首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The objectives of this study were to determine the effect of inoculant, enzymes and inoculant-enzymes mixture on fermentation quality, nutritive value, and microbial changes of sorghum straw silage. Sorghum straws were collected and treated with distilled water (control), inoculant, enzymes and inoculant+enzymes prior to ensiling. Three bag silos for each silage (denoted C, I, E and I+E, respectively) were opened after 3, 7, 11, 15, 30 and 60 days for chemical and microbial analyses. For all the silages, there was a rapid decline in pH during the first 3 days of ensiling. Relative to silage C, all the treatment (I, E and I+E) had higher (P<0.05) lactic acid concentration at all ensiling periods. Population of LAB during all ensiling time was numerically greater for treated than control silages. Separate addition of two additives, especially for enzymes, can effectively (P<0.05) decrease aNDF and ADF concentration. Treatments with enzymes (E, I+E) can also improve significantly silage IVDMD and IVNDFD concentration. These results indicated that the addition of additives can improve the sorghum straw silage fermentation quality at different extent.  相似文献   

2.
AIM: Lactic acid bacteria (LAB) strains shown to have broad-spectrum antimicrobial activity were screened for potential as grass silage inoculants. The strains capable of rapidly lowering the pH of the grass matrix and with low proteolytic activity were assessed in laboratory-scale silos in a grass matrix containing natural microbial flora. METHODS AND RESULTS: Screening of nine candidate strains was performed first in a grass extract medium. The four most promising strains were selected on the basis of growth rate in the medium, capacity to reduce pH and ability to limit the formation of ammonia-N. The efficiency of the selected strains was further assessed in a laboratory-scale ensiling experiment. Untreated (no additive) and formic acid served as controls. All tested inoculants improved silage quality compared with untreated. With one exception (Pediococcus parvulus E315) the fermentation losses in the inoculated silages were even lower than in the acid-treated control silage. Pure lactic acid fermentation was obtained in the timothy-meadow fescue silage with all inoculants. The results obtained in the ensiling experiments were consistent with those of the screening procedure, which appeared to predict correctly the potential of LAB as silage inoculants. The strains with a low ammonia production rate in the grass extract medium behaved similarly in the silage. Especially in this respect the strain Lactobacillus plantarum E76 was superior to the other candidates. CONCLUSIONS: The screening method using grass extract proved to be useful in strain selection. SIGNIFICANCE AND IMPACT OF THE STUDY: The rapid screening method developed for the LAB strains provides a useful tool for more systematic product development of commercial inoculant preparations. Time consuming and laborious ensiling experiments can be limited only to the most promising strains.  相似文献   

3.

This study was conducted to evaluate the fermentative profile and microbial populations of wilted and non-wilted alfalfa silages ensiled with or without inoculant and the population dynamics of lactic acid bacteria (LAB) of wilted alfalfa plant and theirs silage. A 2?×?2?×?6 factorial arrangement was used, with the absence or presence of wilting (W), with and without bacterial inoculant (I) and six fermentation periods (P) (1, 3, 7, 14, 28 and 56 days), in a completely randomized design, with three replicates. The alfalfa was slightly wilted for 6 h and increased the dry matter content from 133.9 to 233.4 g/kg. It was performed the cultivation, followed by the isolation of LAB from samples of alfalfa forage before ensiling and its silage only in non-inoculated silages, after different fermentation periods. DNA was extracted from the isolated strains of LAB; the 16S rRNA gene sequences were amplified by PCR and the sequences were compared to those available from the GenBank database. Wilting provided silages with lower pH, ammonia nitrogen and acetic acid concentrations. The wilting process did not alter the amount of LAB; however, it affected the LAB diversity of the silages. The Lactobacillus plantarum was the predominant species in non-wilted and wilted silages.

