首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Idiopathic pulmonary fibrosis (IPF), a progressive and fatal lung disease, usually leads to an irreversible distortion of the pulmonary structure. The functional roles of bone marrow-derived mesenchymal stem cells (BMSC)-secreted extracellular vesicles (EVs) in fibroblasts have been implicated, yet their actions in the treatment of IPF are not fully understood. This study investigated the roles of BMSC-derived EVs expressing miR-29b-3p in fibroblasts in IPF treatment. EVs derived from BMSCs were successfully isolated and could be internalized by pulmonary fibroblasts, and Cell Counting Kit-8 (CCK-8) and Transwell assay results identified that EVs inhibited the activation of fibroblast in IPF. miR-29b-3p, frizzled 6 (FZD6), α-skeletal muscle actin (α-SMA), and Collagen I expressions were examined, which revealed that miR-29b-3p was poorly expressed and FZD6, α-SMA, and Collagen I were overexpressed in pulmonary tissues. Dual-luciferase reporter assay results demonstrated that miR-29b-3p could inversely target FZD6 expression. The gain- and loss-of-function assays were conducted to determine regulatory effects of FZD6 and miR-29b-3p on IPF. CCK-8 and Transwell assays results displayed that BMSCs-derived EVs overexpressing miR-29b-3p contributed to inhibited pulmonary interstitial fibroblast proliferation, migration, invasion, and differentiation. Furthermore, the effects of BMSCs-derived EVs overexpressing miR-29b-3p on IPF progression were assessed in vivo, which confirmed the repressive effects of BMSCs-derived EVs overexpressing miR-29b-3p on IPF progression. Collectively, BMSCs-derived EVs overexpressing miR-29b-3p relieve IPF through FZD6.  相似文献   

2.
Increasing focus has come to the role of extracellular vesicles (EVs) in various cancers. Hence, we designed this study to explore the mechanism whereby microRNA-342-3p (miR-342-3p)-containing EVs derived from BMSCs might affect breast cancer. MCF-7 breast cancer cell line was co-incubated with the EVs isolated from rat BMSCs, followed by alteration of miR-342-3p and INHBA expression. Microarray-based analyses predicted a possible regulatory mechanism involving miR-342-3p, INHBA, and IL13Rα2 in breast cancer, which was verified by luciferase reporter, RNA pull-down, and RIP assays. Besides, in order to evaluate the effects of miR-342-3p on the biological features of breast cancer cells in vitro and in vivo, we employed the scratch assay, Transwell assay, CCK-8 assay, and nude mouse tumorigenicity assay. miR-342-3p carried by BMSC-EVs was transferred into breast cancer cells through co-culture, which inhibited the proliferation and metastasis of breast cancer cells in vitro. miR-342-3p downregulated the expression of INHBA, which further repressed the expression of IL13Rα2. Finally, the in vivo experimental results revealed the inhibitory role of miR-342-3p in tumor growth and metastasis in nude mice. To sum up, BMSC-EVs carrying miR-342-3p could prevent breast cancer growth and metastasis by downregulating the INHBA/IL13Rα2 axis, highlighting a potential target for anti-cancer treatment for breast cancer.  相似文献   

