首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cervical cancer is the most common gynaecological malignancy, with a high incidence rate and mortality rate in middle-aged women. Human bone marrow mesenchymal stem cells (hBMSCs) have been implicated in the initiation and subsequent development of cancer, along with the involvement of extracellular vesicles (EVs) mediating intracellular communication by delivering microRNAs (miRNAs or miRs). This study is aimed at investigating the physiological mechanisms by which EVs-encapsulated miR-144-3p derived from hBMSCs might mediate the progression of cervical cancer. The expression profiles of centrosomal protein, 55 Kd (CEP55) and miR-144-3p in cervical cancer cell lines and tissues, were quantified by RT-qPCR and Western blot analysis. The binding affinity between miR-144-3p and CEP55 was identified using in silico analysis and luciferase activity determination. Cervical cancer cells were co-cultured with EVs derived from hBMSCs that were treated with either miR-144-3p mimic or miR-144-3p inhibitor. Cervical cancer cell proliferation, invasion, migration and apoptosis were detected in vitro. The effects of hBMSCs-miR-144-3p on tumour growth were also investigated in vivo. miR-144-3p was down-regulated, whereas CEP55 was up-regulated in cervical cancer cell lines and tissues. CEP55 was targeted by miR-144-3p, which suppressed cervical cancer cell proliferation, invasion and migration and promoted apoptosis via CEP55. Furthermore, similar results were obtained by hBMSCs-derived EVs carrying miR-144-3p. In vivo assays confirmed the tumour-suppressive effects of miR-144-3p in hBMSCs-derived EVs on cervical cancer. Collectively, hBMSCs-derived EVs-loaded miR-144-3p impedes the development and progression of cervical cancer through target inhibition of CEP55, therefore providing us with a potential therapeutic target for treating cervical cancer.  相似文献   

2.
3.
4.
Exosomal microRNA (miRNA) exerts potential roles in non-small-cell lung cancer (NSCLC). The current study elucidated the role of miR-30b-5p shuttled by bone marrow mesenchymal stem cells (BMSCs)-derived exosomes in treating NSCLC. Bioinformatics analysis was performed with NSCLC-related miRNA microarray GSE169587 and mRNA data GSE74706 obtained for collection of the differentially expressed miRNAs and mRNAs. The relationship between miR-30b-5p and EZH2 was predicted and confirmed. Exosomes were isolated from BMSCs and identified. BMSCs-derived exosomes overexpressing miR-30b-5p were used to establish subcutaneous tumorigenesis models to study the effects of miR-30b-5p, EZH2 and PI3K/AKT signalling pathway on tumour growth. A total of 86 BMSC-exo-miRNAs were differentially expressed in NSCLC. Bioinfomatics analysis found that BMSC-exo-miR-30b-5p could regulate NSCLC progression by targeting EZH2, which was verified by in vitro cell experiments. Besides, the target genes of miR-30b-5p were enriched in PI3K/AKT signalling pathway. Animal experiments validated that BMSC-exo-miR-30b-5p promoted NSCLC cell apoptosis and prevented tumorigenesis in nude mice via EZH2/PI3K/AKT axis. Collectively, the inhibitory role of BMSC-derived exosomes-loaded miR-30b-5p in NSCLC was achieved through blocking the EZH2/PI3K/AKT axis.  相似文献   

5.
MicroRNAs (miRs) are short noncoding RNAs that play key regulatory roles in osteoblast differentiation. In this study, the specific regulatory roles of miR-218-5p on postmenopausal osteoporosis (PMOP) were investigated. The mouse model of PMOP was established by bilateral ovariectomy, and the injection of miR-218-5p mimics significantly relieved PMOP degree. Then, bone marrow mesenchymal stem cells (BMMSCs) isolated from PMOP mice were induced into osteoblasts. When compared with normal BMMSCs , PMOP BMMSCs exhibited significantly lower alkaline phosphatase (ALP) activity and less mineralized nodules, as well as downregulated miR-218-5p, Runx2, Osterix, COL1A1, and OCN after induction (P < .05). The transfection of miR-218-5p mimics, and inhibitor significantly promoted, inhibited the osteoblast differentiation of PMOP BMMSCs, respectively. In addition, COL1A1 was a target of miR-218-5p. The transfection of miR-218-5p mimics into PMOP BMMSCs significantly upregulated COL1A1 at 14th and 21st day post-induction, but not at 7th day. Our findings suggest miR-218-5p may relieve PMOP through promoting the osteoblast differentiation of BMMSCs.  相似文献   

