首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
Surface-enhanced resonance Raman scattering (SERRS) spectra were measured for the beta-carotene and lycopene carotenoids present in low-density lipoproteins (LDLs), which were isolated from human plasma and adsorbed on roughened silver surfaces. The silver surface was modified by formation of a self-assembled monolayer (SAM) of carboxylate-terminated linear alkanethiols in order to simulate the LDL binding region of the cellular LDL receptor. Thiols of different chain length were used to produce SAMs of varying thicknesses. It was shown that carotenoids are not released from the LDL particle upon adsorption onto the bare and thiol modified silver surfaces. The SERRS studies indicated that beta-carotene and lycopene were present in the shell of the LDL particle. The dependence of SERRS on the distance from the silver surface was different for beta-carotene and lycopene in LDL. This observation suggests that the two carotenoids are located in different places of the LDL particle.  相似文献   

2.
Studies were undertaken to investigate potential interactions among plasma lipoproteins. Techniques used were low density lipoprotein2 (LDL2)-ligand blotting of plasma lipoproteins separated by nondenaturing 2.5-15% gradient gel electrophoresis, ligand binding of plasma lipoproteins by affinity chromatography with either LDL2 or lipoprotein(a) (Lp(a)) as ligands, and agarose lipoprotein electrophoresis. Ligand blotting showed that LDL2 can bind to Lp(a). When apolipoprotein(a) was removed from Lp(a) by reduction and ultracentrifugation, no interaction between LDL2 and reduced Lp(a) was detected by ligand blotting. Ligand binding showed that LDL2-Sepharose 4B columns bound plasma lipoproteins containing apolipoproteins(a), B, and other apolipoproteins. The Lp(a)-Sepharose column bound lipoproteins containing apolipoprotein B and other apolipoproteins. Furthermore, the Lp(a) ligand column bound more lipoprotein lipid than the LDL2 ligand column, with the Lp(a) ligand column having a greater affinity for triglyceride-rich lipoproteins. Lipoprotein electrophoresis of a mixture of LDL2 and Lp(a) demonstrated a single band with a mobility intermediate between that of LDL2 and Lp(a). Chemical modification of the lysine residues of apolipoprotein B (apoB) by either acetylation or acetoacetylation prevented or diminished the interaction of LDL2 with Lp(a), as shown by both agarose electrophoresis and ligand blotting using modified LDL2. Moreover, removal of the acetoacetyl group from the lysine residues of apoB by hydroxylamine reestablished the interaction of LDL2 with Lp(a). On the other hand, blocking of--SH groups of apoB by iodoacetamide failed to show any effect on the interaction between LDL2 and Lp(a). Based on these observations, it was concluded that Lp(a) interacts with LDL2 and other apoB-containing lipoproteins which are enriched in triglyceride; this interaction is due to the presence of apolipoprotein(a) and involves lysine residues of apoB interacting with the plasminogen-like domains (kringle 4) of apolipoprotein(a). Such results suggest that Lp(a) may be involved in triglyceride-rich lipoprotein metabolism, could form transient associations with apoB-containing lipoproteins in the vascular compartment, and alter the intake by the high affinity apoB, E receptor pathway.  相似文献   

3.
Low-density lipoproteins isolated between density 1.02 and 1.063 g/cm3 from normal fasting human plasma, show strong resonance Raman spectra due to the presence of beta-carotene. Three intense bands, at 1010, 1160 and 1530 cm-1, are assigned to the stretching vibrations of -C-CH3, = C-C = and -C = C- bonds, respectively, of beta-carotene. High-resolution spectra of the 1500-1600 cm-1 region reveal multiple features, suggesting the coexistence of several structural populations of beta-carotene. The modifications of lipoproteins with pH and temperature (30 degrees-42 degrees) change the resonance Raman spectra of beta-carotene. The specific binding of LDL at pH 7.0 by fibroblast cells is suppressed. Our experiments thus suggest that physical and chemical perturbations of plasma lipoproteins modify the lipid-protein interactions and thereby alter the configurational distribution of beta-carotene molecules within these particles.  相似文献   