3.
Exosomal microRNA (miRNA) exerts potential roles in non-small-cell lung cancer (NSCLC). The current study elucidated the role of miR-30b-5p shuttled by bone marrow mesenchymal stem cells (BMSCs)-derived exosomes in treating NSCLC. Bioinformatics analysis was performed with NSCLC-related miRNA microarray GSE169587 and mRNA data GSE74706 obtained for collection of the differentially expressed miRNAs and mRNAs. The relationship between miR-30b-5p and EZH2 was predicted and confirmed. Exosomes were isolated from BMSCs and identified. BMSCs-derived exosomes overexpressing miR-30b-5p were used to establish subcutaneous tumorigenesis models to study the effects of miR-30b-5p, EZH2 and PI3K/AKT signalling pathway on tumour growth. A total of 86 BMSC-exo-miRNAs were differentially expressed in NSCLC. Bioinfomatics analysis found that BMSC-exo-miR-30b-5p could regulate NSCLC progression by targeting EZH2, which was verified by in vitro cell experiments. Besides, the target genes of miR-30b-5p were enriched in PI3K/AKT signalling pathway. Animal experiments validated that BMSC-exo-miR-30b-5p promoted NSCLC cell apoptosis and prevented tumorigenesis in nude mice via EZH2/PI3K/AKT axis. Collectively, the inhibitory role of BMSC-derived exosomes-loaded miR-30b-5p in NSCLC was achieved through blocking the EZH2/PI3K/AKT axis.  相似文献   

4.
BackgroundChemoprevention is the best cost-effective way regarding cancers. MicroRNAs (miRNAs) have been reported to be differentially expressed during the development of lung cancer. However, if lung cancer prevention can be achieved through modulating miRNAs expression so far remains unknown.PurposeTo discover ectopically expressed miRNAs in NNK-induced lung cancer and clarify whether Licochalcone A (lico A) can prevent NNK-induced lung cancer by modulating miRNA expression.Study design and methodsA/J mice were used to construct a lung cancer model by intraperitoneal injection with physiological saline NNK (100 mg/kg). Chemopreventive effects of lico A against lung cancer at 2 mg/kg and 20 mg/kg doses were evaluated in vivo. MicroRNA array and RT-qPCR were used to assess the expression levels of miRNAs. MLE-12 cells were treated with 0.1 mg/ml NNK, stimulating the ectopic expression pattern of miR-144-3p, miR-20a-5p, miR-29c-3p, let-7d-3p, and miR-328-3p. miR-144-3p mimics and inhibitors were used to manipulate miR-144-3p levels. The effects of lico A (10 μM) on cell cycle distribution, apoptosis, and the expression of CK19, RASA1, miR-144-3p, miR-20a-5p, miR-29c-3p, let-7d-3p, and miR-328-3p in NNK-treated MLE-12 cells were studied.ResultsThe expression levels of miR-144-3p, miR-20a-5p, and miR-29c-3p increased, while those of let-7d-3p and miR-328-3p decreased in both NNK-induced A/J mice and MLE-12 cells. Lico A could reverse the NNK-induced ectopic miRNA (miR-144-3p, miR-20a-5p, miR-29c-3p, let-7d-3p, and miR-328-3p) expression both in vivo and in vitro and elicit in vivo lung cancer chemopreventive effect against NNK. In MLE-12 cells, the overexpression of miR-144-3p elicited the same effect as NNK regarding the expression of lung cancer biomarker CK19; the silencing of miR-144-3p reversed the effect of NNK on cell cycle distribution and apoptosis. Lico A could reverse the effect of NNK on the expression of miR-144-3p, CK19, and RASA1 (predicted target of miR-144-3p).ConclusionThe present study suggests that miR-144-3p, miR-20a-5p, miR-29c-3p, let-7d-3p, and miR-328-3p were involved in the in vivo pathogenesis of NNK-induced lung cancer, and lico A could reverse the effect of NNK both in vivo and in vitro to elicit lung cancer chemopreventive effects through, at least partially, these five ectopically expressed miRNAs, especially miR-144-3p.  相似文献   

