首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 256 毫秒
1.
2.
3.
In the early stage of ovarian cancer (OC), molecular biomarkers are critical for its diagnosis and treatment. Nevertheless, there is little research on the mechanism underlying tumorigenesis in OC. Herein, we aimed to explore whether long noncoding RNA (lncRNA) HAND2-AS1 participated in the regulation of the cell proliferation, migration, and apoptosis of OC by regulating B-cell lymphoma 2 like 11 (BCL2L11) and microRNA-340-5p (miR-340-5p). Differentially expressed lncRNAs in OC were screened by microarray-based analysis. HAND2-AS1, BCL2L11, and miR-340-5p expression was assessed in normal ovarian and OC tissues and human OC cell lines. Then, the relationships among HAND2-AS1, BCL2L11, and miR-340-5p were explored. Ectopic expression and depletion experiments were applied to analyze the effects of HAND2-AS1, miR-340-5p and BCL2L11 on migration, invasion, and proliferation of OC cells, as well as apoptosis. Lastly, the tumor xenograft in nude mice was conducted to test the tumorigenesis in vivo. In silico analysis displayed poor expression of HAND2-AS1 in OC. HAND2-AS1 specifically sponged with miR-340-5p which was found to directly target BCL2L11. Importantly, HAND2-AS1 or BCL2L11 overexpression or miR-340-5p downregulation resulted in reduction of cell invasion and migration, together with decrease of cell proliferation and increase of cell apoptosis in OC. Besides, high-expressed HAND2-AS1 inhibited the tumorigenesis in nude mice. To sum up, these data suggests HAND2-AS1 as an anti-oncogene in OC through upregulation of BCL2L11 by competitively binding to miR-340-5p, which demonstrates that there are potential diagnosis and therapy values of HAND2-AS1 in OC.  相似文献   

4.
Ovarian cancer (OC) is a lethal gynecologic tumor, which brings its mortality to the head. CXCL12 and its receptor chemokine receptor 4 ( CXCR4) have been found to be highly expressed in OC and contribute to the disease progression by affecting tumor cell proliferation and invasion. Here, in this study, we aim to explore whether the blockade of CXCL12–CXCR4 axis with AMD3100 (a selective CXCR4 antagonist) has effects on the progression of OC. On the basis of the gene expression omnibus database of OC gene expression chips, the OC differentially expressed genes were screened by microarray analysis. OC (nonmetastatic and metastatic) and normal ovarian tissues were collected to determine the expressions of CXCL12 and CXCR4. A series of AMD3100, shRNA against CXCR4, and pCNS-CXCR4 were introduced to treat CAOV3 cells with the highest CXCR4 was assessed. Cell viability, apoptosis, migration, and invasion were all evaluated. The microarray analysis screened out the differential expression of CXCL12–CXCR4 in OC. CXCL12 and CXCR4 expressions were increased in OC tissues, particularly in the metastatic OC tissues. Downregulation of CXCR4 by AMD3100 or shRNA was observed to have a critical role in inhibiting cell proliferation, migration, and invasion of the CAOV3 OC cell line while promoting cell apoptosis. Overexpressed CXCR4 brought significantly promoting effects on the proliferation and invasiveness of OC cells. These results reinforce that the blockade of CXCL12–CXCR4 axis with AMD3100 inhibits the growth of OC cells. The antitumor role of the inhibition of CXCL12–CXCR4 axis offers a preclinical validation of CXCL12–CXCR4 axis as a therapeutic target in OC.  相似文献   

5.
Long non‐coding RNA (lncRNA) is one of the important regulators of many malignancies. However, the biological function and clinical significance of a large number of lncRNAs in gastric cancer remain unclear. Therefore, we analysed the TCGA data to find that LINC01303 is significantly up‐regulated in gastric cancer tissues. However, the biological function of LINC01303 in GC remains unknown. In our study, we found that the expression of LINC01303 was significantly higher in GC tissues than in adjacent tissues by real‐time quantitative PCR. We can significantly inhibit the malignant proliferation, migration and invasion of GC cells by silencing LINC01303 expression. In addition, LINC01303 knockdown can also inhibit GC growth in vivo. After the bioinformatics analysis, we found that LINC01303 can be used as a miR‐101‐3p sponge to competitively adsorb miR‐101‐3p with EZH2. Therefore, our results indicate that LINC01303 promotes the expression of EZH2 by inhibiting miR‐101‐3p activity and promotes GC progression. In summary, in this study, we demonstrated for the first time that the LINC01303/miR‐101‐3p/EZH2 axis promotes GC progression.  相似文献   