4.
1. We have compared the concentration and chemical composition of carp and human plasma lipoproteins and studied their interaction with human fibroblast LDL receptors. 2. The main lipoproteins in carp are of high density (HDL) in contrast to low density lipoproteins (LDL) in human. 3. Carp lipoproteins are devoid of apolipoprotein (apo) E, a major ligand for interaction with LDL receptors in mammals. 4. Carp very low density lipoproteins (VLDL) and LDL but not HDL nor apoA-I cross react with human LDL in their interaction with LDL receptors on human cultured fibroblasts. 5. Carp liver membranes possess high affinity receptors that are saturable and have calcium dependent ligand specificity (apoB and apoE) similar to human LDL receptor. Carp VLDL and LDL but not HDL nor its major apolipoprotein complexed to L-alpha-phosphatidylcholine dimyristoyl (apoA-I-DMPC) competed with the specific binding of human LDL to this receptor.  相似文献   

5.
Lipoprotein-binding proteins in the human platelet plasma membrane   总被引:2,自引:0,他引:2  
E Koller 《FEBS letters》1986,200(1):97-102
The binding of homologous plasma lipoproteins to specific receptor proteins in the plasma membrane of human blood platelets was studied by ligand blotting techniques. HDL3, HDL2 and LDL showed saturable binding to three bands of 156, 130 and 115 kDa, respectively. This binding was not markedly affected by the presence or absence of Ca2+ nor by covalent modification of lysine and arginine residues of the apoprotein moieties. However, it can be almost completely reversed by the addition of heparin or suramin.  相似文献   

6.
G C Chen  J P Kane  R L Hamilton 《Biochemistry》1984,23(6):1119-1124
Induced circular dichroism (CD) of beta-carotene has been used to study the physical state in the cores of three classes of triglyceride-rich lipoproteins from human serum: intermediate-density lipoproteins (IDL) (1.006 less than d less than 1.019 g/mL) and subfractions of the d less than 1.006 g/mL lipoproteins of beta and pre-beta electrophoretic mobility. Effects on the physical state in the cores attributable to the ratio of triglycerides to cholesteryl esters and particle diameters were assessed by comparing the temperature-dependent CD spectra of beta-carotene with those of low-density lipoproteins (LDL). Lipoproteins were prepared from serum by sequential ultracentrifugation after the donors were given supplemental dietary beta-carotene (60 mg/day) for 2 weeks. The beta- and pre-beta-migrating d less than 1.006 g/mL lipoproteins were separated by starch block electrophoresis and were then individually separated into subfractions by agarose gel filtration chromatography. Between 7 and 30 degrees C, four subfractions of the beta-migrating d less than 1.006 g/mL lipoproteins and IDL exhibited reversible, temperature-dependent induced CD of beta-carotene, with contours similar to those of LDL but with smaller magnitudes and much broader transitions of the CD bands than those of LDL. In contrast, subfractions of the pre-beta-migrating d less than 1.006 g/mL lipoproteins showed no detectable induced CD of beta-carotene. These results show that the cores of triglyceride-rich lipoproteins can exist in some ordered state between 7 and 30 degrees C if they have a relatively low ratio of triglycerides to cholesteryl esters (mass ratio less than 1.6) and relatively small particle diameter (less than 60 nm).  相似文献   

7.
The low density lipoprotein (LDL) receptor has been shown to be a plasma membrane glycoprotein responsible for the cellular binding and endocytosis of plasma lipoproteins. Inasmuch as the Golgi apparatus has been shown to participate in glycoprotein processing and in the assembly of plasma lipoproteins by hepatic and intestinal epithelial cells, the present studies were designed to test the hypothesis that lipoprotein receptors are present within Golgi membranes. Utilizing ligand blotting with a variety of iodinated lipoproteins, several lipoprotein-binding proteins were identified in rat liver Golgi membranes at apparent molecular weights (Mr) 200,000, 160,000, 130,000, 120,000, 100,000, 80,000, and 70,000. The 130,000 protein was the most prominent and was identified as the mature LDL receptor by its binding characteristics and an Mr characteristic of the plasma membrane receptor. Enzymatic deglycosylation studies suggested that the 120,000 and 100,000 proteins were LDL receptor precursors lacking sialic acid. Antibody to the LDL receptor recognized all the bands on immunoblots except the 70,000 protein, with the 130,000 protein being the most prominent. Isolation of the Golgi fractions in the presence of protease inhibitors did not eliminate any of the proteins recognized by the antibody but did result in sharper bands on the blots. Additionally, we investigated the hypothesis that conditions that regulate plasma membrane LDL receptors also cause detectable changes in receptors in Golgi membranes. All the binding proteins were increased in Golgi membranes from rats treated with 17-alpha-ethynylestradiol. Colchicine caused an accumulation of 120,000 Mr protein, suggesting blockage of final sialylation in the trans Golgi. When protein synthesis was inhibited by cycloheximide, there was no reduction of mature LDL receptors in Golgi membranes, consistent with recycling of receptors through this organelle.  相似文献   