  相似文献   

4.
Kwak WS  Kim YI  Seok JS  Oh YK  Lee SM 《Bioresource technology》2009,100(3):1471-1473
A small-silo study was conducted to develop an effective ensiling storage method for the use of cotton waste-based spent mushroom substrate (SMS) as an animal feed. The SMS was ensiled with 5% molasses (DM basis), 0.5% (v/w) lactic acid bacteria (LAB, Lactobacillus plantarum) inoculant or 0.5% (v/w) yeast (Saccharomyces cerevisiae) inoculant. The treatments included 100% SMS (control), 95% SMS+5% molasses (T1), 95% SMS+5% molasses+0.5% LAB (T2) and 95% SMS+5% molasses+5% LAB+0.5% yeast (T3). The treatments were ensiled for 10. Change in chemical compositions was little (P>0.05) according to the ensiling process and treatments. Compared with those before ensiling, 100% SMS (control) after ensiling showed unstable fermentative properties with high pH (5.2) and little lactic acid production. Compared with the ensiled control, treatments (T1, T2 and T3) resulted in decreased pH, 18-20 times higher concentrations of lactic acid, and greater populations of total bacteria (P<0.07), LAB and yeast (P<0.07). The addition of 5% molasses, 0.5% LAB and 0.5% yeast (T3) to the SMS resulted in the lowest pH (4.25) and the greatest microbial populations. Treatment T3 was selected for a large scale silo study which was ensiled for 10, 20 and 30 d. As in the small-silo study, the T3 treatment showed favorable fermentative and microbial parameters, compared with the control, by decreasing pH and increasing lactic acid concentrations, LAB and yeast populations. The minimum ensiling period was 20 d, when pH was reasonably low and LAB and yeast populations were greatest. In conclusion, molasses and microbial inoculation improved silage quality of SMS.  相似文献   

5.
NaCl-tolerant lactic acid bacteria (LAB) strains LC-10 ( Lactobacillus casei ) and LP-15 ( Lact. plantarum ) and NaCl were used as additives to sorghun ( Sorghum bicolor ). Numbers of LAB were significantly ( P < 0·05) higher in all the additive-treated silages than in the control silage at an early stage of ensiling. During the fermentation process, addition of NaCl or LAB effectively inhibited the growth of aerobic bacteria and clostridia, but not yeasts. All the additive-treated silages had significantly ( P < 0·05) lower pH, ammonia nitrogen content, dry matter loss and gas production but significantly ( P < 0·05) higher lactic acid content and residual water soluble carbohydrates compared with the control silage. The improvement in silage quality was in the order : LAB > NaCl > control. Yeast counts were high in all additive-based silages and they increased during the exposure of the silages to air. As a result, these silages suffered aerobic deterioration, whereas the control silage was stable. The results confirmed that the NaCl or LAB improved fermentation quality but did not prevent aerobic deterioration of the silage.  相似文献   