5.
Cervical cancer is the most common gynaecological malignancy, with a high incidence rate and mortality rate in middle-aged women. Human bone marrow mesenchymal stem cells (hBMSCs) have been implicated in the initiation and subsequent development of cancer, along with the involvement of extracellular vesicles (EVs) mediating intracellular communication by delivering microRNAs (miRNAs or miRs). This study is aimed at investigating the physiological mechanisms by which EVs-encapsulated miR-144-3p derived from hBMSCs might mediate the progression of cervical cancer. The expression profiles of centrosomal protein, 55 Kd (CEP55) and miR-144-3p in cervical cancer cell lines and tissues, were quantified by RT-qPCR and Western blot analysis. The binding affinity between miR-144-3p and CEP55 was identified using in silico analysis and luciferase activity determination. Cervical cancer cells were co-cultured with EVs derived from hBMSCs that were treated with either miR-144-3p mimic or miR-144-3p inhibitor. Cervical cancer cell proliferation, invasion, migration and apoptosis were detected in vitro. The effects of hBMSCs-miR-144-3p on tumour growth were also investigated in vivo. miR-144-3p was down-regulated, whereas CEP55 was up-regulated in cervical cancer cell lines and tissues. CEP55 was targeted by miR-144-3p, which suppressed cervical cancer cell proliferation, invasion and migration and promoted apoptosis via CEP55. Furthermore, similar results were obtained by hBMSCs-derived EVs carrying miR-144-3p. In vivo assays confirmed the tumour-suppressive effects of miR-144-3p in hBMSCs-derived EVs on cervical cancer. Collectively, hBMSCs-derived EVs-loaded miR-144-3p impedes the development and progression of cervical cancer through target inhibition of CEP55, therefore providing us with a potential therapeutic target for treating cervical cancer.  相似文献   

6.

Background

Malignant cell growth and chemoresistance, the main obstacles in treating gastrointestinal cancer (GIC), rely on the Hippo and p53 signalling pathways. However, the upstream regulatory mechanisms of these pathways remain complex and poorly understood.

Methods

Immunohistochemistry (IHC), western blot and RT-qPCR were used to analyse the expression of RNF146, miR-3133 and key components of Hippo and p53 pathway. CCK-8, colony formation, drug sensitivity assays and murine xenograft models were used to investigate the effect of RNF146 and miR-3133 in GIC. Further exploration of the upstream regulatory mechanism was performed using bioinformatics analysis, dual-luciferase reporter gene, immunoprecipitation assays and bisulfite sequencing PCR (BSP).

Results

Clinical samples, in vitro and in vivo experiments demonstrated that RNF146 exerts oncogenic effects in GIC by regulating the Hippo pathway. Bioinformatics analysis identified a novel miRNA, miR-3133, as an upstream regulatory factor of RNF146. fluorescence in situ hybridization and RT-qPCR assays revealed that miR-3133 was less expressed in gastrointestinal tumour tissues and was associated with adverse pathological features. Functional assays and animal models showed that miR-3133 promoted the proliferation and chemotherapy sensitivity of GIC cells. miR-3133 affected YAP1 protein expression by targeting RNF146, AGK and CUL4A, thus activating the Hippo pathway. miR-3133 inhibited p53 protein degradation and extended p53's half-life by targeting USP15, SPIN1. BSP experiments confirmed that miR-3133 promoter methylation is an important reason for its low expression.

Conclusion

miR-3133 inhibits GIC progression by activating the Hippo and p53 signalling pathways via multi-targets, including RNF146, thereby providing prognostic factors and valuable potential therapeutic targets for GIC.  相似文献   

7.
Metastasis is the main cause of death in patients with advanced lung cancer. The exosomes released by cancer cells create tumor microenvironment, and then accelerate tumor metastasis. Cancer-derived exosomes are considered to be the main driving force for metastasis niche formation at foreign sites, but the mechanism in Non-small cell lung carcinoma (NSCLC) is unclear. In metastatic NSCLC patients, the expression level of miR-3157-3p in circulating exosomes was significantly higher than that of non-metastatic NSCLC patients. Here, we found that miR-3157-3p can be transferred from NSCLC cells to vascular endothelial cells through exosomes. Our work indicates that exosome miR-3157-3p is involved in the formation of pre-metastatic niche formation before tumor metastasis and may be used as a blood-based biomarker for NSCLC metastasis. Exosome miR-3157-3p has regulated the expression of VEGF/MMP2/MMP9 and occludin in endothelial cells by targeting TIMP/KLF2, thereby promoted angiogenesis and increased vascular permeability. In addition, exosome miR-3157-3p promoted the metastasis of NSCLC in vivo.Subject terms: Cancer microenvironment, Non-small-cell lung cancer  相似文献   