6.
7.
《Reproductive biology》2022,22(4):100702
Circular RNA (circRNA) have been shown to exert vital functions in the pathological progressions of ovarian cancer (OC). Herein, this study aimed to investigate the role and mechanisms of circ_0015756 in OC progression. Levels of circ_0015756, microRNA (miR)? 145–5p and phosphoserine aminotransferase 1 (PSAT1) were detected using quantitative real-time polymerase chain reaction, Western blot or immunohistochemistry assays. Cell proliferation, apoptosis, migration and invasion were determined using cell counting kit-8, 5-Ethynyl-2′-Deoxyuridine (Edu) incorporation, flow cytometry, transwell and Western blot assays. The binding interaction between miR-145–5p and circ_0015756 or PSAT1 was confirmed by bioinformatics prediction and dual-luciferase reporter assay. Tumor formation assay in nude mice was performed to determine the tumor growth in vivo. Circ_0015756 was highly expressed in OC tissues and cells. Knockdown of circ_0015756 suppressed cancer cell growth, migration and invasion in vitro, as well as impeded tumor growth in vivo. In a mechanical study, circ_0015756 directly bound to miR-145–5p, and inhibition of miR-145–5p reversed the effects of circ_0015756 knockdown on OC cells. Moreover, miR-145–5p directly targeted PSAT1, and miR-145–5p weakened OC cell growth, migration and invasion via targeting PSAT1. Importantly, further studies confirmed that circ_0015756 could indirectly regulate PSAT1 expression via sponging miR-145–5p. In all, circ_0015756 accelerated OC tumorigenesis through regulating miR-145–5p/PSAT1 axis, providing a new therapeutic target for OC.  相似文献   

8.
Long non‐coding RNAs (lncRNAs) have shown critical roles in multiple cancers via competitively binding common microRNAs. miR‐214 has been proved to play tumour suppressive roles in various cancers, including cervical cancer. In this study, we identified that lncRNA LINC01535 physically binds miR‐214, relieves the repressive roles of miR‐214 on its target EZH2, and therefore up‐regulates EZH2 protein expression. Intriguingly, we also found that EZH2 directly represses the expression of miR‐214. Thus, miR‐214 and EZH2 form double negative regulatory loop. Through up‐regulating EZH2, LINC01535 further represses miR‐214 expression. Functional experiments showed that enhanced expression of LINC01535 promotes cervical cancer cell growth, migration and invasion in vitro and cervical cancer xenograft growth in vivo. Reciprocally, LINC01535 knockdown suppresses cervical cancer cell growth, migration and invasion. Activation of the miR‐214/EZH2 regulatory loop by overexpression of miR‐214 or silencing of EZH2 reverses the roles of LINC01535 in promoting cervical canc`er cell growth, migration and invasion in vitro and cervical cancer xenograft growth in vivo. Clinically, LINC01535 is significantly up‐regulated in cervical cancer tissues and correlated with advanced clinical stage and poor prognosis. Moreover, the expression of LINC01535 is reversely associated with the expression of miR‐214 and positively associated with the expression of EZH2 in cervical cancer tissues. In conclusion, this study reveals that LINC01535 promotes cervical cancer progression via repressing the miR‐214/EZH2 regulatory loop.  相似文献   