6.
Lactobacillus spp. from an inoculant and Weissella and Leuconostoc spp. from forage crops were characterized, and their influence on silage fermentation was studied. Forty-two lactic acid-producing cocci were obtained from forage crops and grasses. All isolates were gram-positive, catalase-negative cocci that produced gas from glucose, and produced more than 90% of their lactate in the d-isomer form. These isolates were divided into groups A and B by sugar fermentation patterns. Two representative strains from the two groups, FG 5 and FG 13, were assigned to the species Weissella paramesenteroides and Leuconostoc pseudomesenteroides, respectively, on the basis of DNA-DNA relatedness. Strains FG 5, FG 13, and SL 1 (Lactobacillus casei), isolated from a commercial inoculant, were used as additives to alfalfa and Italian ryegrass silage preparations. Lactic acid bacterium counts were higher in all additive-treated silages than in the control silage at an early stage of ensiling. During silage fermentation, inoculation with SL 1 more effectively inhibited the growth of aerobic bacteria and clostridia than inoculation with strain FG 5 or FG 13. SL 1-treated silages stored well. However, the control and FG 5- and FG 13-treated silages had a significantly (P < 0.05) higher pH and butyric acid and ammonia nitrogen contents and significantly (P < 0.05) lower lactate content than SL 1-treated silage. Compared with the control silage, SL 1 treatments reduced the proportion of d-(−)-lactic acid, gas production, and dry matter loss in two kinds of silage, but the FG 5 and FG 13 treatments gave similar values in alfalfa silages and higher values (P < 0.05) in Italian ryegrass silage. The results confirmed that heterofermentative strains of W. paramesenteroides FG 5 and L. pseudomesenteroides FG 13 did not improve silage quality and may cause some fermentation loss.Silage is now the most common preserved cattle feed in many countries, including Japan. It is well established that lactic acid bacteria (LAB) play an important role in silage fermentation. Epiphytic microflora, the microorganisms naturally present on forage crops, are responsible for silage fermentation and also influence silage quality (3, 11, 15). Lactobacilli and lactic acid-producing cocci, e.g., leuconostocs, lactococci, streptococci, pediococci, and Weissella species, are major components of the microbial flora in various types of forage crops (3). Stirling and Whittenbury (21) reported that leuconostocs were the most numerous and widely distributed on forages and that lactobacilli occurred mostly on grasses. Cai et al. (3) examined a large number of forage crops and grasses and also found that the predominant LAB were lactic acid-producing cocci and that lactobacilli were the least numerous and mostly homofermentative. Ruser (17) found that although all LAB groups were present in chopped-maize samples, homofermentative lactobacilli and heterofermentative leuconostocs were present in the highest numbers.In order to improve silage quality, many LAB-containing biological additives have been developed and are currently available (13, 20, 25). These inoculants may inhibit the growth of harmful bacteria and enhance lactic acid fermentation during ensiling periods. The epiphytic LAB influence the effectiveness of silage inoculants because the introduced bacteria must compete with these LAB (12). Therefore, the LAB species and their characteristics in the silage environment require further study. However, while an increasing number of studies have reported positive benefits from using some bacterial inoculants as silage additives, relatively few have reported the effect of epiphytic LAB, especially Leuconostoc and Weissella species, on silage fermentation. In the present study, the characterization of Leuconostoc and Weissella species isolated from forage crops and their influence on silage fermentation were examined.  相似文献   

7.
To explore the biofuel production potential of Caragana korshinskii Kom., Pediococcus acidilactici and an exogenous fibrolytic enzyme were employed to investigate the fermentation profile, structural carbohydrates degradation, enzymatic saccharification and the dynamics of bacterial community of C. korshinskii silage. After 60 d of ensiling, all additives increased the fermentation quality. The highest lactic and acetic acids and lowest non-protein nitrogen (NPN) and ammonia nitrogen (NH3-N) were observed in P. acidilactici and Acremonium cellulase (PA + AC) treated silage. Additionally, all additives significantly increased the ferulic acid content and fibre degradability with the highest values obtained from PA + AC silage. The bacterial community in all silages was dominated by P. acidilactici throughout the entire fermentation process. The bacterial community was also modified by the silage additives exhibiting a relatively simple network of bacterial interaction characterized by a lower bacterial diversity in P. acidilactici (PA) treated silage. The highest 6-phospho-beta-glucosidase abundance was observed in PA-treated silage at the mid-later stage of ensiling. PA treatment exhibited lower structural carbohydrates degradation but performed better in lignocellulose conversion during enzymatic saccharification. These results indicated that pretreating C. korshinskii improved its silage quality and potential use as a lignocellulosic feedstock for the production of bio-product and biofuel.  相似文献   