6.
Accumulating evidence has suggested that extracellular vesicles (EVs) play a crucial role in lung cancer treatment. Thus, we aimed to investigate the modulatory role of bone marrow mesenchymal stem cell (BMSC)-EV-derived let-7i and their molecular mechanism in lung cancer progression. Microarray-based analysis was applied to predict lung cancer-related miRNAs and their downstream genes. RT-qPCR and Western blot analyses were conducted to determine Let-7i, lysine demethylase 3A (KDM3A), doublecortin-like kinase 1 (DCLK1) and FXYD domain-containing ion transport regulator 3 (FXYD3) expressions, after which dual-luciferase reporter gene assay and ChIP assay were used to identify the relationship among them. After loss- and gain-of-function assays, the effects of let-7i, KDM3A, DCLK1 and FXYD3 on the biological characteristics of lung cancer cells were assessed. Finally, tumour growth in nude mice was assessed by xenograft tumours in nude mice. Bioinformatics analysis screened out the let-7i and its downstream gene, that is KDM3A. The findings showed the presence of a high expression of KDM3A and DCLK1 and reduced expression of let-7i and FXYD3 in lung cancer. KDM3A elevated DCLK1 by removing the methylation of H3K9me2. Moreover, DCLK1 suppressed the FXYD3 expression. BMSC-EV-derived let-7i resulted in the down-regulation of KDM3A expression and reversed its promoting role in lung cancer development. Consistently, in vivo experiments in nude mice also confirmed that tumour growth was suppressed by the BMSC-EV-derived let-7i. In conclusion, our findings demonstrated that the BMSC-EV-derived let-7i possesses an inhibitory role in lung cancer progression through the KDM3A/DCLK1/FXYD3 axis, suggesting a new molecular target for lung cancer treatment.  相似文献   

7.
8.
Mesenchymal stem cells (MSCs) are a class of pluripotent cells that can release a large number of exosomes which act as paracrine mediators in tumour-associated microenvironment. However, the role of MSC-derived exosomes in pathogenesis and progression of cancer cells especially osteosarcoma has not been thoroughly clarified until now. In this study, we established a co-culture model for human bone marrow-derived MSCs with osteosarcoma cells, then extraction of exosomes from induced MSCs and study the role of MSC-derived exosomes in the progression of osteosarcoma cell. The aim of this study was to address potential cell biological effects between MSCs and osteosarcoma cells. The results showed that MSC-derived exosomes can significantly promote osteosarcoma cells’ proliferation and invasion. We also found that miR-21-5p was significantly over-expressed in MSCs and MSC-derived exosomes by quantitative real-time polymerase chain reaction (qRT-PCR), compared with human foetal osteoblastic cells hFOB1.19. MSC-derived exosomes transfected with miR-21-5p could significantly enhance the proliferation and invasion of osteosarcoma cells in vitro and in vivo. Bioinformatics analysis and dual-luciferase reporter gene assays validated the targeted relationship between exosomal miR-21-5p and PIK3R1; we further demonstrated that miR-21-5p-abundant exosomes derived human bone marrow MSCs could activate PI3K/Akt/mTOR pathway by suppressing PIK3R1 expression in osteosarcoma cells. In summary, our study provides new insights into the interaction between human bone marrow MSCs and osteosarcoma cells in tumour-associated microenvironment.  相似文献   

9.
microRNA-126 (miR-126), an endothelial-specific miRNA, is associated with vascular homeostasis and angiogenesis. However, the efficiency of miR-126-based treatment is partially compromised due to the low efficiency of miRNA delivery in vivo. Lately, exosomes have emerged as a natural tool for therapeutic molecule delivery. Herein, we investigated whether exosomes derived from bone marrow mesenchymal stem cells (BMMSCs) can be utilized to deliver miR-126 to promote angiogenesis. Exosomes were isolated from BMMSCs overexpressed with miR-126 (Exo-miR-126) by ultracentrifugation. In vitro study, Exo-miR-126 treatment promoted the proliferation, migration and angiogenesis of human umbilical vein endothelial cells (HUVECs). Furthermore, the gene/protein expression of angiogenesis-related vascular endothelial growth factor (VEGF) and angiotensin-1 (Ang-1) were up-regulated after incubation with Exo-miR-126. Additionally, the expression level of phosphoinositol-3 kinase regulatory subunit 2 (PIK3R2) showed an inverse correlation with miR-126 in HUVECs. Particularly, the Exo-miR-126 treatment contributed to enhanced angiogenesis of HUVECs by targeting PIK3R2 to activate the PI3K/Akt signalling pathway. Similarly, Exo-miR-126 administration profoundly increased the number of newly formed capillaries in wound sites and accelerated the wound healing in vivo. The results demonstrate that exosomes derived from BMMSCs combined with miR-126 may be a promising strategy to promote angiogenesis.  相似文献   

