首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The interaction of α-helical peptides with lipid bilayers is central to our understanding of the physicochemical principles of biological membrane organization and stability. Mutations that alter the position or orientation of an α-helix within a membrane, or that change the probability that the α-helix will insert into the membrane, can alter a range of membrane protein functions. We describe a comparative coarse-grained molecular dynamics simulation methodology, based on self-assembly of a lipid bilayer in the presence of an α-helical peptide, which allows us to model membrane transmembrane helix insertion. We validate this methodology against available experimental data for synthetic model peptides (WALP23 and LS3). Simulation-based estimates of apparent free energies of insertion into a bilayer of cystic fibrosis transmembrane regulator-derived helices correlate well with published data for translocon-mediated insertion. Comparison of values of the apparent free energy of insertion from self-assembly simulations with those from coarse-grained molecular dynamics potentials of mean force for model peptides, and with translocon-mediated insertion of cystic fibrosis transmembrane regulator-derived peptides suggests a nonequilibrium model of helix insertion into bilayers.  相似文献   

2.
The insertion of nascent polypeptide chains into lipid bilayer membranes and the stability of membrane proteins crucially depend on the equilibrium partitioning of polypeptides. For this, the transfer of full sequences of amino-acid residues into the bilayer, rather than individual amino acids, must be understood. Earlier studies have revealed that the most likely reference state for partitioning very hydrophobic sequences is the membrane interface. We have used μs-scale simulations to calculate the interface-to-transmembrane partitioning free energies ΔGS→TM for two hydrophobic carrier sequences in order to estimate the insertion free energy for all 20 amino acid residues when bonded to the center of a partitioning hydrophobic peptide. Our results show that prior single-residue scales likely overestimate the partitioning free energies of polypeptides. The correlation of ΔGS→TM with experimental full-peptide translocon insertion data is high, suggesting an important role for the membrane interface in translocon-based insertion. The choice of carrier sequence greatly modulates the contribution of each single-residue mutation to the overall partitioning free energy. Our results demonstrate the importance of quantifying the observed full-peptide partitioning equilibrium, which is between membrane interface and transmembrane inserted, rather than combining individual water-to-membrane amino acid transfer free energies.  相似文献   

3.
A structural model of the transmembrane portion of the acetylcholine receptor was developed from sequences of all its subunits by using transfer energy calculations to locate transmembrane alpha-helices and to calculate which helical side chains should be in contact with water inside the channel, with portions of other transmembrane helices, or with lipid hydrocarbon chains. "Knobs-into-holes" side chain packing calculations were used with other factors to stack the transmembrane alpha-helices together. In the model each subunit has the following structures in order along the sequence from the NH2 terminus: a large extracellular domain of undetermined structure, a short apolar alpha-helix that lies on the extracellular lipid surface of the membrane; three apolar transmembrane alpha-helices (I, II, and III), a cytoplasmic domain of undetermined structure, an amphipathic transmembrane alpha-helix (L) that forms the channel lining, a short extracellular alpha-helix, another apolar transmembrane alpha-helix (IV), and a small cytoplasmic domain formed by the COOH-terminal end of the chain. Three concentric layers form the pore. A bundle of five amphipathic L helices forms the channel lining. This bundle is surrounded by a bundle of 10 alternating II and III helices. Helices I and IV cover portions of the outer surface of the bundle formed by helices II and III. Positions of disulfide bridges are predicted and a mechanism for opening and closing conformational changes is proposed that requires tilting transmembrane helices and possibly a thiol-disulfide interchange reaction.  相似文献   

4.
Free energy profiles for insertion of a hydrophobic transmembrane protein α-helix (M2 from CFTR) into a lipid bilayer have been calculated using coarse-grained molecular dynamics simulations and umbrella sampling to yield potentials of mean force along a reaction path corresponding to translation of a helix across a lipid bilayer. The calculated free energy of insertion is smaller when a bilayer with a thinner hydrophobic region is used. The free energies of insertion from the potentials of mean force are compared with those derived from a number of hydrophobicity scales and with those derived from translocon-mediated insertion. This comparison supports recent models of translocon-mediated insertion and in particular suggests that: 1), helices in an about-to-be-inserted state may be located in a hydrophobic region somewhat thinner than the core of a lipid bilayer; and/or 2), helices in a not-to-be-inserted state may experience an environment more akin (e.g., in polarity/hydrophobicity) to the bilayer/water interface than to bulk water.  相似文献   