8.
Aims: To determine the effects of wilting, storage period and bacterial inoculant on the bacterial community and ensiling fermentation of guinea grass silage. Methods and Results: Fermentation products, colony counts and denaturing gradient gel electrophoresis (DGGE) profiles were determined. There was more lactic acid than acetic acid in all silages, but the lactic acid to acetic acid ratio decreased with storage time. This shift from lactic to acetic acid was not prevented even with a combination of wilting and bacterial inoculant. The DGGE analyses suggest that facultatively heterofermentative lactic acid bacteria (Lactobacillus plantarum, Lactobacillus brevis and Lactobacillus pentosus) were involved in the shift to acetic acid fermentation. Conclusions: Lactic acid can dominate the fermentation in tropical grass silage with sufficient wilting prior to ensiling. Prolonged storage may lead to high levels of acetic acid without distinctive changes in the bacterial community. Significance and Impact of the Study: The bacterial community looks stable compared to fermentation products over the course of long storage periods in tropical grass silage. Acetic acid fermentation in tropical grass silage can be a result of the changes in bacterial metabolism rather than community structure.  相似文献   

9.
Abstract: Inoculants are used as silage additives to improve preservation efficiency and to enhance animal performance. In most commercially available inoculants, homofermentative lactic acid bacteria (LAB) have been used because they are fast and efficient producers of lactic acid, improving natural silage fermentation. Specific LAB inuculants may also have beneficial effects on animal performance even if there is no effect on fermentation. However, these types of inoculants are not always advantageous. They do not necessarily prevent sermentation by clostridia in moist silages, and they sometimes impair the aerobic stability of grass and small grain silages. Therefore, new criteria for silage inoculants should be established which consider the specific needs of the crop being ensiled. New approaches which are being taken to develop improved inoculants for silage include the following: (1) using LAB isolates which are more specific to the target crops; (2) inclusion of heterofermentative LAB to produce volatile fatty acids to inhibit yeasts and moulds upon aerobic exposure; (3) inclusion of organisms other than LAB in inoculants to inhibit detrimental microorganisms; (4) selection or engineering of LAB strains to inhibit specific microorganisms; and (5) cloning and expression of genes which would enable selected LAB strains to utilize polysaccharides in crops which are low in soluble carbohydrates. Many of these new strategies for formulating inoculants are being tested, but further research is needed to determine the most successful approaches.  相似文献   

10.
Sudax fodder was ensiled in laboratory silos without or with the addition of 20, 30 or 40% broiler litter and 6% molasses, each without or with yeast inoculant (Candida utilus). Different fiber fractions were analyzed at the start of the ensiling and at 10-day intervals thereafter for 40 days. NDF, ADF, cellulose and lignin increased and cell contents decreased as a result of fermentation during ensiling. The addition of increasing levels of broiler litter not only decreased NDF, hemicellulose and cellulose, with a simultaneous increase in ADF content, but also extended the time course of fermentation during ensiling. The yeast inoculant failed to produce any significant effect on the fermentation characteristics or on any of the fiber fractions of the silage.  相似文献   

11.
Kimchi, a traditional Korean food made by the fermentation of vegetables, has become popular globally because of its organoleptic, beneficial, and nutritional properties. Spontaneous kimchi fermentation in unsterilized raw materials leads to the growth of various lactic acid bacteria (LAB), which results in variations in the taste and sensory qualities of kimchi products and difficulties in the standardized industrial production of kimchi. Raw materials, kimchi varieties, ingredients, and fermentation conditions have significant effects on the microbial communities and fermentative characteristics of kimchi during fermentation. Heterofermentative LAB belonging to the genera Leuconostoc, Lactobacillus, and Weissella are likely to be key players in kimchi fermentation and have been subjected to genomic and functional studies to gain a better understanding of the fermentation process and beneficial effects of kimchi. The use of starter cultures has been considered for the industrial production of high quality, standardized kimchi. Here, we review the composition and biochemistry of kimchi microflora communities, functional and genomic studies of kimchi LAB, and perspectives for industrial kimchi production.  相似文献   

