首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Evaluations of ecological restoration typically focus on associating measures of structural properties of ecosystems (e.g. species diversity) with time since restoration efforts commenced. Such studies often conclude a failure to achieve restoration goals without examining functional performance of the organism assemblages in question. We compared diversity and composition of ant assemblages and the rates of seed removal by ants in pastures, 4‐ to 10‐year old revegetated areas and remnants of Cumberland Plain Woodland, and an endangered ecological community in Sydney, Australia. Ant assemblages of forest remnant sites had significantly higher species richness, significantly different species composition and a more complex functional group structure in comparison with ant assemblages of pasture and revegetated sites, which did not differ significantly. However, the rates of seed removal by ants in revegetated sites were similar to those in forest remnants, with the rates in pasture sites being significantly lower. Approximately, one‐third of all ant species were observed to remove seeds. Forest remnant sites had significantly different assemblages of seed removing ant species from those in pasture and revegetated sites. These results demonstrate that similar ant assemblages of unrestored and restored areas can function differently, depending on habitat context. Evaluation of restoration success by quantifying ecosystem structure and function offers more insights into ecosystem recovery than reliance on structural data alone.  相似文献   

2.
Restoration of ecological processes is key to restoring the capacity of ecosystems to support social, economic, cultural and aesthetic values. The sustainability of the restored system also depends on processes associated with carbon, nutrient and hydrologic cycles, yet most restoration monitoring is limited to plant community composition. Our research has shown that short-term plant composition monitoring is a necessary but insufficient predictor of long-term restoration success. Long-term (up to 75 years) studies in the western United States show that short-term monitoring of plant community composition alone incorrectly predicted the failure of treatments that were ultimately successful, and the success of treatments that ultimately failed. We propose that vegetation composition monitoring be combined with one or more ecological process indicators reflecting changes in three fundamental ecosystem attributes on which restoration success depends: soil and site stability, hydrologic function and biotic integrity. These simple, rapid, plot-level indicators reflect changes in resource redistribution and vegetation structure. We include a case study involving restoration of mixed grass prairie on mineland in the west-central United States.  相似文献   

3.
Nontarget species such as pollinators may be of great importance to the restoration process and the long‐term functioning of restored habitats, but little is known about how such groups respond to habitat restoration. I surveyed bee communities at five equal‐aged restored sites, paired with five reference sites (riparian remnants) along the Sacramento River, California, United States. Flower availability and bee visitation patterns were also measured to examine the restoration of pollination function. Restoration of structural vegetation allowed diverse and abundant native bee communities to establish at the restoration sites; however, the composition of these important pollinator communities was distinct from that in the remnant riparian sites. Differences did not arise primarily from differences in the composition of the flowering‐plant community; rather there must be other physical characteristics of the restored sites or differences in nesting site availability that led to the different pollinator communities. Because sites were spatially paired, the differences are unlikely to be driven by landscape context. Bee life‐history and other biological traits may partially explain the differences between bee communities at restored and remnant sites. Patterns of visitation to native plant species suggest that pollination function is restored along with pollinator abundance and richness; however, function may be less robust in restored habitats. An examination of interaction networks between bees and plant species found at both restored and remnant riparian sites showed less redundancy of pollinators visiting some plants at restored habitats.  相似文献   

4.
Globally, most restoration efforts focus on re-creating the physical structure (flora or physical features) of a target ecosystem with the assumption that other ecosystem components will follow. Here we investigate that assumption by documenting biogeographical patterns in an important invertebrate taxon, the parasitoid wasp family Ichneumonidae, in a recently reforested Hawaiian landscape. Specifically, we test the influence of (1) planting configurations (corridors versus patches), (2) vegetation age, (3) distance from mature native forest, (4) surrounding tree cover, and (5) plant community composition on ichneumonid richness, abundance, and composition. We sampled over 7,000 wasps, 96.5% of which were not native to Hawai’i. We found greater relative richness and abundance of ichneumonids, and substantially different communities, in restored areas compared to mature forest and abandoned pasturelands. Non-native ichneumonids drive these differences; restored areas and native forest did not differ in native ichneumonid abundance. Among restored areas, ichneumonid communities did not differ by planting age or configuration. As tree cover increased within 120 m of a sampling point, ichneumonid community composition increasingly resembled that found in native forest. Similarly, native ichneumonid abundance increased with proximity to native forest. Our results suggest that restoration plantings, if situated near target forest ecosystems and in areas with higher local tree cover, can facilitate restoration of native fauna even in a highly invaded system.  相似文献   