5.
M2delta, one of the transmembrane segments of the nicotinic acetylcholine receptor, is a 23-amino-acid peptide, frequently used as a model for peptide-membrane interactions. In this and the companion article we describe studies of M2delta-membrane interactions, using two different computational approaches. In the present work, we used continuum-solvent model calculations to investigate key thermodynamic aspects of its interactions with lipid bilayers. M2delta was represented in atomic detail and the bilayer was represented as a hydrophobic slab embedded in a structureless aqueous phase. Our calculations show that the transmembrane orientation is the most favorable orientation of the peptide in the bilayer, in good agreement with both experimental and computational data. Moreover, our calculations produced the free energy of association of M2delta with the lipid bilayer, which, to our knowledge, has not been reported to date. The calculations included 10 structures of M2delta, determined by nuclear magnetic resonance in dodecylphosphocholine micelles. All the structures were found to be stable inside the lipid bilayer, although their water-to-membrane transfer free energies differed by as much as 12 kT. Although most of the structures were roughly linear, a single structure had a kink in its central region. Interestingly, this structure was found to be the most stable inside the lipid bilayer, in agreement with molecular dynamics simulations of the peptide and with the recently determined structure of the intact receptor. Our analysis showed that the kink reduced the polarity of the peptide in its central region by allowing the electrostatic masking of the Gln13 side chain in that area. Our calculations also showed a tendency for the membrane to deform in response to peptide insertion, as has been previously found for the membrane-active peptides alamethicin and gramicidin. The results are compared to Monte Carlo simulations of the peptide-membrane system, as presented in the accompanying article.  相似文献   

6.
T B Woolf 《Biophysical journal》1997,73(5):2376-2392
Understanding the role of the lipid bilayer in membrane protein structure and dynamics is needed for tertiary structure determination methods. However, the molecular details are not well understood. Molecular dynamics computer calculations can provide insight into these molecular details of protein:lipid interactions. This paper reports on 10 simulations of individual alpha-helices in explicit lipid bilayers. The 10 helices were selected from the bacteriorhodopsin structure as representative alpha-helical membrane folding components. The bilayer is constructed of dimyristoyl phosphatidylcholine molecules. The only major difference between simulations is the primary sequence of the alpha-helix. The results show dramatic differences in motional behavior between alpha-helices. For example, helix A has much smaller root-mean-squared deviations than does helix D. This can be understood in terms of the presence of aromatic residues at the interface for helix A that are not present in helix D. Additional motions are possible for the helices that contain proline side chains relative to other amino acids. The results thus provide insight into the types of motion and the average structures possible for helices within the bilayer setting and demonstrate the strength of molecular simulations in providing molecular details that are not directly visualized in experiments.  相似文献   

7.
Continuum electrostatic models have had quantitative success in describing electrostatic-mediated phenomena on atomistic scales; however, there continues to be significant disagreement about how to assign dielectric constants in mixed, nonhomogeneous systems. We introduce a method for determining a position-dependent dielectric profile from molecular dynamics simulations. In this method, the free energy of introducing a test charge is computed two ways: from a free energy perturbation calculation and from a numerical solution to Poisson's Equation. The dielectric profile of the system is then determined by minimizing the discrepancy between these two calculations simultaneously for multiple positions of the test charge. We apply this method to determine the dielectric profile of a lipid bilayer surrounded by water. We find good agreement with dielectric models for lipid bilayers obtained by other approaches. The free energy of transferring an ion from bulk water to the lipid bilayer computed from the atomistic simulations indicates that large errors are introduced when the bilayer is represented as a single slab of low dielectric embedded in the higher-dielectric solvent. Significant improvement results from introducing an additional layer of intermediate dielectric (∼3) on each side of the low dielectric core extending from ∼12 Å to 18 Å. A small dip in transfer free energy just outside the lipid headgroups indicates the presence of a very high dielectric. These results have implications for the design of implicit membrane models and our understanding of protein-membrane interactions.  相似文献   

