首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Telomere length regulation is an important aspect of cell maintenance in eukaryotes, since shortened telomeres can lead to a number of defects, including impaired cell division. Although telomere length is correlated with lifespan in some bird species, its possible role in aging and lifespan determination is still poorly understood. Here we investigate telomere dynamics (changes in telomere length and attrition rate) and telomerase activity in the ant Lasius niger, a species in which different groups of individuals have evolved extraordinarily different lifespans. We found that somatic tissues of the short-lived males had dramatically shorter telomeres than those of the much longer-lived queens and workers. These differences were established early during larval development, most likely through faster telomere shortening in males compared with females. Workers did not, however, have shorter telomeres than the longer-lived queens. We discuss various molecular mechanisms that are likely to cause the observed sex-specific telomere dynamics in ants, including cell division, oxidative stress and telomerase activity. In addition, we discuss the evolutionary causes of such patterns in ants and in other species.  相似文献   

2.
Telomeres, the caps of eukaryotic chromosomes, control chromosome stability and cellular senescence, but aging and exposure to chronic stress are suspected to cause attrition of telomere length. We investigated the effect of social isolation on telomere length in the highly social and intelligent African Grey parrot (Psittacus erithacus erithacus). Our study population consisted of single-housed (n = 26) and pair-housed (n = 19) captive individuals between 0.75 to 45 years of age. Relative telomere length of erythrocyte DNA was measured by quantitative real-time PCR. We found that telomere length declined with age (p<0.001), and socially isolated parrots had significantly shorter telomeres compared to pair-housed birds (p<0.001) – even among birds of similar ages. Our findings provide the first evidence that social isolation affects telomere length, which supports the hypothesis that telomeres provide a biomarker indicating exposure to chronic stress.  相似文献   

3.
Telomeres comprise tandem repeated DNA sequences that protect the ends of chromosomes from deterioration or fusion with neighboring chromosomes, and their lengths might vary with sex and age. Here, age‐ and sex‐related telomere lengths in male and female captive Siamese cobras (Naja kaouthia) were investigated using quantitative real‐time polymerase chain reaction based on cross‐sectional data. A negative correlation was shown between telomere length and body size in males but not in females. Age‐related sex differences were also recorded. Juvenile female snakes have shorter telomeres relative to males at up to 5 years of age, while body size also rapidly increases during this period. This suggests that an accelerated increase in telomere length of female cobra results from sex hormone stimulation to telomerase activity, reflecting sexually dimorphic phenotypic traits. This might also result from amplification of telomeric repeats on sex chromosomes. By contrast, female Siamese cobras older than 5 years had longer telomeres than males. Diverse sex hormone levels and oxidative stress parameters between sexes may affect telomere length.  相似文献   

4.

Background

Telomeres–the terminal caps of chromosomes–become shorter as individuals age, and there is much interest in determining what causes telomere attrition since this process may play a role in biological aging. The leading hypothesis is that telomere attrition is due to inflammation, exposure to infectious agents, and other types of oxidative stress, which damage telomeres and impair their repair mechanisms. Several lines of evidence support this hypothesis, including observational findings that people exposed to infectious diseases have shorter telomeres. Experimental tests are still needed, however, to distinguish whether infectious diseases actually cause telomere attrition or whether telomere attrition increases susceptibility to infection. Experiments are also needed to determine whether telomere erosion reduces longevity.

Methodology/Principal Findings

We experimentally tested whether repeated exposure to an infectious agent, Salmonella enterica, causes telomere attrition in wild-derived house mice (Mus musculus musculus). We repeatedly infected mice with a genetically diverse cocktail of five different S. enterica strains over seven months, and compared changes in telomere length with sham-infected sibling controls. We measured changes in telomere length of white blood cells (WBC) after five infections using a real-time PCR method. Our results show that repeated Salmonella infections cause telomere attrition in WBCs, and particularly for males, which appeared less disease resistant than females. Interestingly, we also found that individuals having long WBC telomeres at early age were relatively disease resistant during later life. Finally, we found evidence that more rapid telomere attrition increases mortality risk, although this trend was not significant.