8.
MicroRNAs (miRNAs) serve as gene silencers involved in essential cell functions. The role of miR-206 and E74-like factor 3 (Elf3) has been identified in osteoarthritis (OA), while the effect of exosomal miR-206 from bone marrow mesenchymal stem cells (BMSCs) in OA remains largely unknown. Thus, we aim to explore the role of exosomal miR-206 from BMSCs in OA with the involvement of Elf3. BMSCs and BMSC-derived exosomes (BMSC-exos) were obtained and identified. OA mouse models were constructed by anterior cruciate ligament transection and then treated with BMSC-exos or BMSC-exos containing miR-206 mimic/inhibitor. The expression of miR-206, Elf3, inflammatory factors, osteocalcin (OCN) and bone morphogenetic protein 2 (BMP2) in mouse femoral tissues was assessed. The pathological changes in mouse femur tissues were observed. The mouse osteoblasts were identified and treated with untransfected or transfected BMSC-exos, and then, the expression of miR-206, Elf3, OCN and BMP2 was determined. The alkaline phosphatase (ALP) activity, calcium deposition level, OCN secretion, proliferation, apoptosis and cell cycle arrest in osteoblasts were measured. MiR-206 was down-regulated while Elf3 was up-regulated in OA animal and cellular models. Exosomal miR-206 ameliorated inflammation and increased expression of OCN and BMP2 in mouse femoral tissues. Moreover, exosomal miR-206 promoted ALP activity, calcium deposition level, OCN secretion and proliferation and inhibited apoptosis in OA osteoblasts. Overexpressed Elf3 reversed miR-206 up-regulation-induced effects on OA osteoblasts. BMSC-derived exosomal miR-206 promotes proliferation and differentiation of osteoblasts in OA by reducing Elf3. Our research may provide novel targets for OA treatment.  相似文献   

9.
Aminoacyl-tRNA synthetase-interacting multifunctional protein-3 (AIMP3) is a tumour suppressor, however, the roles of AIMP3 in non-small cell lung cancer (NSCLC) are not explored yet. Here, we reported that AIMP3 significantly inhibited the cell growth and metastasis of NSCLC (lung adenocarcinoma) in vitro and in vivo. We have firstly identified that AIMP3 was down-regulated in human NSCLC tissues compared with adjacent normal lung tissues using immunohistochemistry and western blot assays. Overexpression of AIMP3 markedly suppressed the proliferation and migration of cancer cells in a p53-dependent manner. Furthermore, we observed that AIMP3 significantly suppressed tumour growth and metastasis of A549 cells in xenograft nude mice. Mechanically, we identified that AIMP3 was a direct target of miR-96-5p, and we also observed that there was a negative correlation between AIMP3 and miR-96-5p expression in paired NSCLC clinic samples. Ectopic miR-96-5p expression promoted the proliferation and migration of cancer cells in vitro and tumour growth and metastasis in vivo which partially depended on AIMP3. Taken together, our results demonstrated that the axis of miR-96-5p-AIMP3-p53 played an important role in lung adenocarcinoma, which may provide a new strategy for the diagnosis and treatment of NSCLC.  相似文献   