8.
A number of membrane proteins act via binding at the water/lipid bilayer interface. An important example of such proteins is provided by the gating-modifier toxins that act on voltage-gated potassium (Kv) channels. They are thought to partition to the headgroup region of lipid bilayers, and so provide a good system for probing the nature of interactions of a protein with the water/bilayer interface. We used coarse-grained molecular dynamics simulations to compute the one-dimensional potential of mean force (i.e., free energy) profile that governs the interaction between a Kv channel gating-modifier toxin (VSTx1) and model phospholipid bilayers. The reaction coordinate sampled corresponds to the position of the toxin along the bilayer normal. The course-grained representation of the protein and lipids enabled us to explore extended time periods, revealing aspects of toxin/bilayer dynamics and energetics that would be difficult to observe on the timescales currently afforded by atomistic molecular dynamics simulations. In particular, we show for this model system that the bilayer deforms as it interacts with the toxin, and that such deformations perturb the free energy profile. Bilayer deformation therefore adds an additional layer of complexity to be addressed in investigations of membrane/protein systems. In particular, one should allow for local deformations that may arise due to the spatial array of charged and hydrophobic elements of an interfacially located membrane protein.  相似文献   

9.
Detailed atomistic computer simulations are now widely used to study biological membranes, including increasingly mixed lipid systems that involve, for example, cholesterol, which is a key membrane lipid. Typically, simulations of these systems start from a preassembled bilayer because the timescale on which self-assembly occurs in mixed lipid systems is beyond the practical abilities of fully atomistic simulations. To overcome this limitation and study bilayer self-assembly, coarse-grained models have been developed. Although there are several coarse-grained models for cholesterol reported in the literature, these generally fail to account explicitly for the unique molecular features of cholesterol that relate to its function and role as a membrane lipid. In this work, we propose a new coarse-grained model for cholesterol that retains the molecule's unique features and, as a result, can be used to study crystalline structures of cholesterol. In the development of the model, two levels of coarse-graining are explored and the importance of retaining key molecular features in the coarse-grained model that are relevant to structural properties is investigated.  相似文献   

10.
The insertion of the M2 transmembrane peptide from influenza A virus into a membrane has been studied with molecular-dynamics simulations. This system is modeled by an atomically detailed peptide interacting with a continuum representation of a membrane bilayer in aqueous solution. We performed replica-exchange molecular-dynamics simulations with umbrella-sampling techniques to characterize the probability distribution and conformation preference of the peptide in the solution, at the membrane interface, and in the membrane. The minimum in the calculated free-energy surface of peptide insertion corresponds to a fully inserted, helical peptide spanning the membrane. The free-energy profile also shows that there is a significant barrier for the peptide to enter into this minimum in a nonhelical conformation. The sequence of the peptide is such that hydrophilic amino acid residues at the ends of the otherwise primarily hydrophobic peptide create a trapped, U-shaped conformation with the hydrophilic residues associated with the aqueous phase and the hydrophobic residues embedded in the membrane. Analysis of the free energy shows that the barrier to insertion is largely enthalpic in nature, whereas the membrane-spanning global minimum is favored by entropy.  相似文献   

11.
In this work, molecular dynamics (MD) simulations with atomistic details were performed to examine the influence of the cholesterol on the interactions and the partitioning of the hydrophobic drug ibuprofen in a fully hydrated 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) bilayer. Analysis of MD simulations indicated that ibuprofen molecules prefer to be located in the hydrophobic acyl chain region of DMPC/cholesterol bilayers. This distribution decreases the lateral motion of lipid molecules. The presence of ibuprofen molecules in the bilayers with 0 and 25 mol% cholesterol increases the ordering of hydrocarbon tails of lipids whereas for the bilayers with 50 mol% cholesterol, ibuprofen molecules perturb the flexible chains of DMPC lipids which leads to the reduction of the acyl chain order parameter. The potential of the mean force (PMF) method was used to calculate the free energy profile for the transferring of an ibuprofen molecule from the bulk water into the DMPC/cholesterol membranes. The PMF studies indicated that the presence of 50 mol% cholesterol in the bilayers increases the free energy barrier and slows down the permeation of the ibuprofen drug across the DMPC bilayer. This can be due to the condensing and ordering effects of the cholesterol on the bilayer.  相似文献   