10.
Extracellular vesicles (Evs) participate in the development of rheumatoid arthritis (RA), but the mechanisms remain unclear. This study aimed to determine the mechanism by which microRNA-34a (miR-34a) contained in bone marrow mesenchymal stem cell (BM-MSC)-derived Evs functions in RA fibroblast-like synoviocytes (RA-FLSs). BM-MSC-derived Evs and an Evs inhibitor were extracted. A rat model of RA was established. miR-34a gain- and loss-of-function experiments were performed, and the inflammation in rat synovial fluid and tissues was detected. The role of miR-34a in RA-FLSs was also measured in vitro. The target gene of miR-34a was predicted using the online software TargetScan and identified using a dual-luciferase reporter gene assay, and the activation of the ATM/ATR/p53 signalling pathway was assessed. BM-MSC-derived Evs mainly elevated miR-34a expression, which reduced RA inflammation in vivo and inhibited RA-FLS proliferation and resistance to apoptosis in vitro, while inhibited miR-34a expression enhanced RA development. In addition, miR-34a could target cyclin I to activate the ATM/ATR/p53 signalling pathway, thus inhibiting abnormal RA-FLS growth and RA inflammation. Our study showed that miR-34a contained in BM-MSC-derived Evs could reduce RA inflammation by inhibiting the cyclin I/ATM/ATR/p53 signalling pathway.  相似文献   

11.
12.
13.
Clinical and experimental evidence indicates that tumour-associated macrophages support cancer progression. Moreover, macrophage-derived extracellular vesicles (EVs) are involved in pathogenesis of multiple cancers, yet the functions of molecular determinants in which have not been fully understood. Herein, we aim to understand whether macrophage modulates pancreatic ductal adenocarcinoma (PDAC) progression in an EV-dependent manner and the underlying mechanisms. microRNA (miR)-365 was experimentally determined to be enriched in the EVs from M2 macrophages (M2-EVs), which could be transferred into PDAC cells. Using a co-culture system, M2-EVs could enhance the proliferating, migrating and invading potentials of PDAC cells, while inhibition of miR-365 in M2-EVs could repress these malignant functions. B-cell translocation gene 2 (BTG2) was identified to be a direct target of miR-365, while the focal adhesion kinase (F/ATP)-dependent tyrosine kinase (AKT) pathway was activated by miR-365. We further demonstrated that overexpression of BTG2 could delay the progression of PDAC in vitro, whereas by impairing BTG2-mediated anti-tumour effect, M2-EV-miR-365 promoted PDAC progression. For validation, a nude mouse model of tumorigenesis was established, in which we found that targeting M2-EV-miR-365 contributed to suppression of tumour growth. Collectively, M2-EVs carry miR-365 to suppress BTG2 expression, which activated FAK/AKT pathway, thus promoting PDAC development.  相似文献   

14.
Idiopathic pulmonary fibrosis (IPF), a progressive and fatal lung disease, usually leads to an irreversible distortion of the pulmonary structure. The functional roles of bone marrow-derived mesenchymal stem cells (BMSC)-secreted extracellular vesicles (EVs) in fibroblasts have been implicated, yet their actions in the treatment of IPF are not fully understood. This study investigated the roles of BMSC-derived EVs expressing miR-29b-3p in fibroblasts in IPF treatment. EVs derived from BMSCs were successfully isolated and could be internalized by pulmonary fibroblasts, and Cell Counting Kit-8 (CCK-8) and Transwell assay results identified that EVs inhibited the activation of fibroblast in IPF. miR-29b-3p, frizzled 6 (FZD6), α-skeletal muscle actin (α-SMA), and Collagen I expressions were examined, which revealed that miR-29b-3p was poorly expressed and FZD6, α-SMA, and Collagen I were overexpressed in pulmonary tissues. Dual-luciferase reporter assay results demonstrated that miR-29b-3p could inversely target FZD6 expression. The gain- and loss-of-function assays were conducted to determine regulatory effects of FZD6 and miR-29b-3p on IPF. CCK-8 and Transwell assays results displayed that BMSCs-derived EVs overexpressing miR-29b-3p contributed to inhibited pulmonary interstitial fibroblast proliferation, migration, invasion, and differentiation. Furthermore, the effects of BMSCs-derived EVs overexpressing miR-29b-3p on IPF progression were assessed in vivo, which confirmed the repressive effects of BMSCs-derived EVs overexpressing miR-29b-3p on IPF progression. Collectively, BMSCs-derived EVs overexpressing miR-29b-3p relieve IPF through FZD6.  相似文献   