12.
Ensiling was investigated for the long-term storage of Sugar Beet Pulp (SBP). Eight strains of lactic acid bacteria (LAB) and a non-inoculated control were screened based on their ability to rapidly reduce pH, produce a large amount of lactic acid and inhibit undesirable fermentations. Lactobacillus brevis B-1836 (LAB #120), Lactobacillus fermentum NRRL B-4524 (LAB #137) and a non-inoculated control were selected for further research to determine the effects of LAB inoculation level and packing density on SBP silage quality and sugar yield upon enzymatic hydrolysis. Both SBP preservation and prevention of cellulose and hemicellulose loss were better when SBP was treated with LAB #137 compared to LAB #120 and the non-inoculated control. Additionally, the ensiling process was found to significantly improve the enzymatic digestibility of SBP by as much as 35%. The results suggest that ensiling may be a promising technology for SBP stabilization and pretreatment for bioconversion to products.  相似文献   

13.
Lactic acid bacteria (LAB) play pivotal roles in the preservation and fermentation of forage crops in spontaneous or inoculated silages. Highlights of silage LAB over the past decades include the discovery of the roles of LAB in silage bacterial communities and metabolism and the exploration of functional properties. The present article reviews published literature on the effects of LAB on the succession, structure, and functions of silage microbial communities involved in fermentation. Furthermore, the utility of functional LAB in silage preparation including feruloyl esterase-producing LAB, antimicrobial LAB, lactic acid bacteria with high antioxidant potential, pesticide-degrading LAB, lactic acid bacteria producing 1,2-propanediol, and low-temperature-tolerant LAB have been described. Compared with conventional LAB, functional LAB produce different effects; specifically, they positively affect animal performance, health, and product quality, among others. In addition, the metabolic profiles of ensiled forages show that plentiful probiotic metabolites with but not limited to antimicrobial, antioxidant, aromatic, and anti-inflammatory properties are observed in silage. Collectively, the current knowledge on the roles of LAB in crop silage indicates there are great opportunities to develop silage not only as a fermented feed but also as a vehicle of delivery of probiotic substances for animal health and welfare in the future.  相似文献   

14.
Three strains of Streptococcus bovis, a homolactic bacterium capable of utilizing starch, were evaluated for growth kinetics and ability to decrease the pH of alfalfa silage. A selected strain was evaluated for its competitiveness as an inoculant with Enterococcus faecium, an organism used in inoculants, and for its ability to enhance the effect of a commercial inoculant. Testing was completed over three studies using wilted alfalfa (28 to 34% dry matter) ensiled into laboratory silos. Treatments were control, E. faecium, E. faecium and commercial inoculant, S. bovis, and S. bovis and commercial inoculant. Replicate silos were emptied and analyzed at 0.5, 1, 2, 4, 8, and 40 days for pH, fermentation products, and nitrogen fractions. S. bovis alone lowered the pH quicker and improved silage parameters early in the fermentation compared with E. faecium, the commercial inoculant, and control treatments. When combined with a commercial inoculant, S. bovis lowered pH more quickly than the commercial inoculant alone and E. faecium plus commercial inoculant. At 40 days, S. bovis combination had lower pH and ammonia nitrogen and acetate contents than the E. faecium combination. Starch in the silage was not utilized by S. bovis as had been anticipated. Results indicate that S. bovis was more effective than E. faecium as a silage inoculant and could enhance a commercial inoculant on low-dry-matter alfalfa.  相似文献   