12.
Nymeyer H  Woolf TB  Garcia AE 《Proteins》2005,59(4):783-790
We implement the replica exchange molecular dynamics algorithm to study the interactions of a model peptide (WALP-16) with an explicitly represented DPPC membrane bilayer. We observe the spontaneous, unbiased insertion of WALP-16 into the DPPC bilayer and its folding into an alpha-helix with a transbilayer orientation. The free energy surface suggests that the insertion of the peptide into the DPPC bilayer precedes secondary structure formation. Although the peptide has some propensity to form a partially helical structure in the interfacial region of the DPPC/water system, this state is not a productive intermediate but rather an off-pathway trap for WALP-16 insertion. Equilibrium simulations show that the observed insertion/folding pathway mirrors the potential of mean force (PMF). Calculation of the enthalpic and entropic contributions to this PMF show that the surface bound conformation of WALP-16 is significantly lower in energy than other conformations, and that the insertion of WALP-16 into the bilayer without regular secondary structure is enthalpically unfavorable by 5-10 kcal/mol/residue. The observed insertion/folding pathway disagrees with the dominant conceptual model, which is that a surface-bound helix is an obligatory intermediate for the insertion of alpha-helical peptides into lipid bilayers. In our simulations, the observed insertion/folding pathway is favored because of a large (>100 kcal/mol) increase in system entropy that occurs when the unstructured WALP-16 peptide enters the lipid bilayer interior. The insertion/folding pathway that is lowest in free energy depends sensitively on the near cancellation of large enthalpic and entropic terms. This suggests the possibility that intrinsic membrane peptides may have a diversity of insertion/folding behaviors depending on the exact system of peptide and lipid under consideration.  相似文献   

13.
Carney J  East JM  Lee AG 《Biophysical journal》2007,92(10):3556-3563
The transmembrane surface of a multi-helix membrane protein will be rough with cavities of various sizes between the transmembrane alpha-helices. Efficient solvation of the surface by the lipid molecules that surround the protein in a membrane requires that the lipid fatty acyl chains be able to enter the cavities. This possibility has been investigated using fluorescence quenching methods. Trp residues have been introduced into lipid-facing sites in the first transmembrane alpha-helix (M1) of the mechanosensitive channel of large-conductance MscL; lipid-facing residues at the N-terminal end of M1 are buried below the transmembrane surface of the protein. Fluorescence emission maxima for lipid-facing Trp residues in M1 vary with position in the bilayer comparably to those for Trp residues in the second transmembrane alpha-helix (M2) despite the fact that lipid-facing residues in M2 are on the surface of the protein. Fluorescence emission spectra for most Trp residues on the periplasmic sides of M1 and M2 fit well to a model proposing a trough-like variation of dielectric constant across the membrane, but the relationship between location and fluorescence emission maximum on the cytoplasmic side of the membrane is more complex. The fluorescence of Trp residues in M1 is quenched efficiently by phospholipids with bromine-containing fatty acyl chains, showing that the lipid chains must be able to enter the Trp-containing cavities on the surface of MscL, resulting in efficient solvation of the surface.  相似文献   

14.
The physical mechanisms that govern the folding and assembly of integral membrane proteins are poorly understood. It appears that certain properties of the lipid bilayer affect membrane protein folding in vitro, either by modulating helix insertion or packing. In order to begin to understand the origin of this effect, we investigate the effect of lipid forces on the insertion of a transmembrane alpha-helix using a water-soluble, alanine-based peptide, KKAAAIAAAAAIAAWAAIAAAKKKK-amide. This peptide binds to preformed 1,2-dioleoyl-l-alpha-phosphatidylcholine (DOPC) vesicles at neutral pH, but spontaneous transmembrane helix insertion directly from the aqueous phase only occurs at high pH when the Lys residues are de-protonated. These results suggest that the translocation of charge is a major determinant of the activation energy for insertion. Time-resolved measurements of the insertion process at high pH indicate biphasic kinetics with time constants of ca 30 and 430 seconds. The slower phase seems to correlate with formation of a predominantly transmembrane alpha-helical conformation, as determined from the transfer of the tryptophan residue to the hydrocarbon region of the membrane. Temperature-dependent measurements showed that insertion can proceed only above a certain threshold temperature and that the Arrhenius activation energy is of the order of 90 kJ mol(-1). The kinetics, threshold temperature and the activation energy change with the mole fraction of 1,2-dioleoyl-l-alpha-phosphatidylethanolamine (DOPE) introduced into the DOPC membrane. The activation energy increases with increasing DOPE content, which could reflect the fact that this lipid drives the bilayer towards a non-bilayer transition and increases the lateral pressure in the lipid chain region. This suggests that folding events involving the insertion of helical segments across the bilayer can be controlled by lipid forces.  相似文献   