8.
The murine scavenger receptor class B, type I (mSR-BI) is a receptor for high density lipoprotein (HDL), low density lipoprotein (LDL), and acetylated LDL (AcLDL). It mediates selective uptake of lipoprotein lipid and stimulates efflux of [(3)H]cholesterol to lipoproteins. SR-BI-mediated [(3)H]cholesterol efflux was proposed to be independent of ligand binding. In this study, using anti-mSR-BI antibody KKB-1 and two mSR-BI mutants with altered ligand binding properties, we demonstrated that SR-BI-mediated [(3)H]cholesterol efflux to lipoproteins was correlated with ligand binding and lipid uptake activities of the receptor. The KKB-1 antibody, which blocked lipoprotein binding without substantially altering the cholesterol oxidase-accessible cellular [(3)H]cholesterol, also blocked [(3)H]cholesterol efflux to HDL and LDL. One of the SR-BI mutants, which has a double substitution of arginines for glutamines at positions 402 and 418 (Q402R/Q418R), exhibited a high level of LDL binding and lipid uptake from LDL, but lost most of the corresponding HDL receptor activity. This mutant could mediate efficient [(3)H]cholesterol efflux to LDL, but not to HDL. Another mutant, M158R, with an arginine in place of methionine at position 158, exhibited reduced HDL and LDL receptor activities, but apparently normal AcLDL receptor activity. This mutant could mediate efficient [(3)H]cholesterol efflux to AcLDL, but not to HDL or LDL. These results suggest that SR-BI-stimulated [(3)H]cholesterol efflux to lipoproteins critically depends on ligand binding to this receptor and raise the possibility that the mechanisms of selective lipid uptake and [(3)H]cholesterol efflux may be intimately related.  相似文献   

9.
Low density lipoprotein (LDL) receptor activity has been detected and identified in human liver samples by ligand blotting with biotinylated lipoproteins and by immunoblotting with a monoclonal antibody raised against the bovine adrenal LDL receptor. The molecular weight of the human liver LDL receptor, approximately 132,000 on nonreduced polyacrylamide gels, is identical to that of LDL receptors detected in normal human skin fibroblasts by the same methods. LDL receptor-dependent binding activity in human liver samples has been semi-quantitated by integrating the areas under the peaks after scanning photographs of ligand blots, and receptor protein determined by radioimmunoassay with purified bovine adrenal LDL receptor protein as the standard. There was a highly significant correlation between the values obtained by each method for seven different liver samples (r = 0.948). The LDL receptor protein content of liver membranes from 10 subjects as determined by radioimmunoassay was inversely related to the plasma LDL cholesterol concentration (r = 0.663, p = 0.05) but not to other plasma lipid values, including total plasma cholesterol, high density lipoprotein cholesterol, or plasma triglyceride concentrations.  相似文献   

10.
Human plasma apolipoprotein E (apoE) is a low density lipoprotein (LDL) receptor ligand. It targets cholesterol-rich lipoproteins to LDL receptors on both hepatic and peripheral cells. The region of apoE responsible for its binding to the LDL receptor has been localized to amino acids 140-160. An apoE 141-155 monomeric peptide and a dimeric 141-155 tandem peptide were synthesized and tested for their inhibition of 125I-LDL degradation by human fibroblasts and human monocytic-like cells, THP-1. The monomer had no activity at 250 microM, but the dimer inhibited 125I-LDL degradation by 50% at 5 microM. The inhibition was specific for the LDL receptor because the dimer did not inhibit the degradation of 125I-acetylated LDL by scavenger receptors expressed by phorbol ester-stimulated THP-1 cells. As reported for native apoE, amino acid substitutions of Lys-143----Ala, Leu-144----Pro, and Arg-150----Ala decreased the inhibitory effectiveness of the dimer. Furthermore, a trimer of the 141-155 sequence had a 20-fold greater inhibitory activity than the dimer. Studies with a radioiodinated dimer indicated that some of the inhibitory activity could be a result of the interaction of the dimer with LDL. However, direct binding of the 125I-dimeric peptide to THP-1 cells was observed as well. This binding was time-dependent, linear with increasing cell number, Ca(2+)- but not Mg(2+)-dependent, saturable, inhibited by lipoproteins, and increased by preculture of the cells in lipoprotein-depleted medium. Therefore, a synthetically prepared dimeric repeat of amino acid residues 141-155 of apoE binds the LDL receptor.  相似文献   