15.
Bioconversion of corn straw by coupling ensiling and solid-state fermentation   总被引:13,自引:0,他引:13  
Yang X  Chen H  Gao H  Li Z 《Bioresource technology》2001,78(3):277-280
A two-stage process that combined solid-state fermentation (SSF) and ensiling was used for bioconversion of corn straw, in order to increase nutritional value and palatability for animal feed. SSF of corn straw increased the level of protein from 6.7% to 14.7% and decreased the cellulose by 38.0% and hemicellulose by 21.2%. Cellulase and xylanase were produced during SSF. After SSF, the fermented substrate was directly ensiled by inoculating with lactic acid bacteria (LAB). In situ produced enzymes and bacterial inoculation resulted in a rapid drop in pH, a high level of lactic acid production, partial degradation of cell wall components and generation of reducing sugars (RSs). Efficiency of ensiling at 25 degrees C, 30 degrees C, 35 degrees C, 40 degrees C was evaluated. Temperature influenced the effect of ensiling; the higher the temperature, the shorter the ensiling period. The combined fermentation upgraded the nutritional value, enhanced the efficiency of ensiling and reduced bioprocessing costs.  相似文献   

16.
B A Jones  R E Muck    S C Ricke 《Applied microbiology》1991,57(10):3000-3005
Three strains of Streptococcus bovis, a homolactic bacterium capable of utilizing starch, were evaluated for growth kinetics and ability to decrease the pH of alfalfa silage. A selected strain was evaluated for its competitiveness as an inoculant with Enterococcus faecium, an organism used in inoculants, and for its ability to enhance the effect of a commercial inoculant. Testing was completed over three studies using wilted alfalfa (28 to 34% dry matter) ensiled into laboratory silos. Treatments were control, E. faecium, E. faecium and commercial inoculant, S. bovis, and S. bovis and commercial inoculant. Replicate silos were emptied and analyzed at 0.5, 1, 2, 4, 8, and 40 days for pH, fermentation products, and nitrogen fractions. S. bovis alone lowered the pH quicker and improved silage parameters early in the fermentation compared with E. faecium, the commercial inoculant, and control treatments. When combined with a commercial inoculant, S. bovis lowered pH more quickly than the commercial inoculant alone and E. faecium plus commercial inoculant. At 40 days, S. bovis combination had lower pH and ammonia nitrogen and acetate contents than the E. faecium combination. Starch in the silage was not utilized by S. bovis as had been anticipated. Results indicate that S. bovis was more effective than E. faecium as a silage inoculant and could enhance a commercial inoculant on low-dry-matter alfalfa.  相似文献   

17.
Aims: To monitor variations in the bacterial community and fermentation products of maize silage within and between bunker silos. Methods and Results: Silage samples were collected in 2008 and 2009 from three dairy farms, wherein the farmers arranged for a contractor to produce maize silage using bunker silos. Silage was prepared using a lactic acid bacteria (LAB) inoculant consisting of Enterococcus faecium, Lactobacillus plantarum and Lactobacillus buchneri. Eight samples were collected from each bunker silo; 4 ‘outer’ and 4 ‘inner’ samples were collected from near the top and the bottom of the silo. The dry matter, lactic acid, acetic acid, ethanol, 1‐propanol and 1,2‐propanediol contents differed between bunker silos in both sampling years. Higher acetic acid, 1‐propanol and 1,2‐propanediol contents were found in the bottom than the top layers in the 2008 samples, and higher lactic acid content was found in the top than the bottom layers in the 2009 samples. The bacterial community varied more between bunker silos than within a bunker silo in the 2008 samples, whereas differences between the top and the bottom layers were seen across bunker silos in the 2009 samples. The inoculated LAB were uniformly distributed, while several nonconventional silage bacteria were also detected. Lactobacillus acetotolerans, Lactobacillus panis and Acetobacter pasteurianus were detected in both years. Stenotrophomonas maltophilia was detected in the 2008 samples, and Lactobacillus reuteri, Acinetobacter sp. and Rahnella sp. were detected in the 2009 samples. Conclusions: Although differences were seen within and between bunker silos, the bacterial community may indicate a different relationship between bunker silos and sampling locations within a bunker silo from that indicated by the fermentation products. Significance and Impact of the Study: Analysis of bacterial community can help understand how diverse non‐LAB and LAB species are involved in the ensiling process of bunker‐made maize silage.  相似文献   