15.
Structural properties of signal peptides and their membrane insertion   总被引:5,自引:0,他引:5  
Garnier J  Gaye P  Mercier JC  Robson B 《Biochimie》1980,62(4):231-239
Structural properties of the amino acid sequences from 22 signal peptides have been analyzed and compared with peptides known to interact with biological membranes and liposomes, melittin, a lytic peptide of bee venom, and the non-polar C-terminal segment of cytochrome b5. All these peptides evidence a double amphipatic structure with an hydrophobic core of 9 to 24 amino acid residues and two charged polar ends. They all exhibit a high potential for making alpha-helix and, to a lesser degree, extended or beta-sheet conformation with low or negative potentials for making reverse turns or aperiodic conformation. A model of spontaneous insertion of these peptides into the lipid bilayer without specific surface receptor protein is proposed, where the two polar ends interact with each polar face of the lipid bilayer and the hydrophobic core inserts into the non-hydrogen bonding environment of the fatty acid side chains. This insertion could be the molecular trigger for ribophorin assembly around the signal peptide and subsequent attachment to the ribosome prior to the transfer of the polypeptide chain through the endoplasmic reticulum membrane.  相似文献   

16.
Transient receptor potential vanilloid subtype 1 (TRPV1) is a heat-sensitive ion channel also involved in pain sensation, and is the receptor for capsaicin, the active ingredient of hot chili peppers. The recent structures of TRPV1 revealed putative ligand density within the S1 to S4 voltage-sensor-like domain of the protein. However, questions remain regarding the dynamic role of the lipid bilayer in ligand binding to TRPV1. Molecular dynamics simulations were used to explore behavior of capsaicin in a 1-palmitoyl-2-oleoyl phosphatidylcholine bilayer and with the target S1–S4 transmembrane helices of TRPV1. Equilibrium simulations reveal a preferred interfacial localization for capsaicin. We also observed a capsaicin molecule flipping from the extracellular to the intracellular leaflet, and subsequently able to access the intracellular TRPV1 binding site. Calculation of the potential of mean force (i.e., free energy profile) of capsaicin along the bilayer normal confirms that it prefers an interfacial localization. The free energy profile indicates that there is a nontrivial but surmountable barrier to the flipping of capsaicin between opposing leaflets of the bilayer. Molecular dynamics of the S1–S4 transmembrane helices of the TRPV1 in a lipid bilayer confirm that Y511, known to be crucial to capsaicin binding, has a distribution along the bilayer normal similar to that of the aromatic group of capsaicin. Simulations were conducted of the TRPV1 S1–S4 transmembrane helices in the presence of capsaicin placed in the aqueous phase, in the lipid, or docked to the protein. No stable interaction between ligand and protein was seen for simulations initiated with capsaicin in the bilayer. However, interactions were seen between TRPV1 and capsaicin starting from the cytosolic aqueous phase, and capsaicin remained stable in the majority of simulations from the docked pose. We discuss the significance of capsaicin flipping from the extracellular to the intracellular leaflet and mechanisms of binding site access by capsaicin.  相似文献   

17.
The transfer of polypeptide segments into lipid bilayers to form transmembrane helices represents the crucial first step in cellular membrane protein folding and assembly. This process is driven by complex and poorly understood atomic interactions of peptides with the lipid bilayer environment. The lack of suitable experimental techniques that can resolve these processes both at atomic resolution and nanosecond timescales has spurred the development of computational techniques. In this review, we summarize the significant progress achieved in the last few years in elucidating the partitioning of peptides into lipid bilayer membranes using atomic detail molecular dynamics simulations. Indeed, partitioning simulations can now provide a wealth of structural and dynamic information. Furthermore, we show that peptide-induced bilayer distortions, insertion pathways, transfer free energies, and kinetic insertion barriers are now accurate enough to complement experiments. Further advances in simulation methods and force field parameter accuracy promise to turn molecular dynamics simulations into a powerful tool for investigating a wide range of membrane active peptide phenomena.  相似文献   