15.
Non-small cell lung cancer (NSCLC) is the most common type of lung cancer. We aimed to investigate the role of LINC00184 in NSCLC. Migration, proliferation and invasion of NSCLC cells were analysed using the wound healing assay, cell counting kit-8 assay and transwell assay, respectively. Apoptosis and cell cycle were assessed using flow cytometry. Online bioinformatics tools were utilized to predict downstream microRNAs (miRNA) or genes related to LINC00184 expression. The RNA pull-down experiment and luciferase reporter assay were performed to verify the predictions thereof. LINC00184, miR-524-5p, and high mobility group 2 protein (HMGB2) expression levels in NSCLC tissues and cell lines were detected using quantitative real-time polymerase chain reaction. An NSCLC mouse model was constructed for in vivo experiments. LINC00184 overexpression was observed in NSCLC tissues and cell lines and was found to be correlated with poor prognosis. LINC00184 knockdown inhibited cell proliferation, migration and invasion, induced cell cycle arrest and accelerated apoptosis in NSCLC cell lines. LINC00184 suppressed tumour growth and proliferation in NSCLC mouse models and directly targeted the miR-524-5p/HMGB2 axis. Moreover, the expression levels of LINC00184 and HMGB2 were negatively correlated with miR-524-5p expression, whereas LINC00184 expression was positively correlated with HMGB2 expression. LINC00184 affected the cell cycle, proliferation, apoptosis, migration and invasion in NSCLC via regulation of the miR-524-5p/HMGB2 axis.  相似文献   

16.
Human mesenchymal stem cells (hMSCs) have self-renewal and differentiation capabilities but the regulatory mechanisms of MSC fate determination remain poorly understood. Here, we aimed to identify microRNAs enriched in hMSCs that modulate differentiation commitments. Microarray analysis revealed that miR-140-5p is commonly enriched in undifferentiated hMSCs from various tissue sources. Moreover, bioinformatic analysis and luciferase reporter assay validated that miR-140-5p directly represses bone morphogenic protein 2 (BMP2). Furthermore, blocking miR-140-5p in hMSCs increased the expression of BMP signaling components and critical regulators of osteogenic differentiation. We propose that miR-140-5p functionally inhibits osteogenic lineage commitment in undifferentiated hMSCs.  相似文献   

17.
Lung adenocarcinoma (LUAD), a general kind of bronchogenic malignancy globally, is depicted as one of the most critical factors affecting human health severely. Featured with loop structure, circular RNA (circRNA) has been described as an essential regulator of multiple human malignancies. Nevertheless, knowledge concerning the regulatory function of circRNA in LUAD progression remains limited. Identified as a novel circRNA, circABCC4 has not been studied in LUAD as yet. This is the first time to probe into the underlying role of circABCC4 in LUAD. In this study, a notably elevated expression of circABCC4 was found in LUAD tissues and cells. Besides, circABCC4 is verified to be characterized with a circular structure in LUAD. Functional assays elucidated that knockdown of circABCC4 significantly impaired LUAD cell proliferation, migration as well as accelerated cell apoptosis. Molecular mechanism experiments later revealed that circABCC4 could bind with miR-3186-3p and miR-3186-3p was a tumor suppressor in LUAD. Moreover, TNRC6B was validated to combine with miR-3186-3p, and its expression was respectively negatively and positively regulated by miR-3186-3p and circABCC4 in LUAD. Final rescue experiments further delineated that TNRC6B upregulation partially restored circABCC4 downregulation-mediated effect on LUAD progression. In sum, circABCC4 regulates LUAD progression via miR-3186-3p/TNRC6B axis.  相似文献   

18.

Background

Lung cancer is the leading cause of cancer-related death worldwide. Previous studies revealed that miR-183-5p is frequently involved in various human cancers. However, the exact role of miR-183-5p in regulating the pathogenesis of lung cancer remains unclear.