9.
10.
The RECQ protein family of helicases has critical roles in protecting and stabilizing the genome. Three of the 5 known members of the human RecQ family are genetically linked with cancer susceptibility syndromes, but the association of the most abundant human RecQ homolog, RECQ1, with cellular transformation is yet unclear. RECQ1 is overexpressed in a variety of human cancers, indicating oncogenic functions. Here, we assessed genome-wide changes in gene expression upon knockdown of RECQ1 in HeLa and MDA-MB-231 cells. Pathway analysis suggested that RECQ1 enhances the expression of multiple genes that play key roles in cell migration, invasion, and metastasis, including EZR, ITGA2, ITGA3, ITGB4, SMAD3, and TGFBR2. Consistent with these results, silencing RECQ1 significantly reduced cell migration and invasion. In comparison to genome-wide annotated promoter regions, the promoters of genes downregulated upon RECQ1 silencing were significantly enriched for a potential G4 DNA forming sequence motif. Chromatin immunoprecipitation assays demonstrated binding of RECQ1 to the G4 motifs in the promoters of select genes downregulated upon RECQ1 silencing. In breast cancer patients, the expression of a subset of RECQ1-activated genes positively correlated with RECQ1 expression. Moreover, high RECQ1 expression was associated with poor prognosis in breast cancer. Collectively, our findings identify a novel function of RECQ1 in gene regulation and indicate that RECQ1 contributes to tumor development and progression, in part, by regulating the expression of key genes that promote cancer cell migration, invasion and metastasis.  相似文献   

11.
12.
Colorectal cancer (CRC) is one of the most prevalent malignant solid cancers worldwide involving the dysregulation of multiple signaling molecules. However, the role and corresponding mechanism of basic leucine zipper and W2 domains 2 (BZW2) in CRC development, to our knowledge, has not been reported. We found BZW2 was overexpressed in human CRC tissues compared with that in paired adjacent colorectal samples. BZW2 overexpression was closely associated with tumor T stage (p = .030), metastatic lymph nodes (p = .037), TNM stage (p = .018) and the worse prognosis of CRC patients (p = .009). Moreover, BZW2 was an independent disadvantage prognostic factor (p = .031). BZW2 also showed an increased expression in different invasive CRC cell lines. Its silencing and overexpression diminished and increased cell proliferation, invasion, and migration in Colo205 and HCT116 cells via specifically activating of extracellular-signal-regulated kinase (ERK)/mitogen-activated protein kinase (MAPK) signaling. Moreover, ERK/MAPK inhibitor PD98059 reverse the enhancement of cell proliferation, invasion, and migration in BZW2 overexpressing HCT116 cells. BZW2 silencing also inhibited subcutaneous tumors growth and p-ERK expression in vivo. BZW2 promotes the malignant progression of CRC via activating ERK/MAPK signaling, which provided a promising gene target therapy for CRC.  相似文献   

13.
14.
15.

Objectives

Chordoma is a rare malignant bone tumour arising from notochordal remnants. Long non‐coding RNA LOC554202, as the host gene of miR‐31, contributes to various cancer developments. However, little is known about the biological function of LOC554202 in chordoma. Here, the relationship between LncRNA LOC554202, miR‐31 and EZH2 was elucidated in chordoma.

Materials and methods

The levels of LOC554402, miR‐31, EZH2, RNF144B, and epithelial‐mesenchymal transition (EMT) markers were measured in chordoma tissues and the chordoma cell lines via quantitative real‐time PCR (qRT‐PCR) or Western blot. FISH assay demonstrated the LOC554402 expression in chordoma tissues. The chordoma cell lines, U‐CH1 and JHC7, were transfected with siRNA or miRNA mimics and analysed for cell proliferation ability, apoptosis, cell migration, and invasion. RNA pull down, RIP assay, and Luciferase Reporter Assay were used to analyze the interaction between LOC554202 and EZH2. Animal tumour xenografts were generated, and qRT‐PCR was performed to investigate EZH2, miR‐31, and RNB144B expression on tumour growth in vivo.

Results

We found elevated expression of LOC554202 was associated with a decreased level of miR‐31 in cancer tissues. Knockdown of LOC554202 or overexpression of miR‐31 suppressed the proliferation, migration, and invasion of chordoma cells. Unexpectedly, EZH2 as a binding protein of LOC554202, and it was positively regulated by LOC554202, leading to the reduced expression of miR‐31. Furthermore, the impaired function of miR‐31 restored expression of the oncogene RNF144B and maintained the metastasis‐promoting activity in vitro. The results in vivo confirmed the anti‐tumour effects of knockdown of LOC554202, which inhibited EZH2/miR‐31 to activate the oncogene RNF144B.