10.
Gastric cancer (GC) is a heterogeneous disease with poor prognosis. Tumor-derived extracellular vesicles (EVs) assume a role in intercellular communication by carrying various molecules, including proteins, RNA, and DNAs, which has been identified to exhibit oncogenic effect in GC. Therefore, this research aimed to figure out whether tumor-derived EVs transmit c-Myc to orchestrate the growth and metastasis of GC. KCNQ1OT1, microRNA (miR)-556-3p and CLIC1 expression of GC tissues was detected through RT-qPCR. EVs were isolated from GC cells, followed by RT-qPCR and Western blot analysis of c-Myc expression in EVs and GC cells. Next, GC cells were incubated with EVs or transfected with a series of mimic, inhibitor, or siRNAs to assess their effects on cell viability, migrative, invasive, and apoptotic potential. Relationship among c-Myc, KCNQ1OT1, miR-556-3p, and CLIC1 was evaluated by dual-luciferase reporter assay. PI3K/AKT pathway-related proteins were assessed through Western blot analysis. KCNQ1OT1 and CLIC1 were highly expressed but miR-556-3p in GC tissues. c-Myc was high-expressed in tumor-derived EVs and GC cells. Mechanistically, c-Myc could induce KCNQ1OT1 expression, and KCNQ1OT1 bound to miR-556-3p that negatively targeted CLIC1 to inactivate PI3K/AKT pathway. Tumor-derived EVs, EVs-c-Myc, KCNQ1OT1 or CLIC1 overexpression, or miR-556-3p inhibition promoted GC cell proliferative, invasive, and migrative capacities but repressed their apoptosis through activating PI3K/AKT pathway. Collectively, tumor-derived EVs carrying c-Myc activated KCNQ1OT1 to downregulate miR-556-3p, thus elevating CLIC1 expression to activate the PI3K/AKT pathway, which facilitated the growth and metastasis of GC.Subject terms: Cancer, Biotechnology  相似文献   

11.
Hypoxia, the most common feature in the tumor microenvironment, is closely related to tumor malignant progression and poor patient’s prognosis. Exosomes, initially recognized as cellular “garbage dumpsters”, are now known to be important mediums for mediating cellular communication in tumor microenvironment. However, the mechanisms of hypoxic tumor cell-derived exosomes facilitate colorectal cancer progression still need further exploration. In the present study, we found that exosomes from hypoxic colorectal cancer cells (H-Exos) promoted G1-S cycle transition and proliferation while preventing the apoptosis of colorectal cancer cells by transmitting miR-210-3p to normoxic tumor cells. Mechanistic investigation indicated that miR-210-3p from H-Exos elicited its protumoral effect via suppressing CELF2 expression. A preclinical study further confirmed that H-Exos could promote tumorigenesis in vivo. Clinically, the expression of miR-210-3p in circulating plasma exosomes was markedly upregulated in colorectal cancer patients, which were closely associated with multiple unfavorable clinicopathological features. Taken together, these results suggest that hypoxia may stimulate colorectal cancer cells to secrete miR-210-3p-enriched exosomes in tumor microenvironment, which elicit protumoral effects by inhibiting CELF2 expression. These findings provide new insights on the mechanism of colorectal cancer progression and potential therapeutic targets for colorectal cancer.  相似文献   

12.
Liquid biopsy refers to the sampling, screening, and detecting potential biomarkers in unique liquid samples for clinical use. Lung cancer is one of the most highly frequent cancer subtypes, which is hard to be early diagnosed and monitored by radiological and histopathological evaluation that are the most general and accurate methods. Circulating miRNA is a potential clinical examination index for tumor detection and monitoring tumorigenesis progression using liquid biopsy. However, recognizing and validating the unique clinical values of each candidate circulating miRNA is expensive and time consuming. In this study, we presented a novel computational approach for identifying significant circulating miRNAs that may be applied to early screening, diagnosis, and constant monitoring of lung cancer progression. This approach incorporated several machine learning algorithms and was applied on the expression profiles of circulating miRNAs on lung cancer patients and control samples. In brief, a powerful feature selection method, minimum redundancy maximum relevance, was adopted to evaluate the importance of all features, resulting in a feature list. Then, incremental feature selection incorporating random forest followed to extract key circulating miRNAs. At the same time, an efficient classifier with MCC 0.740 was built. Top five circulating miRNAs, including miR-92a, miR-140-5p, miR-331-3p, miR-223, miR-374a, were analyzed and confirmed that they participated in the pathogenesis of lung cancer, indicating their significant prognosis power in lung cancer.  相似文献   