18.
Aims:  Grass silage is the product formed by a natural lactic acid bacterial fermentation when grass is stored under anaerobic conditions, and represents an important ruminant feedstuff on farms during winter. Of the two commonly employed methods of ensiling forage, baled silage composition frequently differs from that of comparable precision-chop silage reflecting a different ensiling environment. The aim of this study was to investigate the dynamics of the silage fermentation in wilted grass and between ensiling systems.
Methods and Results:  Fermentation dynamics were examined using traditional methods of silage analyses, including microbial enumeration and analysis of fermentation products, and culture-independent terminal restriction fragment length polymorphism (T-RFLP). A successful fermentation was achieved in both systems, with the fermentation (increase in lactic acid bacteria and lactic acid concentration, decrease in pH) proceeding rapidly once the herbage was ensiled.
Conclusions:  Under controlled conditions, little difference in silage quality and microbial composition were observed between ensiling systems and this was further reflected in the T-RFLP community analysis.
Significance and Impact of the Study:  T-RFLP proved a potentially useful tool to study the ensilage process and could provide valid support to traditional methods, or a viable alternative to these methods, for investigating the dynamics of the bacterial community over the course of the fermentation.  相似文献   

19.
Significant portions of grain produced for livestock consumption are convened into ensiled forage. Silage producers have long recognized the positive effects of using an inoculant to insure the proper transformation of forage into a palatable and digestible feedstuff. When silage is fed from a storage structure, exposure to air stimulates the growth of epiphytic aerobes that may result in the loss of up to 50% of the dry matter. Moreover, fungi have been found to be associated with ensiled forage, but their growth is normally suppressed by the anaerobic conditions. However, the introduction of oxygen results in a fungal bloom, and the fungi and the associated metabolites may result in lost productivity in the livestock consuming the contaminated forage. In this study, we report on the diversity of the fungal community associated with whole plant corn silage during the ensiling process, and the effect of two different bacterial inoculants as compared with the uninoculated natural epiphytic fermentation on the distribution of the fungi associated with the silage. The fungal community from duplicate mini-silo packages of the same treatment was analyzed by denaturing gradient gel electrophoresis and direct sequencing of the resulting operational taxonomic units. This method proved useful in analyzing the complex microbial communities associated with the forage in that it was possible to determine that one inoculant dramatically influenced the fungal community associated with whole plant corn silage.  相似文献   

20.
Efficient selection of new silage inoculant strains from a collection of over 10,000 isolates of lactic acid bacteria (LAB) requires excellent strain discrimination. Toward that end, we constructed a GelCompar II database of DNA fingerprint patterns of ethidium bromide-stained EcoRI fragments of total LAB DNA separated by conventional agarose gel electrophoresis. We found that the total DNA patterns were strain-specific; 56/60 American Type Culture Collection strains of 33 species of LAB could be distinguished. Enterococcus faecium strains ATCC19434 and ATCC35667 had identical total DNA patterns and RiboPrints. Lactobacillus rhamnosus strains ATCC7469 and ATCC27773 also had identical total DNA patterns, but different RiboPrints. EcoRI RiboPrint patterns could distinguish only about 9/23 Lactobacillus plantarum strains and about 6/10 Lactobacillus buchneri strains, whereas all 33 strains could be distinguished by EcoRI total DNA patterns. Despite gel-to-gel variation, new DNA patterns can be readily grouped with existing patterns using GelCompar II. The database contains large homogenous clusters of L. plantarum, E. faecium, L. buchneri, Lactobacillus brevis and Pediococcus species that can be used for tentative taxonomic assignment. We routinely use the DNA fingerprint database to identify and characterize new strains, eliminate duplicate isolates and for quality control of inoculant product strains. The GelCompar II database has been in continuous use for 7 years and contains more than 3600 patterns representing approximately 700 unique patterns from over 300 gels and is the largest computerized DNA fingerprint database for LAB yet reported.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号