11.
The structure of apolipoprotein B and its stoichiometry on plasma lipoproteins has been a major issue and one refractory to a variety of analyses. Immunochemical analyses represent an independent approach. Examinations of apolipoprotein B (apo-B) epitopes on human plasma low density lipoproteins (LDL) using monoclonal antibodies have consistently revealed the existence of extensive apo-B heterogeneity. In the present study, we have addressed the solution of the stoichiometry problem using quantitative analysis of the maximum number of identical antibodies that can be bound per LDL particle in which we take into account this ligand heterogeneity. We have estimated the molecular weight of apo-B by quantifying the number of times a given apo-B epitope is expressed on the surface of LDL. The quantitative binding of eight previously characterized monoclonal antibodies was measured in a fluid phase radioimmunoassay. The results were analyzed by Scatchard analysis and expressed on the basis of independent measurements of the maximum amount of LDL that could be bound by each antibody. Affinity constants for each of the eight antibodies varied between 8.5 X 10(7) and 80 X 10(7) M-1. For these same antibodies, the concentration of maximally bound antibody at a normalized LDL concentration of 1000 ng/ml was estimated to be 0.9-1.8 nM with a mean of 1.23 nM. Adopting a molecular mass from physicochemical analysis for LDL apo-B of 550,000 daltons, the molar ratio between bound antibody and LDL varied between 0.5 and 1.2 (mean 0.75 +/- 0.15). The results supported the hypothesis that apo-B is present as a single large molecular weight polypeptide in LDL.  相似文献   

12.
Recombinant DNA-derived apolipoprotein(a) was used to demonstrate that the apo(a) moiety of lipoprotein(a) (Lp(a)) is responsible for the binding of Lp(a) to other apolipoprotein B-containing lipoproteins (apoB-Lp) including LDL2, a subclass of low density lipoproteins (d = 1.030-1.063 g/ml). The r-apo(a).LDL2 complexes exhibited the same binding constant as Lp(a).LDL2 (10(-8) M). Treatment of either recombinant apo(a) or Lp(a) with a reducing agent destroyed binding activity. A synthetic polypeptide corresponding to a portion of apo(a)'s kringle-4 inhibited the binding (K1 = 1.9 x 10(-4) M) of LDL2 to Lp(a). Therefore, we concluded that binding to apoB-Lp was mediated by the kringle-4-like domains on apo(a). Using ligand chromatography which can detect complexes having a KD as low as 10(-2) M, we demonstrated the binding of plasminogen to apoB-Lp. Like Lp(a), binding of plasminogen to apoB-Lp was mediated by the kringle domain(s). The differences in binding affinity may be due to amino acid substitutions in the kringle-4-like domain. In most of the kringle-4-like domains of apo(a), the aspartic residue critical for binding to lysine was substituted by valine. Consistent with this substitution, we found that L-proline and hydroxyproline, but not L-lysine, inhibited the binding of LDL2 to apo(a). Inhibition by L-proline could be reversed in the binding studies by increasing the amount of apo(a); and L-proline-Sepharose bound plasma Lp(a), suggesting that L-proline acted as a ligand for the kringle-4-like domain(s) of apo(a) involved in the binding of apoB-Lp. The binding of apo(a) to proline and hydroxyproline could be responsible for the binding of apo(a) to the subendothelial extracellular matrix, i.e. domains of proteins rich in proline or hydroxyproline (e.g. collagen and elastin).  相似文献   

13.
Rat serum phosphorylcholine binding protein (PCBP) is characterized by its Ca2+ dependent property to bind phosphorylcholine ligand. PCBP immobilized on sepharose has been shown to selectively bind human plasma apo B and E containing lipoproteins. The present report describes an inhibitory effect of PCBP on the binding of human 125I-LDL to LDL receptors on estradiol treated rat liver membranes. Pre-incubation of liver membranes with PCBP did not affect the binding of 125I-LDL to the membranes. Gel filtration analysis of the incubation products from the LDL-receptor assay showed a concentration dependent binding of 125I-PCBP to LDL. The inhibitory effect of PCBP is likely due to the formation of LDL-PCBP complex and not due to the binding of PCBP to the LDL receptor site.  相似文献   