Conclusions/Significance

Our results indicate that infectious diseases can cause telomere attrition, and support the idea that telomere length could provide a molecular biomarker for assessing exposure and ability to cope with infectious diseases.  相似文献   

5.
A major interest has recently emerged in understanding how telomere shortening, mechanism triggering cell senescence, is linked to organism ageing and life history traits in wild species. However, the links between telomere length and key history traits such as reproductive performances have received little attention and remain unclear to date. The leatherback turtle Dermochelys coriacea is a long-lived species showing rapid growth at early stages of life, one of the highest reproductive outputs observed in vertebrates and a dichotomised reproductive pattern related to migrations lasting 2 or 3 years, supposedly associated with different environmental conditions. Here we tested the prediction of blood telomere shortening with age in this species and investigated the relationship between blood telomere length and reproductive performances in leatherback turtles nesting in French Guiana. We found that blood telomere length did not differ between hatchlings and adults. The absence of blood telomere shortening with age may be related to an early high telomerase activity. This telomere-restoring enzyme was formerly suggested to be involved in preventing early telomere attrition in early fast-growing and long-lived species, including squamate reptiles. We found that within one nesting cycle, adult females having performed shorter migrations prior to the considered nesting season had shorter blood telomeres and lower reproductive output. We propose that shorter blood telomeres may result from higher oxidative stress in individuals breeding more frequently (i.e., higher costs of reproduction) and/or restoring more quickly their body reserves in cooler feeding areas during preceding migration (i.e., higher foraging costs). This first study on telomeres in the giant leatherback turtle suggests that blood telomere length predicts not only survival chances, but also reproductive performances. Telomeres may therefore be a promising new tool to evaluate individual reproductive quality which could be useful in such species of conservation concern.  相似文献   

6.
The usage of telomere length (TL) in blood as a proxy for the TL of other tissues relies on the assumption that telomere dynamics across all tissues are similar. However, telomere attrition can be caused by reactive oxygen species (ROS) which may vary with metabolic rate, which itself varies across organs depending upon the life history strategy of an organism. Thus, we chose to measure the telomeres of various cell types in juvenile painted dragon lizards, Ctenophorus pictus, given their unusual life history strategy. Individuals typically only experience a single mating season. We measured the TL of male and female dragons using qPCR and observed that TL varied with tissue type and sex. Telomeres of blood cells were longer than those of liver, heart, brain, and spleen, and females had longer telomeres than males. Brain telomeres in males were approximately half the length of those in females. Telomeric attrition in the male brain may be due to the need for rapid learning of reproductive tactics (territory patrol and defense, mate‐finding). Significant correlations between the TL of tissue types suggest that blood TL may be a useful proxy for the TL of other tissues. Our comparison of organ‐specific telomere dynamics, the first in a reptile, suggests that the usage of blood TL as a proxy requires careful consideration of the life history strategy of the organism.  相似文献   

7.
Age-independent telomere length predicts fitness in two bird species   总被引:1,自引:0,他引:1  
Telomeres are dynamic DNA-protein structures that form protective caps at the ends of eukaryotic chromosomes. Although initial telomere length is partly genetically determined, subsequent accelerated telomere shortening has been linked to elevated levels of oxidative stress. Recent studies show that short telomere length alone is insufficient to induce cellular senescence; advanced attrition of these repetitive DNA sequences does, however, reflect ageing processes. Furthermore, telomeres vary widely in length between individuals of the same age, suggesting that individuals differ in their exposure or response to telomere-shortening stress factors. Here, we show that residual telomere length predicts fitness components in two phylogenetically distant bird species: longevity in sand martins, Riparia riparia, and lifetime reproductive success in dunlins, Calidris alpina. Our results therefore imply that individuals with longer than expected telomeres for their age are of higher quality.  相似文献   

8.
There is tremendous diversity in ageing rates and lifespan not only among taxa but within species, and particularly between the sexes. Women often live longer than men, and considerable research on this topic has revealed some of the potential biological, psychological and cultural causes of sex differences in human ageing and lifespan. However, sex differences in lifespan are widespread in nonhuman animals suggesting biology plays a prominent role in variation in ageing and lifespan. Recently, evolutionary biologists have borrowed techniques from biomedicine to identify whether similar mechanisms causing or contributing to variation in ageing and lifespan in humans and laboratory animals also operate in wild animals. Telomeres are repetitive noncoding DNA sequences capping the ends of chromosomes that are important for chromosomal stability but that can shorten during normal cell division and exposure to stress. Telomere shortening is hypothesized to directly contribute to the ageing process as once telomeres shorten to some length, the cells stop dividing and die. Men tend to have shorter telomeres and faster rates of telomere attrition with age than women, suggesting one possible biological cause of sex differences in lifespan. In this issue of Molecular Ecology, Watson et al. ( 2017 ) show that telomere lengths in wild Soay sheep are similar between females and males near the beginning of life but quickly diverge with age because males but not females showed reduced telomere lengths at older ages. The authors further show that some of the observed sex difference in telomere lengths in old age may be due to male investment in horn growth earlier in life, suggesting that sexually dimorphic allocation to traits involved in sexual selection might underlie sex differences in telomere attrition. This study provides a rare example of how biological mechanisms potentially contributing to sex differences in lifespan in humans may also operate in free‐living animals. However, future studies using a longitudinal approach are necessary to confirm these observations and identify the ultimate and proximate causes of any sex differences in telomere lengths. Collaborations between evolutionary biologists and gerontologists are especially needed to identify whether telomere lengths have a causal role in ageing, particularly in natural conditions, and whether this directly contributes to sex differences in lifespan.  相似文献   