5.
An important question for tropical forest restoration is whether degraded lands can be actively managed to attract birds. We censused birds and measured vegetation structure at 27 stations in young (6–9‐yr old) actively and passively restored pasture and old growth forest at Las Cruces Biological Station in southern Costa Rica. During 481 10‐min point counts, we detected a high diversity—186 species—of birds using the restoration area. Surprisingly, species richness and detection frequency did not differ among habitats, and proportional similarity of bird assemblages to old growth forest did not differ between restoration treatments. Bird detection frequency was instead explained by exotic grass cover and understory stem density—vegetation structures that were not strongly impacted by active restoration. The similarity of bird assemblages in actively and passively restored forest may be attributed to differential habitat preferences within and among feeding guilds, low structural contrast between treatments, or the effect of nucleation from actively restored plots into passively restored areas. Rapid recovery of vegetation in this recently restored site is likely due to its proximity to old growth forest and the lack of barriers to effective seed dispersal. Previous restoration studies in highly binary environments (i.e., open pasture vs. tree plantation) have found strong differences in bird abundance and richness. Our data contradict this trend, and suggest that tropical restoration ecologists should carefully consider: (1) when the benefits of active restoration outweigh the cost of implementation; and (2) which avian guilds should be used to measure restoration success given differential responses to habitat structure.  相似文献   

6.
Many grassland ecosystems are disturbance-dependent, having evolved under the pressures of fire and grazing. Restoring these disturbances can be controversial, particularly when valued resources are thought to be disturbance-sensitive. We tested the effects of fire and grazing on butterfly species richness and population density in an economically productive grassland landscape of the central U.S. Three management treatments were applied: (1) patch-burn graze—rotational burning of three spatially distinct patches within a pasture, and moderately-stocked cattle grazing (N?=?5); (2) graze-and-burn—burning entire pasture every 3?years, and moderately-stocked cattle grazing (N?=?4); and (3) burn-only—burning entire pasture every 3?years, but no cattle grazing (N?=?4). Butterfly abundance was sampled using line transect distance sampling in 2008 and 2009, with six 100-m transects per pasture. Butterfly species richness did not respond to management treatment, but was positively associated with pre-treatment proportion of native plant cover. Population density of two prairie specialists (Cercyonis pegala and Speyeria idalia) and one habitat generalist (Danaus plexippus) was highest in the burn-only treatment, whereas density of one habitat generalist (Cupido comyntas) was highest in the patch-burn graze treatment. Treatment application affected habitat structural characteristics including vegetation height and cover of bare ground. Historic land uses have reduced native plant cover and permitted exotic plant invasion; for some butterfly species, these legacies had a greater influence than management treatments on butterfly density. Conservation of native insect communities in altered grasslands might require native plant restoration in addition to restoration of disturbance processes.  相似文献   

7.
Summary In the fragmented agricultural landscapes of temperate southern Australia, broad‐scale revegetation is underway to address multiple natural resource management issues. In particular, commercially‐driven fodder shrub plantings are increasingly being established on non‐saline land to fill the summer‐autumn feed gap in grazing systems. Little is known of the contribution that these and other planted woody perennial systems make to biodiversity conservation in multifunctional landscapes. In order to address this knowledge gap, a study was conducted in the southern Murray Mallee region of South Australia. Selected ecological indicators, including plant and bird communities, were sampled in spring 2008 and autumn 2009 in five planted saltbush sites and nearby areas of remnant vegetation and improved pasture. In general, remnant vegetation sites had higher biodiversity values than saltbush and pasture sites. Saltbush sites contained a diverse range of plants and birds, including a number of threatened bird species not found in adjacent pasture sites. Plant and bird communities showed significant variation across saltbush, pasture and remnant treatments and significant differences between seasons. This study demonstrates that saltbush plantings can provide at least partial habitat for some native biota within a highly modified agricultural landscape. Further research is being conducted on the way in which biota, such as birds, use available resources in these dynamic ecosystems. An examination of the effects of grazing on biodiversity in saltbush would improve the ability of landholders and regional natural resource management agencies in making informed land management decisions.  相似文献   