14.
In this paper, human low-density lipoprotein (LDL), rat chylomicron remnants and very-low-density lipoproteins of beta-mobility from cholesterol-fed rabbits (beta VLDL) have been shown to bind strongly to a protein present in solubilised liver membranes of rats, rabbits and dogs by ligand blotting with biotin-modified lipoproteins. This binding protein was identified as the LDL-receptor on several criteria. First, binding of the lipoproteins to the receptor was saturable and Ca2+-dependent; secondly, the apparent relative molecular mass of the binding protein (ranging from 128,000 in the rabbit, 145,000 in the rat to 147,000 in the dog) was similar to that of the purified bovine LDL receptor. Finally, binding activity was greatly increased in the livers of rats treated with oestrogen in pharmacological doses and absent from the liver of Watanabe heritable hyperlipidaemic (WHHL) rabbits that have a genetic defect in the LDL receptor. Some binding was also observed to a high-molecular-mass protein present in solubilised liver membranes of rats and rabbits, which, in rabbits at least, shared antigenic determinants with rabbit apoB and was not likely to be related to the LDL receptor as it was present in equal amounts in normal and WHHL rabbits. No evidence was obtained for a specific chylomicron remnant binding protein, distinct from the LDL receptor, whose activity could be detected in solubilised liver membranes by ligand blotting although a variety of solubilisation and fractionation conditions were employed.  相似文献   

15.
The binding of 1-O-alkyl-2-acetyl-sn-glycero-3-phosphocholine, a platelet activating factor (PAF), to plasma components was studied. Gel filtration and lipoprotein fractionation revealed the presence in the plasma of PAF-binding fractions corresponding to plasma albumin as well as of low and high density lipoproteins. Incubation of PAF-containing lipoproteins with rabbit platelets resulted in a transfer of PAF to the platelets. PAF bound to plasma albumin is less exchangeable than PAF bound to lipoproteins. The PAF-transferring efficiency of high density lipoproteins (HDL) and of low density lipoproteins (LDL) correlates with the amounts of HDL- and LDL-receptors on the platelet surface. It may thus be assumed that PAF released by various cells interacts with lipoproteins which further transport the bound PAF to target cells carrying lipoprotein receptors.  相似文献   

16.
Binding of low density lipoproteins (LDL) and acetyl-LDL to the plasma membrane of cultured swine monocytes was investigated by immunofluorescent and immunoelectron microscopy. Binding sites for native LDL, visualized on both the light microscopical and the ultrastructural level, were found to be comparable to those of cultured human fibroblasts. These techniques, however, failed to reveal binding of acetyl-LDL to the cell surface. Biochemical experiments showed that both LDL and acetyl-LDL have specific receptors, the acetyl-LDL receptor being distinctly different from the LDL receptor. It is concluded that there are morphological differences in the binding of LDL and acetyl-LDL to cultured monocytes. These differences are supported by biochemical data.  相似文献   

17.
Because of very low density lipoprotein's (VLDL) potential atherogenicity and the demonstration that VLDL can bind to other cells, we examined the interaction of human VLDL with cultured porcine aortic endothelium. The lipoprotein-cell interaction had many properties similar to those seen with the binding of a ligand to a cell surface receptor. It was time and temperature dependent, saturable, and reversible. Scatchard analysis of competition data suggested that there may be more than one class of binding site. The affinity of the low affinity site was similar to that for low density lipoprotein (LDL). Also, the capacity of endothelial cells to bind VLDL was similar to that for LDL, when related to apo B (i.e., particle) concentration. Not only was unlabelled VLDL able to compete for VLDL binding sites, but so was LDL and high density lipoprotein (HDL). The maximal competition either by LDL or by HDL was less than that by VLDL. The maximal competition by HDL was more than by LDL. The VLDL binding was dependent on Ca2+. It was not changed by the content of lipoprotein in the medium in which cells were grown prior to the binding studies. These observations suggest that VLDL binding to endothelial cells is similar in some respects, but not in all, to the binding of LDL. Comparison of the data with endothelial cells to previous data with adipocytes also indicated differences between the interaction of these two cell types with VLDL. It is possible that this binding process may be involved in the formation of atherogenic remnants of triglyceride-rich lipoproteins on the endothelial surface of large blood vessels.  相似文献   