Conclusion

Our results suggest that LOC554202 may play an important role in the progression of chordoma by the direct upregulation of EZH2 and indirect promotion of RNF144B via miR‐31.
  相似文献   

16.
17.
18.
Enhancer of zeste homolog 2 (EZH2), an oncogene, is a commonly up‐regulated epigenetic factor in human cancer. Hepatocellular carcinoma deletion gene 1 (DLC1) is an antioncogene that is either expressed at low levels or not expressed in many malignant tumours. Curcumin is a promising anticancer drug that has antitumour effects in many tumours, but its mechanism of action is unclear. Our research demonstrated that EZH2 was up‐regulated in breast cancer (BC) tissues and cells, whereas DLC1 was down‐regulated, and the expression of EZH2 and DLC1 was negatively correlated in BC. By analysing the characteristics of clinical cases, we found that positive expression of EZH2 and negative expression of DLC1 may be predictors of poor prognosis in patients with triple‐negative breast cancer (TNBC). Moreover, knockdown of EZH2 expression restored the expression of DLC1 and inhibited the migration, invasion and proliferation, promoted the apoptosis, and blocked the cell cycle of MDA‐MB‐231 cells. Furthermore, we found that curcumin restored the expression of DLC1 by inhibiting EZH2; it also inhibited the migration, invasion and proliferation of MDA‐MB‐231 cells, promoted their apoptosis and blocked the cell cycle. Finally, xenograft tumour models were used to demonstrate that curcumin restored DLC1 expression by inhibiting EZH2 and also inhibited the growth and promoted the apoptosis of TNBC cells. In conclusion, our results suggest that curcumin can inhibit the migration, invasion and proliferation, promote the apoptosis, block the cycle of TNBC cells and restore the expression of DLC1 by inhibiting the expression of EZH2.  相似文献   

19.
The role of long non‐coding RNAs (lncRNAs) in tumorigenesis and development of ovarian cancer (OC) has caught the attention of scientists. UNC5B antisense RNA 1 (UNC5B‐AS1) is a newly identified carcinogenic lncRNA in thyroid papillary carcinoma, but its role in OC remains unclear. This study is proposed to investigate the function and mechanism of UNC5B‐AS1 in OC. UNC5B‐AS1 expression in OC samples was obtained from gene expression profiling interactive analysis (GEPIA) based on The Cancer Genome Atlas data. Gene expressions were detected by quantitative real‐time polymerase chain reaction (RT‐qPCR) and western blot. Biological functions of UNC5B‐AS1 were assessed by cell counting kit‐8, colony formation, and caspase‐3 analysis. GEPIA revealed the UNC5B‐AS1 upregulation in OC samples. RT‐qPCR assay confirmed the upregulation of UNC5B‐AS1 in OC cells. Functionally, depletion of UCN5B‐AS1 hindered proliferation and prompted apoptosis in OC cells. Mechanistically, we found that UNC5B‐AS1 interacted with zeste 2 polycomb repressive complex 2 subunit (EZH2) to trigger trimethylation of histone H3 at lysine 27 (H3K27me3) on N‐myc downstream regulated gene‐2 (NDRG2) promoter and epigenetically repressed NDRG2. Rescue assay indicated the participation of NDRG2 in the regulation of UNC5B‐AS1 on OC progression. Together, we first illustrated that UNC5B‐AS1 promoted OC progression by regulating the H3K27me on NDRG2 via EZH2, indicating UNC5B‐AS1 as a potential molecular target for OC treatment.  相似文献   

20.
The intracellular Ca2+ regulation has been implicated in tumorigenesis and tumor progression. Notably, store-operated Ca2+ entry (SOCE) is a major Ca2+ entry mechanism in non-excitable cells, being involved in cell proliferation and migration in several types of cancer. However, the expression and biological role of SOCE have not been investigated in clear cell renal cell carcinoma (ccRCC). Here, we demonstrate that Orai1 and STIM1, not Orai3, are crucial components of SOCE in the progression of ccRCC. The expression levels of Orai1 in tumor tissues were significantly higher than those in the adjacent normal parenchymal tissues. In addition, native SOCE was blunted by inhibiting SOCE or by silencing Orai1 and STIM1. Pharmacological blockade or knockdown of Orai1 or STIM1 also significantly inhibited RCC cell migration and proliferative capability. Taken together, Orai1 is highly expressed in ccRCC tissues illuminating that Orai1-mediated SOCE may play an important role in ccRCC development. Indeed, Orai1 and STIM1 constitute a native SOCE pathway in ccRCC by promoting cell proliferation and migration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号