8.
The restoration of degraded wetland ecosystems and the recovery of wetland biodiversity are important global issues. Generally, wetland restoration projects include activities to recover vegetation. A promising revegetation technique is one in which soil seed banks are utilized as the source of plant recolonization. Using such a technique, a pilot project to restore lakeshore vegetation was launched at Lake Kasumigaura, Japan, in 2002. In the project, lake sediments containing the seed banks were spread thinly (∼10 cm) on the surfaces of artificial lakeshores, which were constructed in front of concrete levees and had microtopographic variations. In total, 180 species, including six endangered or vulnerable species and 12 native submerged plants that had disappeared from the above-ground vegetation of the lake, were recorded in five recreated lakeshores (total area, 65,200 m2) during the first year of the restoration. The distribution of each restored species at the sites suggested the importance of microtopographic relief for recolonizing species-rich lakeshore vegetation. Furthermore, the origin of the source seed banks affected the species composition of the restored vegetation. On the other hand, the restoration sites were subject to exotic plant invasions. Here, we report lessons learned from the Lake Kasumigaura restoration project as a contribution to the establishment of ecologically sound revegetation techniques.  相似文献   

9.
Pastures dominated by tall fescue (Schedonorus phoenix (Scop.) Holub) cover much of the eastern United States, and there are increasing efforts to restore native grassland plant species to some of these areas. Prescribed fire and herbicide are frequently used to limit the growth of tall fescue and other non‐natives, while encouraging native grasses and forbs. A fungal endophyte, commonly present in tall fescue, can confer competitive advantages to the host plant, and may play a role in determining the ability of tall fescue plants to persist in pastures following restoration practices. We compared vegetation composition among four actively restored subunits of a tall fescue pasture (each receiving different combinations of prescribed fire and/or herbicide) and a control. We also measured the rate of endophyte infection in tall fescue present within each restoration treatment and control to determine if restoration resulted in lower tall fescue cover but higher endophyte infection rates (i.e. selected for endophyte‐infected individuals). Tall fescue cover was low in all restoration treatments and the control (1.1–17.9%). The control (unmanaged) had higher species richness than restoration treatments and plant community composition was indicative of succession to forest. Restoration practices resulted in higher cover of native warm season grasses, but in some cases also promoted a different undesirable species. We found no evidence of higher fungal endophyte presence in tall fescue following restoration, as all subunits had low endophyte infection rates (2.2–9.3%). Restoration of tall fescue systems using prescribed fire and herbicide may be used to promote native grassland species.  相似文献   

10.
Semi-natural pastures have rich plant and animal communities of high conservation value which depend on extensive management. As the area of such land decreases, abandoned semi-natural grasslands have been restored to re-establish biodiversity. Restoration schemes, which include thinning of woody plants and reintroduction of grazing, are mainly designed according to the responses of well-studied groups (such as vascular plants and birds). Weevils (Curculionidae) are a very diverse phytophagous beetle family. Here, we evaluated the restoration success of pastures for weevils (Curculionidae), by comparing their species diversity in abandoned, restored, and continuously grazed semi-natural pastures on 24 sites in central Sweden. Weevils were sampled by sweep-netting. We recorded 3019 weevil individuals belonging to 104 species. There was no statistically significant difference in species numbers between the pasture management treatments. However, weevil species composition of abandoned pastures differed from those in restored and continuously managed pastures, but there was no significant difference in community composition between restored and continuously grazed pastures. The abandoned sites tended to be dominated by polyphagous species, whereas the grazed sites contained more monophagous and oligophagous species. The number of weevil species was positively related to understory vegetation height and connectivity to other semi-natural grasslands and negatively related to the cover of trees and shrubs in the pastures. We conclude that restoration of abandoned semi-natural pastures is a good approach to restore weevil communities. To maintain a species rich weevil community, pastures should be managed to be relatively open, but still have patches of tall field-layer vegetation. Restoration and conservation measures should primarily be targeted on regions and landscapes where a high proportion of semi-natural grassland still remains.  相似文献   