9.
Telomeres are sensitive to damage induced by oxidative stress, and thus it is expected that dietary antioxidants may support the maintenance of telomere length in animals, particularly those with a fast rate of life (e.g. fast metabolism, activity and growth). We tested experimentally the effect of antioxidant supplements on telomere length during early development in wild gull chicks with natural individual variations in behaviour pattern and growth rate. Proactive chicks had shorter telomeres than reactive chicks, but the penalty for the bold behaviour pattern was reduced by antioxidant supplementation. Chicks growing faster had longer telomeres during early growth, suggesting that inherited quality supports a fast life history.  相似文献   

10.
Mounting evidence suggests that average telomere length reflects previous stress and predicts subsequent survival across vertebrate species. In humans, leucocyte telomere length (LTL) is consistently shorter during adulthood in males than in females, although the causes of this sex difference and its generality to other mammals remain unknown. Here, we measured LTL in a cross‐sectional sample of free‐living Soay sheep and found shorter telomeres in males than in females in later adulthood (>3 years of age), but not in early life. This observation was not related to sex differences in growth or parasite burden, but we did find evidence for reduced LTL associated with increased horn growth in early life in males. Variation in LTL was independent of variation in the proportions of different leucocyte cell types, which are known to differ in telomere length. Our results provide the first evidence of sex differences in LTL from a wild mammal, but longitudinal studies are now required to determine whether telomere attrition rates or selective disappearance are responsible for these observed differences.  相似文献   

11.
Telomeres, DNA‐protein structures at chromosome ends, shorten with age, and telomere length has been linked to age‐related diseases and survival. In vitro studies revealed that the shortest telomeres trigger cell senescence, but whether the shortest telomeres are also the best biomarker of ageing is not known. We measured telomeres in erythrocytes of wild common terns Sterna hirundo using terminal restriction fragment analysis. This yields a distribution of telomere lengths for each sample, and we investigated how different telomere subpopulations (percentiles) varied in their relation to age and fitness proxies. Longer telomeres within a genome lost more base pairs with age and were better predictors of survival than shorter telomeres. Likewise, fitness proxies such as arrival date at the breeding grounds and reproductive success were best predicted by telomere length at the higher percentiles. Our finding that longer telomeres within a genome predict fitness components better than the shorter telomeres indicates that they are a more informative ageing biomarker. This finding contrasts with the fact that cell senescence is triggered by the shortest telomeres. We suggest that this paradox arises, because longer telomeres lose more base pairs per unit time and thus better reflect the various forms of stress that accelerate telomere shortening, and that telomeres primarily function as biomarker because their shortening reflects cumulative effects of various stressors rather than reflecting telomere‐induced cell senescence.  相似文献   

12.
During aging, telomeres are gradually shortened, eventually leading to cellular senescence. By T/C-FISH (telomere/centromere-FISH), we investigated human telomere length differences on single chromosome arms of 205 individuals in different age groups and sexes. For all chromosome arms, we found a linear correlation between telomere length and donor age. Generally, males had shorter telomeres and higher attrition rates. Every chromosome arm had its individual age-specific telomere length and erosion pattern, resulting in an unexpected heterogeneity in chromosome-specific regression lines. This differential erosion pattern, however, does not seem to be accidental, since we found a correlation between average telomere length of single chromosome arms in newborns and their annual attrition rate. Apart from the above-mentioned sex-specific discrepancies, chromosome arm-specific telomere lengths were strikingly similar in men and women. This implies a mechanism that arm specifically regulates the telomere length independent of gender, thus leading to interchromosomal telomere variations.  相似文献   