13.
Lung cancer has the highest mortality rate among human cancers, and the majority of deaths can be attributed to metastatic spread. Lung cancer stem cells (CSCs) are a component of the tumour microenvironment that contributes to this process. Exosomes are small membrane vesicles secreted by all types of cells that mediate cell interactions, including cancer metastasis. Here, we show that lung CSC-derived exosomes promote the migration and invasion of lung cancer cells, up-regulate expression levels of N-cadherin, vimentin, MMP-9 and MMP-1, and down-regulate E-cadherin expression. Moreover, we verified that these exosomes contribute to a pro-metastatic phenotype in lung cancer cells via miR-210-3p transfer. The results of bioinformatics analysis and dual-luciferase reporter assays further indicated that miR-210-3p may bind to fibroblast growth factor receptor-like 1 (FGFRL1); silencing FGFRL1 enhanced the metastatic ability of lung cancer cells, whereas overexpressing FGFRL1 suppressed metastasis. Taken together, our results provide new insights into a potential molecular mechanism whereby lung CSC-derived exosomal miR-210-3p targets FGFRL1 to promote lung cancer metastasis. FGFRL1 may be a promising therapeutic target in lung cancer.  相似文献   

14.
Research about the effect of exosomes derived from tumor associated macrophages (TAM-exos) in the distant organ metastasis of breast cancer is limited. In this study, we found that TAM-exos could promote the migration of 4T1 cells. Through comparing the expression of microRNAs in 4T1 cells, TAM-exos, and exosomes from bone marrow derived macrophages (BMDM-exos) by sequencing, miR-223-3p and miR-379-5p were screened out as two noteworthy differentially expressed microRNAs. Furthermore, miR-223-3p was confirmed to be the reason for the improved migration and metastasis of 4T1 cells. The expression of miR-223-3p was also increased in 4T1 cells isolated from the lung of tumor-bearing mice. Cbx5, which has been reported to be closely related with metastasis of breast cancer, was identified to be the target of miR-223-3p. Based on the information of breast cancer patients from online databases, miR-223-3p had a negative correlation with the overall survival rate of breast cancer patients within a three-year follow-up, while Cbx5 showed an opposite relationship. Taken together, miR-223-3p in TAM-exos can be delivered into 4T1 cells and exosomal miR-223-3p promotes pulmonary metastasis of 4T1 cells by targeting Cbx5.  相似文献   

15.
X Liu  Q Chen  J Yan  Y Wang  C Zhu  C Chen  X Zhao  M Xu  Q Sun  R Deng  H Zhang  Y Qu  J Huang  B Jiang  J Yu 《Cell death & disease》2013,4(11):e928
Natural killer (NK) cells are important in host to eliminate circulating tumour cells (CTCs) in turn preventing the development of tumour cells into metastasis but the mechanisms are very poorly defined. Here we find that the expression level of miR-296-3p is much lower in the non-metastatic human prostate cancer (PCa) cell line P69 than that in the highly metastatic cell line M12, which is derived from P69. We demonstrate that miR-296-3p directly targets and inhibits the expression of intercellular adhesion molecule 1 (ICAM-1) in the malignant M12. The data from clinical tissue microarrays also show that miR-296-3p is frequently upregulated and ICAM-1 is reversely downregulated in PCa. Interestingly, ectopic expression of miR-296-3p in P69 increases the tolerance to NK cells whereas knockdown of miR-296-3p in M12 reduces the resistance to NK cells, which both phenotypes can be rescued by re-expression or silencing of ICAM-1 in P69 and M12, respectively. These results are also manifested in vivo by the decrease in the incidence of pulmonary tumour metastasis exhibited by knockdown of miR-296-3p in M12 when injected into athymic nude mice via tail vein, and consistently down-expression of ICAM-1 reverses this to increase extravasation of CTCs into lungs. Above results suggest that this newly identified miR-296-3p-ICAM-1 axis has a pivotal role in mediating PCa metastasis by possible enhancing survival of NK cell-resistant CTC. Our findings provide novel potential targets for PCa therapy and prognosis.  相似文献   