11.
Habitat restoration is a key measure to counteract negative impacts on biodiversity from habitat loss and fragmentation. To assess success in restoring not only biodiversity, but also functionality of communities, we should take into account the re‐assembly of species trait composition across taxa. Attaining such functional restoration would depend on the landscape context, vegetation structure, and time since restoration. We assessed how trait composition of plant and pollinator (bee and hoverfly) communities differ between abandoned, restored (formerly abandoned) or continuously grazed (intact) semi‐natural pastures. In restored pastures, we also explored trait composition in relation to landscape context, vegetation structure, and pasture management history. Abandoned pastures differed from intact and restored pastures in trait composition of plant communities, and as expected, had lower abundances of species with traits associated with grazing adaptations. Further, plant trait composition in restored pastures became increasingly similar to that in intact pastures with increasing time since restoration. On the contrary, the trait composition of pollinator communities in both abandoned and restored pastures remained similar to intact pastures. The trait composition for both bees and hoverflies was influenced by flower abundance and, for bees, by connectivity to other intact grasslands in the landscape. The divergent responses across organism groups appeared to be mainly related to the limited dispersal ability and long individual life span in plants, the high mobility of pollinators, and the dependency of semi‐natural habitat for bees. Our results, encompassing restoration effects on trait composition for multiple taxa along a gradient in both time (time since restoration) and space (connectivity), reveal how interacting communities of plants and pollinators are shaped by different trait–environmental relationships. Complete functional restoration of pastures needs for more detailed assessments of both plants dispersal in time and of resources available within pollinator dispersal range.  相似文献   

12.
The invasive plant pathogen Phytophthora cinnamomi (Stramenopila, Oomycota) has been introduced into 15 of the 25 global biodiversity hotspots, threatening susceptible rare flora and degrading plant communities with severe consequences for fauna. We developed protocols to contain or eradicate P. cinnamomi from spot infestations in threatened ecosystems based on two assumptions: in the absence of living hosts, P. cinnamomi is a weakly competitive saprotroph; and in the ecosystems we treated, the transmission of the pathogen occurs mainly by root-to-root contact. At two P. cinnamomi-infested sites differing in climate and vegetation types, we applied increasingly robust treatments including vegetation (host) destruction, fungicides, fumigation and physical root barriers. P. cinnamomi was not recovered at three assessments of treated plots 6–9 months after treatments. Given the high rates of recovery of P. cinnamomi from untreated infested soil and the sampling frequency, the probability of failing to detect P. cinnamomi in treated soil was <0.0003. The methods described have application in containing large infestations, eradicating small infestations and protecting remnant populations of threatened species.  相似文献   

13.
Riparian ecosystems are among the most degraded systems in the landscape, and there has been substantial investment in their restoration. Consequently, monitoring restoration interventions offers opportunities to further develop the science of riparian restoration, particularly how to move from small‐scale implementation to a broader landscape scale. Here, we report on a broad range of riparian revegetation projects in two regions of south‐western Victoria, the Corangamite and Glenelg‐Hopkins Catchment Management Areas. The objectives of restoration interventions in these regions have been stated quite broadly, for example, to reinstate terrestrial habitat and biodiversity, control erosion and improve water quality. This study reports on tree and shrub composition, structure and recruitment after restoration works compared with remnant vegetation found regionally. Within each catchment, a total of 57 sites from six subcatchments were identified, representing three age‐classes: <4, 4–8 and >8–12 years after treatment, as well as untreated (control) sites. Treatments comprised fencing to exclude stock, spraying or slashing to reduce weed cover, followed by planting with tube stock. Across the six subcatchments, 12 reference (remnant) sites were used to provide a benchmark for species richness, structural and recruitment characteristics and to aid interpretation of the effects of the restoration intervention. Vegetation structure was well developed in the treated sites by 4–8 years after treatment. However, structural complexity was higher at remnant sites than at treated or untreated sites due to a higher richness of small shrubs. Tree and shrub recruitment occurred in all remnant sites and at 64% of sites treated >4 years ago. Most seedling recruitment at treatment sites was by Acacia spp. This assessment provides data on species richness, structure and recruitment characteristics following restoration interventions. Data from this study will contribute to longitudinal studies of vegetation processes in riparian landscapes of south‐western Victoria.  相似文献   