18.
The energetic cost of burying charged groups in the hydrophobic core of lipid bilayers has been controversial, with simulations giving higher estimates than certain experiments. Implicit membrane approaches are usually deemed too simplistic for this problem. Here we challenge this view. The free energy of transfer of amino acid side chains from water to the membrane center predicted by IMM1 is reasonably close to all-atom free energy calculations. The shape of the free energy profile, however, for the charged side chains needs to be modified to reflect the all-atom simulation findings (IMM1-LF). Membrane thinning is treated by combining simulations at different membrane widths with an estimate of membrane deformation free energy from elasticity theory. This approach is first tested on the voltage sensor and the isolated S4 helix of potassium channels. The voltage sensor is stably inserted in a transmembrane orientation for both the original and the modified model. The transmembrane orientation of the isolated S4 helix is unstable in the original model, but a stable local minimum in IMM1-LF, slightly higher in energy than the interfacial orientation. Peptide translocation is addressed by mapping the effective energy of the peptide as a function of vertical position and tilt angle, which allows identification of minimum energy pathways and transition states. The barriers computed for the S4 helix and other experimentally studied peptides are low enough for an observable rate. Thus, computational results and experimental studies on the membrane burial of peptide charged groups appear to be consistent. This article is part of a Special Issue entitled: Interfacially Active Peptides and Proteins. Guest Editors: William C. Wimley and Kalina Hristova.  相似文献   

19.
The amino-terminal extremity of the simian immunodeficiency virus (SIV) transmembrane protein (gp32) has been shown to play a pivotal role in cell-virus fusion and syncytium formation. We provide here evidence of a correlation between the structure and orientation of the modified SIV fusion peptide after insertion into the lipid membrane and its fusogenic activity. The sequence of the wild-type SIV peptide has been modified in such a way that the calculated angles of insertion correspond to an oblique, parallel, or normal orientation with respect to the lipid-water interface. Fourier transform infrared spectroscopy was used to gain experimental informations about the structures and orientations, of the membrane-inserted peptides with respect to the lipid acyl chains. The peptides adopt mainly a beta-sheet conformation in the absence of lipids. After interaction with large unilamellar liposomes, this beta sheet is partly converted into alpha helix. The ability of the modified peptides to promote lipid mixing was assessed by a fluorescence energy transfer assay. The data provide evidence that alpha-helix formation is not sufficient to induce lipid mixing and that the fusogenic activity of the peptide depends on its orientation in the lipid bilayer.  相似文献   

20.
Membrane proteins, of which the majority seem to contain one or more alpha-helix, constitute approx. 30% of most genomes. A complete understanding of the nature of helix/bilayer interactions is necessary for an understanding of the structural principles underlying membrane proteins. This review describes computer simulation studies of helix/bilayer interactions. Key experimental studies of the interactions of alpha-helices and lipid bilayers are briefly reviewed. Surface associated helices are found in some membrane-bound enzymes (e.g. prostaglandin synthase), and as stages in the mechanisms of antimicrobial peptides and of pore-forming bacterial toxins. Transmembrane alpha-helices are found in most integral membrane proteins, and also in channels formed by amphipathic peptides or by bacterial toxins. Mean field simulations, in which the lipid bilayer is approximated as a hydrophobic continuum, have been used in studies of membrane-active peptides (e.g. alamethicin, melittin, magainin and dermaseptin) and of simple membrane proteins (e.g. phage Pf1 coat protein). All atom molecular dynamics simulations of fully solvated bilayers with transmembrane helices have been applied to: the constituent helices of bacteriorhodopsin; peptide-16 (a simple model TM helix); and a number of pore-lining helices from ion channels. Surface associated helices (e.g. melittin and dermaseptin) have been simulated, as have alpha-helical bundles such as bacteriorhodopsin and alamethicin. From comparison of the results from the two classes of simulation, it emerges that a major theoretical challenge is to exploit the results of all atom simulations in order to improve the mean field approach.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号