13.
Telomeres are genetically conserved nucleoprotein complexes located at the ends of chromosomes that preserve genomic stability. In large mammals, somatic cell telomeres shorten with age, owing to the end replication problem and lack of telomere-lengthening events (e.g. telomerase and ALT activity). Therefore, telomere length reflects cellular replicative reserve and mitotic potential. Environmental insults can accelerate telomere attrition in response to cell division and DNA damage. As such, telomere shortening is considered one of the major hallmarks of ageing. Much effort has been dedicated to understanding the environmental perturbations that accelerate telomere attrition and therapeutic strategies to preserve or extend telomeres. As telomere dynamics seem to reflect cumulative cellular stress, telomere length could serve as a biomarker of animal welfare. The assessment of telomere dynamics (i.e. rate of shortening) in conjunction with telomere-regulating genes and telomerase activity in racehorses could monitor long-term animal health, yet it could also provide some unique opportunities to address particular limitations with the use of other animal models in telomere research. Considering the ongoing efforts to optimise the health and welfare of equine athletes, the purpose of this review is to discuss the potential utility of assessing telomere length in Thoroughbred racehorses. A brief review of telomere biology in large and small mammals will be provided, followed by discussion on the biological implications of telomere length and environmental (e.g. lifestyle) factors that accelerate or attenuate telomere attrition. Finally, the utility of quantifying telomere dynamics in horses will be offered with directions for future research.  相似文献   

14.
Telomere length predicts survival independent of genetic influences   总被引:1,自引:1,他引:0  
Telomeres prevent the loss of coding genetic material during chromosomal replication. Previous research suggests that shorter telomere length may be associated with lower survival. Because genetic factors are important for individual differences in both telomere length and mortality, this association could reflect genetic or environmental pleiotropy rather than a direct biological effect of telomeres. We demonstrate through within-pair analyses of Swedish twins that telomere length at advanced age is a biomarker that predicts survival beyond the impact of early familial environment and genetic factors in common with telomere length and mortality. Twins with the shortest telomeres had a three times greater risk of death during the follow-up period than their co-twins with the longest telomere measurements [hazard ratio (RR) = 2.8, 95% confidence interval 1.1–7.3, P  = 0.03].  相似文献   

15.
Telomeres, the non-coding sequences at the ends of chromosomes, in the absence of telomerase, progressively shorten with each cell division. Shortening of telomeres can induce cell cycle arrest and apoptosis. The aim of this study was to investigate age- and gender-related changes in telomere length in the rat and to detect possible tissue- specific rates of telomere shortening. Changes with age in telomere lengths were assessed by Southern blotting in the kidney, pancreas, liver, lung and brain of male and female rats. We determined the percentage of telomeres in various molecular size regions rather than measuring the average telomere length. The latter was unable to detect telomere shortening in the tissues. The percentage of short telomeres increased with age in the kidney, liver, pancreas and lung of both males and females, but not in the brain. Males had shorter telomeres than females in all organs analysed except the brain, where the lengths were similar. These findings indicate that telomeres shorten in the rat kidney, liver, pancreas and the lung in an age-dependent manner. These data also provide a novel mechanism for the gender-related differences in lifespan and suggest a tissue-specific regulation of telomere length during development and ageing in the rat.  相似文献   

16.
Animals in a poor biological state face reduced life expectancy, and as a consequence should make decisions that prioritize immediate survival and reproduction over long-term benefits. We tested the prediction that if, as has been suggested, developmental telomere attrition is a biomarker of state and future life expectancy, then individuals who have undergone greater developmental telomere attrition should display greater choice impulsivity as adults. We measured impulsive decision-making in a cohort of European starlings (Sturnus vulgaris) in which we had previously manipulated developmental telomere attrition by cross-fostering sibling chicks into broods of different sizes. We show that as predicted by state-dependent optimality models, individuals who had sustained greater developmental telomere attrition and who had shorter current telomeres made more impulsive foraging decisions as adults, valuing smaller, sooner food rewards more highly than birds with less attrition and longer telomeres. Our findings shed light on the biological embedding of early adversity and support a functional explanation for its consequences that could be applicable to other species, including humans.  相似文献   