14.
Question: How successful is restoration that is focused on a single dominant plant at enabling the reassembly of the whole vegetation assemblage and what factors affect the relative success of such restoration? Location: Moorlands in England and Scotland, UK. Methods: Vegetation composition was sampled in grassdominated (degraded), restored and long established Calluna vulgaris‐dominated (target) areas within eight moorland restoration sites. Additional soil and biogeographic data were collected. Data were analysed by Canonical Correspondence Analysis, which allowed the impact of moorland management to be examined. Results: All sites showed good restoration success when the dominant managed species (Calluna vulgaris, Molinia caerulea and Nardus stricta) were considered. Restoration success of the remainder of the plant assemblage, disregarding these dominant species, was lower with restored samples at some sites differing little from their respective degraded samples. Moors restored solely by grazing exclusion were more similar to their respective targets than were those restored by more intensive mechanical means. The most important factors in explaining vegetation assemblages were management status (i.e. whether samples represented degraded, restored or target parts of the moor) and latitude. Conclusions: The project demonstrates that, where possible, restoration should be attempted by grazing exclusion alone. Furthermore the importance of applying local restoration targets and of monitoring the whole plant assemblages when assessing the success of moorland restoration is highlighted.  相似文献   

15.
Riparian revegetation, such as planting woody seedlings or live stakes, is a nearly ubiquitous component of stream restoration projects in the United States. Though evaluations of restoration success usually focus on in‐stream ecosystems, in order to understand the full impacts of restoration the effects on riparian ecosystems themselves must be considered. We examined the effects of stream restoration revegetation measures on riparian ecosystems of headwater mountain streams in forested watersheds by comparing riparian vegetation structure and composition at reference, restored, and degraded sites on nine streams. According to mixed model analysis of variance (ANOVA), there was a significant effect of site treatment on riparian species richness, basal area, and canopy cover, but no effect on stem density. Vegetation characteristics at restored sites differed from those of reference sites according to all metrics (i.e. basal area, canopy cover, and species composition) except species richness and stem density. Restored and degraded sites were structurally similar, with some overlap in species composition. Restored sites were dominated by Salix sericea and Cornus amomum (species commonly planted for revegetation) and a suite of disturbance‐adapted species also dominant at degraded sites. Differences between reference and restored sites might be due to the young age of restored sites (average 4 years since restoration), to reassembly of degraded site species composition at restored sites, or to the creation of a novel anthropogenic ecosystem on these headwater streams. Additional research is needed to determine if this anthropogenic riparian community type persists as a resilient novel ecosystem and provides valued riparian functions.  相似文献   

16.
We investigated temporal effects of restoration on river morphology, on species and functional composition of benthic invertebrates, floodplain vegetation and carabid beetles at three study sites in the mountain river Lahn (Germany). We sampled restored and nearby non-restored sections 3–5 years and 7–9 years after restoration. In the restored sections, instream microhabitat heterogeneity was higher due to the increased presence of finer substrates, while cobbles and coarse gravel were still dominant. Instream habitat composition did not change between the two sampling events. Areas of restored floodplain were characterized by a more diverse habitat mosaic and by unvegetated bars, vegetated islands and secondary channels. In restored sections, floodplain habitat heterogeneity was maintained 7–9 years after restoration, but vegetated areas increased, while unvegetated bars and aquatic areas decreased. The species composition of all studied groups was more variable over time in restored than non-restored sections. In contrast to benthic invertebrates, the immigration rate of floodplain vegetation and carabid beetle species was higher in restored sections. Assemblage composition of all three organism groups changed over time, with the highest change in carabid beetles and smallest in benthic invertebrates. Restoration changed the abundances of functional response groups, mainly for carabid beetles, by supporting species that indicate increased hydrodynamics and early successional stages. Changes of functional response groups in non-restored and restored sections across time indicated decreased hydrodynamics or hydrological connectivity for all organism groups. Although the response of organism groups differed, our results support the conjecture that restored sections accumulate species and enhance the local species pool.  相似文献   

17.
Remote sensing provides a complementary approach to field sampling to assess whether restored wetland areas provide suitable habitat for the Light-footed Clapper Rail (Rallus longirostris levipes). Habitat requirements for the clapper rail are specified by the composition of vegetation species and their spatial extent in its nesting home range. A major salt marsh construction project has been completed at the Sweetwater Marsh National Wildlife Refuge (“the refuge”), San Diego County. In this paper we describe the application of image classification techniques to high-spatial-resolution digital video imagery (0.8-m pixels) to delimit patches of different marsh vegetation at the refuge. Using maps of vegetation types derived from multi spectral imagery, we estimated the area occupied by each vegetation type in potential clapper rail home ranges. Preliminary field-checking results indicate that this approach is an accurate, noninvasive and cost-efficient means of providing ecological information for restoration monitoring in southern California's remnant wetlands.  相似文献   