16.
The tumour-suppressive role of LINC00472 has been extensively reported in various human cancers such as lung, colon and ovarian cancers, yet its function in pancreatic cancer remains unidentified. Here, the current research aimed to explore the role and regulatory axis mediated by LINC00472 in the progression of pancreatic cancer. RT-qPCR was adopted to determine LINC00472 expression in the harvested pancreatic cancer tissues and adjacent normal tissues. Loss-of-function and gain-of-function experiments were performed to examine the effects of LINC00472 on proliferation and apoptosis in vitro and tumorigenesis in vivo. Immunoblotting was performed to detect the expression of several proliferation and apoptosis-related proteins. Bioinformatic analysis, dual-luciferase reporter assay and RNA pull-down were conducted to profile the relationships between LINC00472 and miR-23a-3p, between miR-23a-3p and FOXO3 and between FOXO3 and BID. The LINC00472 expression was down-regulated by ZEB1 in the pancreatic cancer cells and tissues. LINC00472 could competitively bind to miR-23a-3p to enhance the expression of FOXO3, which consequently could promote the BID expression, thereby suppressing proliferation and promoting the apoptosis of pancreatic cancer cells. Meanwhile, the inhibitory role of LINC00472 in tumorigenesis was validated in vivo, and the LINC00472-mediated miR-23a-3p/FOXO3/BID axis was also demonstrated in the nude mouse tumour formation model. The study substantiated the antitumour activity of LINC00472 in pancreatic cancer and proposed a regulatory axis in which LINC00472 competitively binds to miR-23a-3p to enhance the FOXO3 expression and promote BID expression. Consequently, these findings provide theoretical basis for developing potential targets for the treatment of pancreatic cancer.  相似文献   

17.
18.
Small extracellular vesicles (sEVs) play a pivotal role in tumor progression by mediating intercellular communication in the tumor microenvironment (TME). Syntenin-1 induces malignant tumor progression in various types of human cancers, including human lung cancer and regulates biogenesis of sEVs. However, the function of syntenin-1-regulated sEVs and miRNAs in sEVs remains to be elucidated. In the present study, we aimed to demonstrate the role of oncogenic Ras/syntenin-1 axis in the release of sEVs and elucidate the function of syntenin-1-mediated miRNAs in sEVs in lung cancer progression. The results revealed that oncogenic Ras promoted the release of sEVs by inducing syntenin-1 expression; disruption of syntenin-1 expression impaired the release of sEVs as well as sEV-mediated cancer cell migration and angiogenesis. Moreover, we identified three miRNAs, namely miR-181a, miR-425-5p, and miR-494-3p, as onco-miRNAs loaded into syntenin-1-dependent sEVs. Remarkably, miR-494-3p was highly abundant in sEVs and its release was triggered by syntenin-1 expression and oncogenic Ras. Ectopic expression of the miR-494-3p mimic enhanced the migration and proliferation of lung cancer cells as well as tube formation in endothelial cells; however, the miR-494-3p inhibitor blocked sEV-mediated effects by targeting tyrosine-protein phosphatase nonreceptor type 12 (PTPN12), a tumor suppressor. sEVs promoted tumor growth and angiogenesis by downregulating PTPN12 expression; however, the miR-494-3p inhibitor significantly suppressed these effects in vivo, confirming that miR-494-3p acts as a major onco-miRNA loaded into lung cancer cell-derived sEVs. Eventually, the oncogenic Ras/syntenin-1 axis may induce cancer progression by increasing miR-494-3p loading into sEVs in lung cancer cells in the TME.Subject terms: Cancer microenvironment, Non-small-cell lung cancer, Oncogenesis  相似文献   