18.
125I-labeled low density lipoprotein (LDL) binding to purified plasma membranes prepared from freshly isolated human adipocytes was saturable, specific, and displaceable by unlabeled ligand. The maximum specific binding capacity measured at saturating concentrations of 125I-LDL was 1.95 +/- 1.17 micrograms of LDL bound/mg of membrane protein (mean +/- S.D., n = 16). In contrast to cultured fibroblasts, specific binding of LDL to adipocyte membranes was calcium-independent, was not affected by EDTA or NaCl, and was not destroyed by pronase. Plasma membranes purified directly from homogenized adipose tissue also showed calcium-independent LDL specific binding (0.58 +/- 0.33 micrograms of LDL bound/mg of membrane protein, mean +/- S.D. n = 11). Specific binding, internalization, and degradation of 125I-methylated LDL was demonstrated in isolated adipocytes and competition experiments showed that native and methylated LDL interacted with adipocytes through some common recognition mechanism(s). Compared to native LDL, specific binding of methylated LDL to adipocyte membranes was significantly reduced (43%), indicating that interaction of LDL with adipocyte was dependent in part on the lysine residues of apolipoprotein B. LDL binding to adipocyte plasma membranes was also competitively inhibited by human high density lipoprotein subfractions HDL2 and HDL3. Thus, LDL metabolism in mature adipocytes appears to be regulated by mechanisms distinctly different from a variety of cultured mesenchymal cells. In addition, the ability of adipocytes to bind, internalize, and degrade significant amounts of methylated LDL supports the view that adipose tissue is involved in the metabolism of modified lipoproteins in vivo.  相似文献   

19.
Apolipoprotein (Apo) D is an important protein produced in many parts of the body. It is necessary for the development and repair of the brain and protection from oxidative stress. The purpose of this study was to investigate the extent to which apoD interacts with lipoproteins in human plasma. By using detergent-free ELISA, we show that immobilized monoclonal antibodies against apoD very efficiently bind to low density lipoprotein (LDL) from plasma; this binding is as equally efficient as binding to an anti-apoB monoclonal antibody. Adding detergent to the plasma inhibited the binding, suggesting that the binding is dependent on the presence of intact lipoprotein particles. Reversing the system by using immobilized anti-apoB revealed that the affinity of apoD for LDL is rather low, suggesting that multiple bindings are needed for a durable connection. Biosensor experiments using purified lipoproteins also showed that purified apoD and high density lipoprotein 3 (HDL3), a lipoprotein fraction rich in apoD, were both able to bind LDL very efficiently, indicating that the HDL3-LDL interaction may be a physiological consequence of the affinity of apoD for LDL. Furthermore, we found that apoD increases the binding of HDL to actively growing T24 bladder carcinoma cells but not to quiescent, contact-inhibited, confluent T24 cells. This result is especially intriguing given that the T24 supernatant only contained detectable levels of apoD after growth inhibition, raising the possibility that alternating the expression of apoD and a putative apoD-receptor could give direction to the flow of lipids. In the current paper, we conclude that apoD mediates binding of HDL to LDL and to growing T24 carcinomas, thereby highlighting the importance of apoD in lipid metabolism.  相似文献   

20.
Recycling of vitamin E in human low density lipoproteins.   总被引:1,自引:0,他引:1  
Oxidative modification of low density lipoproteins (LDL) and their unrestricted scavenger receptor-dependent uptake is believed to account for cholesterol deposition in macrophage-derived foam cells. It has been suggested that vitamin E that is transported by LDL plays a critical role in protecting against LDL oxidation. We hypothesize that the maintenance of sufficiently high vitamin E concentrations in LDL can be achieved by reducing its chromanoxyl radicals, i.e., by vitamin E recycling. In this study we demonstrate that: i) chromanoxyl radicals of endogenous vitamin E and of exogenously added alpha-tocotrienol, alpha-tocopherol or its synthetic homologue with a 6-carbon side-chain, chromanol-alpha-C6, can be directly generated in human LDL by ultraviolet (UV) light, or by interaction with peroxyl radicals produced either by an enzymic oxidation system (lipoxygenase + linolenic acid) or by an azo-initiator, 2,2'-azo-bis(2,4-dimethylvaleronitrile) (AMVN; ii) ascorbate can recycle endogenous vitamin E and exogenously added chromanols by direct reduction of chromanoxyl radicals in LDL; iii) dihydrolipoic acid is not efficient in direct reduction of chromanoxyl radicals but recycles vitamin E by synergistically interacting with ascorbate (reduces dehydroascorbate thus maintaining the steady-state concentration of ascorbate); and iv) beta-carotene is not active in vitamin E recycling but may itself be protected against oxidative destruction by the reductants of chromanoxyl radicals. We suggest that the recycling of vitamin E and other phenolic antioxidants by plasma reductants may be an important mechanism for the enhanced antioxidant protection of LDL.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号