18.
Extensively managed semi-natural grasslands represent species-rich habitats and therefore play a key role for the maintenance of biodiversity in agricultural areas. In marginal and poorly accessible areas, the traditional management of grassland is frequently abandoned, which leads to the spread of forest. In Southern Switzerland, terraced vineyards (a special grassland type) and terraced grasslands are part of the cultural heritage and local biodiversity hotspots. Yet, many of them are overgrown by forest. In the past years, several abandoned terraced vineyards and grasslands have been restored by removing the forest, rebuilding the walls and re-introducing the traditional management. We examined restoration success by assessing plant species richness, diversity and species composition in both the aboveground vegetation and soil seed bank in (1) restored, (2) abandoned for 25–50 years, and (3) permanently used areas of six terraced vineyards and six terraced grasslands. Plant species richness and diversity were reduced and species composition altered in the aboveground vegetation of abandoned vineyards and grasslands compared to the permanently used and restored ones. However, species richness, Shannon-diversity and species composition of the aboveground vegetation did not differ between restored and permanently used areas, indicating a successful restoration of the vegetation 10–15 years after restoration. In abandoned vineyards, species richness of plants emerging from the soil seed bank was slightly higher than in permanently used and restored vineyards. No difference in seedling species richness was found between abandoned, permanently used and restored terraced grasslands. Our results showed that the soil seed bank played a minor role for the re-establishment of the above-ground vegetation. We assume that the large species pool in the surroundings and the presence of dispersal vectors are essential for the successful passive restoration of abandoned grassland in this region.  相似文献   

19.
Abstract Efficient and accurate vegetation sampling techniques are essential for the assessment of wetland restoration success. Remotely acquired data, used extensively in many locations, have not been widely used to monitor restored wetlands. We compared three different vegetation sampling techniques to determine the accuracy associated with each method when used to determine species composition and cover in restored Pacific coast wetlands dominated by Salicornia virginica (perennial pickleweed). Two ground‐based techniques, using quadrat and line intercept sampling, and a remote sensing technique, using low altitude, high resolution, color and color infrared photographs, were applied to estimate cover in three small restoration sites. The remote technique provided an accurate and efficient means of sampling vegetation cover, but individual species could not be identified, precluding estimates of species density and distribution. Aerial photography was determined to be an effective tool for vegetation monitoring of simple (i.e., single‐species) habitat types or when species identities are not important (e.g., when vegetation is developing on a new restoration site). The efficiency associated with these vegetation sampling techniques was dependent on the scale of the assessment, with aerial photography more efficient than ground‐based sampling methods for assessing large areas. However, the inability of aerial photography to identify individual species, especially mixed‐species stands common in southern California salt marshes, limits its usefulness for monitoring restoration success. A combination of aerial photography and ground‐based methods may be the most effective means of monitoring the success of large wetland restoration projects.  相似文献   

20.
Ecological restoration centers on the reestablishment of ecological processes and the integrity of degraded ecosystems, but its success also depends on public acceptance and support. In this study, we evaluated the short‐term ecological effects of different restoration treatments in Iceland. Furthermore, we tested the public perception of aesthetic and recreational values of these revegetated areas. Predefined soil and vegetation indicators were measured, and a survey, based on a questionnaire and photographs of the different areas, was used for gauging public perception. Our results indicate that different restoration treatments triggered different succession trajectories. The vegetation composition of areas seeded with grasses seemed to be on a trajectory toward relatively undisturbed reference ecosystems, whereas areas seeded with nonnative lupine seemed to be developing a novel ecosystem. Results of the survey demonstrated that people valued the appearance of revegetated areas higher than that of the eroded control areas, with the exception of areas seeded with lupine. The visual perception of each restoration treatment corresponded well with the ecological factors and revealed both a social and an ecological rationale against the use of lupine in land restoration. The results indicate that the design of restoration projects should be based on both an analysis of sociocultural priorities and an understanding of possible trajectories of ecosystem development associated with the available restoration methods to avoid results that are neither socially acceptable nor ecologically feasible.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号