19.
目的:探讨mi R-199a-3p负调控CBX7影响肺癌细胞NCI-H460的生物学行为。方法:qRT-PCR法检测并比较肺癌组织、癌旁正常组织、肺癌细胞、正常肺上皮细胞中的mi R-199a-3p m RNA相对表达量。比较远处转移肺癌组织、未转移肺癌组织中mi R-199a-3p m RNA相对表达量。qRT-PCR法、Western Blot法检测并比较肺癌组织、癌旁正常组织中的CBX7 m RNA及蛋白的表达水平。荧光素酶活性法检测mi R-199a-3p与靶基因CBX7的结合。比较mi R-199a-3p模拟物转染组与阴性对照组的肺癌细胞中的CBX7 m RNA相对表达量及CBX7蛋白表达水平。CCK8实验检测mi R-199a-3p对肺癌细胞增殖的促进作用。Tranwell实验检测mi R-199a-3p对肺癌细胞侵袭与迁移能力的影响。结果:肺癌组织中mi R-199a-3p明显高于癌旁正常组织,发生远处转移的肺癌组织中mi R-199a-3p m RNA的表达量明显高于未发生转移的肺癌组织,差异有统计学意义(P<0.001)。肺癌组织中CBX7m RNA、CBX7蛋白表达水平均明显低于癌旁正常组织,差异有统计学意义(P<0.001)。荧光素酶活性法证实mi R-199a-3p可与靶基因CBX7结合抑制CBX7的表达。肺癌细胞中mi R-199a-3p m RNA的相对表达量明显高于正常肺上皮细胞,CBX7 m RNA相对表达量明显低于正常肺上皮细胞(P<0.05)。对于肺癌细胞,mi R-199a-3p模拟物转染组的CBX7 m RNA相对表达量及CBX7蛋白表达水平均明显低于阴性对照组(P<0.001)。CCK8实验证实mi R-199a-3p能够促进肺癌细胞的增殖,Tranwell实验证实mi R-199a-3p对肺癌细胞侵袭与迁移具有积极的促进作用。结论:mi R-199a-3p在肺癌的发生发展过程中发挥重要作用,能够通过抑制CBX7基因的表达,促进肺癌细胞的增殖、侵袭和转移。  相似文献   

20.

Background

Lung cancer is the leading cause of cancer-related death worldwide. Previous studies revealed that miR-183-5p is frequently involved in various human cancers. However, the exact role of miR-183-5p in regulating the pathogenesis of lung cancer remains unclear.

Method

Bioinformatic analysis, luciferase reporter assay, and Western blotting was used to investigate whether miR-183-5p directly bound to the 3′UTR of PIK3CA and prevented its translation. Furthermore, an si-miR-183-5p and PIK3CA siRNA was used to evaluate whether PIK3CA expression increased and whether cell proliferation, migration and invasion ability were promoted.

Results

miR-183-5p directly bound to the 3′UTR of PIK3CA and prevented its translation. miR-183-5p also acted as a tumor suppressor, and contrary to most studies, its expression was downregulated in lung cancer. Functional studies revealed that overexpression of miR-183-5p reduced cell proliferation, migration, and invasion and that miR-183-5p induced cell cycle arrest and increased cell apoptosis. PIK3CA expression, cell proliferation, migration and invasion ability increased. siRNA-mediated silencing of PIK3CA in lung cancer cells decreased their proliferation and invasive capabilities, suggesting that miR-183-5p inhibited cell proliferation and invasion of lung cancer cells at least partly through downstream targeting of PIK3CA.

Conclusion

Our studies suggest that miR-183-5p may function as a tumor suppressor in lung cancer via the miR-183-5p/PIK3CA regulatory axis and identify a potentially effective therapeutic strategy for lung cancer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号