17.
Normal Human Telomeres Are Not Late Replicating   总被引:9,自引:0,他引:9  
Telomeres in yeast are late replicating. Genes placed next to telomeres in yeast can be repressed (telomere positional effects), leading to the hypothesis that telomeres may be heterochromatic and may control the expression of subtelomeric genes. In addition, yeast telomeres are processed to have a transient long overhang at the end of S phase. The applicability of the yeast data to human biology was examined by determining the timing of telomere replication and processing in normal human diploid fibroblasts. Telomeres were purified from synchronized cells that had been labeled with 5-bromodeoxyuridine (BrdU) at hourly intervals, and the fraction of labeled telomeres was analyzed by retrieval with anti-BrdU antibodies. We determined that normal human telomeres replicate throughout S phase rather than being very late replicating. Furthermore, the overall timing of replication was unaffected by telomere length in young versus old cells or cells whose telomeres had been elongated following transfection with the catalytic subunit of telomerase. Finally, the asymmetry in the length of the G-rich overhang in daughter telomeres produced by leading versus lagging strand synthesis was shown to be established within 1 h of telomere replication, indicating there is no significant delay between synthesis and the processing events that contribute to the establishment of asymmetric overhangs. Therefore, the timings of replication and processing of human telomeres are very different from those of yeast.  相似文献   

18.
Individuals in free‐living animal populations generally differ substantially in reproductive success, lifespan and other fitness‐related traits, but the molecular mechanisms underlying this variation are poorly understood. Telomere length and dynamics are candidate traits explaining this variation, as long telomeres predict a higher survival probability and telomere loss has been shown to reflect experienced “life stress.” However, telomere dynamics among very long‐lived species are unresolved. Additionally, it is generally not well understood how telomeres relate to reproductive success or sex. We measured telomere length and dynamics in erythrocytes to assess their relationship to age, sex and reproduction in Cory's shearwaters (Calonectris borealis), a long‐lived seabird, in the context of a long‐term study. Adult males had on average 231 bp longer telomeres than females, independent of age. In females, telomere length changed relatively little with age, whereas male telomere length declined significantly. Telomere shortening within males from one year to the next was three times higher than the interannual shortening rate based on cross‐sectional data of males. Past long‐term reproductive success was sex‐specifically reflected in age‐corrected telomere length: males with on average high fledgling production were characterized by shorter telomeres, whereas successful females had longer telomeres, and we discuss hypotheses that may explain this contrast. In conclusion, telomere length and dynamics in relation to age and reproduction are sex‐dependent in Cory's shearwaters and these findings contribute to our understanding of what characterises individual variation in fitness.  相似文献   

19.
A central objective of evolutionary biology is understanding variation in life‐history trajectories and the rate of aging, or senescence. Senescence can be affected by trade‐offs and behavioural strategies in adults but may also be affected by developmental stress. Developmental stress can accelerate telomere degradation, with long‐term longevity and fitness consequences. Little is known regarding whether variation in developmental stress and telomere dynamics contributes to patterns of senescence during adulthood. We investigated this question in the dimorphic white‐throated sparrow (Zonotrichia albicollis), a species in which adults of the two morphs exhibit established differences in behavioural strategy and patterns of senescence, and also evaluated the relationship between oxidative stress and telomere length. Tan morph females, which exhibit high levels of unassisted parental care, display faster reproductive senescence than white females, and faster actuarial senescence than all of the other morph–sex classes. We hypothesized that high oxidative stress and telomere attrition in tan female nestlings could contribute to this pattern, since tan females are small and potentially at a competitive disadvantage even as nestlings. Nestlings that were smaller than nest mates had higher oxidative stress, and nestlings with high oxidative stress and fast growth rates displayed shorter telomeres. However, we found no consistent morph–sex differences in oxidative stress or telomere length. Results suggest that oxidative stress and fast growth contribute to developmental telomere attrition, with potential ramifications for adults, but that developmental oxidative stress and telomere dynamics do not account for morph–sex differences in senescence during adulthood.  相似文献   

20.
When vertebrates face stressful events, the hypothalamic–pituitary–adrenal (HPA) axis is activated, generating a rapid increase in circulating glucocorticoid (GC) stress hormones followed by a return to baseline levels. However, repeated activation of HPA axis may lead to increase in oxidative stress. One target of oxidative stress is telomeres, nucleoprotein complexes at the end of chromosomes that shorten at each cell division. The susceptibility of telomeres to oxidizing molecules has led to the hypothesis that increased GC levels boost telomere shortening, but studies on this link are scanty. We studied if, in barn swallows Hirundo rustica, changes in adult erythrocyte telomere length between 2 consecutive breeding seasons are related to corticosterone (CORT) (the main avian GC) stress response induced by a standard capture-restraint protocol. Within-individual telomere length did not significantly change between consecutive breeding seasons. Second-year individuals showed the highest increase in circulating CORT concentrations following restraint. Moreover, we found a decline in female stress response along the breeding season. In addition, telomere shortening covaried with the stress response: a delayed activation of the negative feedback loop terminating the stress response was associated with greater telomere attrition. Hence, among-individual variation in stress response may affect telomere dynamics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号