells, CD38+ cells, and CD79a+ cells (all P < 0.05).

Conclusions

Elevated synovial TRAF6 expression correlated with synovitis severity and CD68+ cell density in RA. It is, therefore, hypothesized that synovial TRAF6 is involved in the pathogenesis of synovial inflammation and osteoclast differentiation in RA.  相似文献   

17.
Acute salpingitis (AS) is an inflammatory disease which causes severe damage to a subset of classically described cells lining in oviduct wall and contributes to interstitial fibrosis and fertility problems. Telocytes (TCs), a newly discovered peculiar type of stromal cells, have been identified in many organs, including oviduct, with proposed multiple potential bio‐functions. However, with recent increasing reports regarding TCs alterations in disease‐affected tissues, there is still lack of evidence about TCs involvement in AS‐affected oviduct tissues and potential pathophysiological roles. We presently identified normal TCs by their characteristic ultrastructural features and immunophenotype. However, in AS‐affected oviduct tissues, TCs displayed multiple ultrastructural damage both in cellular body and prolongations, with obvious loss of TCs and development of tissue fibrosis. Furthermore, TCs lose their interstitial 3‐D network connected by homocellular or heterocellular junctions between TCs and adjacent cells. And especially, TCs connected to the activated immunocytes (mononuclear cells, eosinophils) and affected local immune state (repression or activation). Meanwhile, massive neutrophils infiltration and overproduced Inducible Nitric Oxide Synthase (iNOS), COX‐2, suggested mechanism of inflammatory‐induced TCs damage. Consequently, TCs damage might contribute to AS‐induced structural and reproductive functional abnormalities of oviduct, probably via: (i) substances, energy and functional insufficiency, presumably, e.g. TC‐specific genetic material profiles, ion channels, cytoskeletal elements, Tps dynamics, etc., (ii) impaired TCs‐mediated multicellular signalling, such as homeostasis/angiogenesis, tissue repair/regeneration, neurotransmission, (iii) derangement of 3‐D network and impaired mechanical support for TCs‐mediated multicellular signals within the stromal compartment, consequently induced interstitial fibrosis, (iv) involvement in local inflammatory process/ immunoregulation and possibly immune‐mediated early pregnancy failure.  相似文献   

18.
In spite of the advances in the knowledge of adipose‐derived stem cells (ASCs), in situ location of ASCs and the niche component of adipose tissue (AT) remain controversial due to the lack of an appropriate culture system. Here we describe a fibrin matrix‐supported three‐dimensional (3D) organ culture system for AT which sustains the ASC niche and allows for in situ mobilization and expansion of ASCs in vitro. AT fragments were completely encapsulated within the fibrin matrix and cultured under dynamic condition. The use of organ culture of AT resulted in a robust outgrowth and proliferation in the fibrin matrix. The outgrown cells were successfully recovered from fibrin by urokinase treatment. These outgrown cells fulfilled the criteria of mesenchymal stem cells, adherence to plastic, multilineage differentiation, and cell surface molecule expression. In vitro label retaining assay revealed that newly divided cells during the culture resided in interstitium between adipocytes and capillary endothelial cells. These interstitial stromal cells proliferated and outgrew into the fibrin matrix. Both in situ mobilized and outgrown cells expressed CD146 and α‐smooth muscle actin (SMA), but no endothelial cell markers (CD31 and CD34). The structural integrity and spatial approximation of CD31?/CD34?/CD146+/SMA+ interstitial stromal cells, adipocytes, and capillary endothelial cells were well preserved during in vitro culture. Our results suggest that ASCs are natively associated with the capillary wall and more specifically, belong to a subset of pericytes. Furthermore, organ culture of AT within a fibrin matrix‐supported 3D environment can recapitulate the ASC niche in vitro. J. Cell. Physiol. 224: 807–816, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

19.
Thrombin is a key factor in the stimulation of fibrin deposition, angiogenesis, proinflammatory processes, and proliferation of fibroblast-like cells. Abnormalities in these processes are primary features of rheumatoid arthritis (RA) in synovial tissues. Tissue destruction in joints causes the accumulation of large quantities of free hyaluronic acid (HA) in RA synovial fluid. The present study was conducted to investigate the effects of HA and several other glycosaminoglycans on antithrombin, a plasma inhibitor of thrombin. Various glycosaminoglycans, including HA, chondroitin sulfate, keratan sulfate, heparin, and heparan, were incubated with human antithrombin III in vitro. The residual activity of antithrombin was determined using a thrombin-specific chromogenic assay. HA concentrations ranging from 250 to 1000 μg/ml significantly blocked the ability of antithrombin to inhibit thrombin in the presence of Ca2+ or Fe3+, and chondroitin A, B and C also reduced this ability under the same conditions but to a lesser extent. Our study suggests that the high concentration of free HA in RA synovium may block antithrombin locally, thereby deregulating thrombin activity to drive the pathogenic process of RA under physiological conditions. The study also helps to explain why RA occurs and develops in joint tissue, because the inflamed RA synovium is uniquely rich in free HA along with extracellular matrix degeneration. Our findings are consistent with those of others regarding increased coagulation activity in RA synovium.  相似文献   

20.

Introduction

The FMS-related tyrosine kinase 3 ligand (Flt3L)/CD135 axis plays a fundamental role in proliferation and differentiation of dendritic cells (DCs). As DCs play an important role in rheumatoid arthritis (RA) immunopathology we studied in detail the Flt3L/CD135 axis in RA patients.

Methods

The levels of Flt3L in (paired) serum and synovial fluid (SF) were quantified by enzyme-link immunosorbent assay (ELISA). Expression of Flt3L and CD135 in paired peripheral blood mononuclear cells (PBMCs) and synovial fluid mononuclear cells (SFMCs) was quantified by fluorescence-activated cell sorting (FACS). The expression of Flt3L, CD135 and TNF-Converting Enzyme (TACE) in synovial tissues (STs) and in vitro polarized macrophages and monocyte-derived DCs (Mo-DCs) was assessed by quantitative PCR (qPCR). CD135 ST expression was evaluated by immunohistochemistry and TACE ST expression was assessed by immunofluorescence. Flt3L serum levels were assessed in RA patients treated with oral prednisolone or adalimumab.

Results

Flt3L levels in RA serum, SF and ST were significantly elevated compared to gout patients and healthy individuals (HI). RA SF monocytes, natural killer cells and DCs expressed high levels of Flt3L and CD135 compared to HI. RA ST CD68+ and CD163+ macrophages, CD55+ fibroblast-like synoviocytes (FLS), CD31+ endothelial cells or infiltrating monocytes and CD19+ B cells co-expressed TACE. IFN-γ-differentiated macrophages expressed higher levels of Flt3L compared to other polarized macrophages. Importantly, Flt3L serum levels were reduced by effective therapy.

Conclusions

The Flt3L/CD135 axis is active in RA patients and is responsive to both prednisolone and adalimumab treatment. Conceivably, this ligand receptor pair represents a novel therapeutic target.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号