Method

Bioinformatic analysis, luciferase reporter assay, and Western blotting was used to investigate whether miR-183-5p directly bound to the 3′UTR of PIK3CA and prevented its translation. Furthermore, an si-miR-183-5p and PIK3CA siRNA was used to evaluate whether PIK3CA expression increased and whether cell proliferation, migration and invasion ability were promoted.

Results

miR-183-5p directly bound to the 3′UTR of PIK3CA and prevented its translation. miR-183-5p also acted as a tumor suppressor, and contrary to most studies, its expression was downregulated in lung cancer. Functional studies revealed that overexpression of miR-183-5p reduced cell proliferation, migration, and invasion and that miR-183-5p induced cell cycle arrest and increased cell apoptosis. PIK3CA expression, cell proliferation, migration and invasion ability increased. siRNA-mediated silencing of PIK3CA in lung cancer cells decreased their proliferation and invasive capabilities, suggesting that miR-183-5p inhibited cell proliferation and invasion of lung cancer cells at least partly through downstream targeting of PIK3CA.

Conclusion

Our studies suggest that miR-183-5p may function as a tumor suppressor in lung cancer via the miR-183-5p/PIK3CA regulatory axis and identify a potentially effective therapeutic strategy for lung cancer.  相似文献   

19.
Androgens and androgen receptors are vital factors involved in prostate cancer progression, and androgen ablation therapies are commonly used to treat advanced prostate cancer. However, the acquisition of androgen ablation therapy resistance remains a challenge. Recently, androgen receptor splicing variants lacking the ligand-binding domain have been reported to play a critical role in the acquisition of androgen ablation therapy resistance. In the present study, we revealed that the messenger RNA expression and the protein levels of an androgen receptor variant 7 (AR-V7) were higher in prostate cancer tissue samples and in the AR-positive prostate cancer cell line, VCaP. In contrast, microRNA (miR)-30c-1-3p/miR-103a-2-5p expression was significantly downregulated in tumor tissues and cells. miR-30c-1-3p/miR-103a-2-5p overexpression could inhibit AR-V7 expression, suppress VCaP cell growth, and inhibit AR-V7 downstream factor expression by directly targeting the 3′-untranslated region of AR-V7. Under enzalutamide (Enza) treatment, the effects of AR-V7 overexpression were the opposite of those of miR-103a-2-5p/miR-30c-1-3p overexpression; more importantly, the effects of miR-103a-2-5p/miR-30c-1-3p overexpression could be significantly reversed by AR-V7 overexpression under Enza. In summary, we demonstrated a novel mechanism of the miR-30c-1-3p/miR-103a-2-5p/AR-V7 axis modulating the cell proliferation of AR-positive prostate cancer cells via AR downstream targets. The clinical application of miR-30c-1-3p/miR-103a-2-5p needs further in vivo validation.  相似文献   

20.
Ovarian cancer (OC) is a highly prevalent gynecologic malignancy and its mortality is extremely high. Therefore, the development of novel therapeutic approaches for OC is of great significance. In this study, LINC01342 was upregulated in OC tissue in the GSE38666 microarray and in tumor tissue samples collected in our center. The silencing of LINC01342 suppressed the proliferative and metastatic capacities of A2780 and HO8910 cells. Subcellular distribution assays showed that LINC01342 was mainly enriched in the cytoplasm. Subsequently, the downregulation of microRNA-30c-2-3p was proven to be the target of LINC01342. The silencing of microRNA-30c-2-3p enhanced the clonality and migratory capacity of OC cells. Moreover, the silencing of microRNA-30c-2-3p could reverse the inhibited migration and clonality in OC cells caused by LINC01342 knockdown. In addition, hypoxia-inducible factor 3 subunit α (HIF3A) was proven to be the target gene of microRNA-30c-2-3p, which was upregulated. HIF3A was negatively regulated by microRNA-30c-2-3p but positively regulated by LINC01342 in OC cells. An RNA binding protein immunoprecipitation assay showed that microRNA-30c-2-3p, LINC01342, and HIF3A could bind to argonaute RISC catalytic component 2. The overexpression of HIF3A reversed the inhibited migration and clonality in OC cells with LINC01342 knockdown. By analyzing the follow-up data from the enrolled OC patients, the LINC01342 and HIF3A levels were negatively correlated with prognosis, while the microRNA-30c-2-3p level was positively correlated with the same. In short, the upregulated LINC01342 in OC absorbs microRNA-30c-2-3p to release HIF3A. Thus, upregulated HIF3A expression accelerates the progression of OC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号