首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 185 毫秒
1.
The TOM (translocase of the outer mitochondrial membrane) complex of the outer mitochondrial membrane is required for the import of proteins into the organelle. The core TOM complex contains five proteins, including three small components Tom7, Tom6, and Tom5. We have created single and double mutants of all combinations of the three small Tom proteins of Neurospora crassa. Analysis of the mutants revealed that Tom6 plays a major role in TOM complex stability, whereas Tom7 has a lesser role. Mutants lacking both Tom6 and Tom7 have an extremely labile TOM complex and are the only class of mutant to exhibit an altered growth phenotype. Although single mutants lacking N. crassa Tom5 have no apparent TOM complex abnormalities, studies of double mutants lacking Tom5 suggest that it also has a minor role in maintaining TOM complex stability. Our inability to isolate triple mutants supports the idea that the three proteins have overlapping functions. Mitochondria lacking either Tom6 or Tom7 are differentially affected in their ability to import different precursor proteins into the organelle, suggesting that they may play roles in the sorting of proteins to different mitochondrial subcompartments. Newly imported Tom40 was readily assembled into the TOM complex in mitochondria lacking any of the small Tom proteins.  相似文献   

2.
Porin, also termed the voltage-dependent anion channel, is the most abundant protein of the mitochondrial outer membrane. The process of import and assembly of the protein is known to be dependent on the surface receptor Tom20, but the requirement for other mitochondrial proteins remains controversial. We have used mitochondria from Neurospora crassa and Saccharomyces cerevisiae to analyze the import pathway of porin. Import of porin into isolated mitochondria in which the outer membrane has been opened is inhibited despite similar levels of Tom20 as in intact mitochondria. A matrix-destined precursor and the porin precursor compete for the same translocation sites in both normal mitochondria and mitochondria whose surface receptors have been removed, suggesting that both precursors utilize the general import pore. Using an assay established to monitor the assembly of in vitro-imported porin into preexisting porin complexes we have shown that besides Tom20, the biogenesis of porin depends on the central receptor Tom22, as well as Tom5 and Tom7 of the general import pore complex (translocase of the outer mitochondrial membrane [TOM] core complex). The characterization of two new mutant alleles of the essential pore protein Tom40 demonstrates that the import of porin also requires a functional Tom40. Moreover, the porin precursor can be cross-linked to Tom20, Tom22, and Tom40 on its import pathway. We conclude that import of porin does not proceed through the action of Tom20 alone, but requires an intact outer membrane and involves at least four more subunits of the TOM machinery, including the general import pore.  相似文献   

3.
Tom40 is the major subunit of the translocase of the outer mitochondrial membrane (the TOM complex). To study the assembly pathway of Tom40, we have followed the integration of the protein into the TOM complex in vitro and in vivo using wild-type and altered versions of the Neurospora crassa Tom40 protein. Upon import into isolated mitochondria, Tom40 precursor proteins lacking the first 20 or the first 40 amino acid residues were assembled as the wild-type protein. In contrast, a Tom40 precursor lacking residues 41 to 60, which contains a highly conserved region of the protein, was arrested at an intermediate stage of assembly. We constructed mutant versions of Tom40 affecting this region and transformed the genes into a sheltered heterokaryon containing a tom40 null nucleus. Homokaryotic strains expressing the mutant Tom40 proteins had growth rate defects and were deficient in their ability to form conidia. Analysis of the TOM complex in these strains by blue native gel electrophoresis revealed alterations in electrophoretic mobility and a tendency to lose Tom40 subunits from the complex. Thus, both in vitro and in vivo studies implicate residues 41 to 60 as containing a sequence required for proper assembly/stability of Tom40 into the TOM complex. Finally, we found that TOM complexes in the mitochondrial outer membrane were capable of exchanging subunits in vitro. A model is proposed for the integration of Tom40 subunits into the TOM complex.  相似文献   

4.
The import of cytochrome c into the mitochondrial intermembrane space is not understood at a mechanistic level. While the precursor apocytochrome c can insert into protein-free lipid bilayers, the purified translocase of the outer membrane (TOM) complex supports the translocation of apocytochrome c into proteoliposomes. We report an in organello analysis of cytochrome c import into yeast mitochondria from wild-type cells and different mutants cells, each defective in one of the seven Tom proteins. The import of cytochrome c is not affected by removal of the receptor Tom20 or Tom70. Moreover, neither the transfer protein Tom5 nor the assembly factors Tom6 and Tom7 are needed for import of cytochrome c. When the general import pore (GIP)-protein Tom40 is blocked, the import of cytochrome c is moderately affected. Mitochondria lacking the central receptor and organizing protein Tom22 contain greatly reduced levels of cytochrome c. We conclude that up to two components of the TOM complex, Tom22 and possibly the GIP, are involved in the biogenesis of cytochrome c.  相似文献   

5.
Translocation of nuclear-encoded preproteins across the outer membrane of mitochondria is mediated by the multicomponent transmembrane TOM complex. We have isolated the TOM core complex of Neurospora crassa by removing the receptors Tom70 and Tom20 from the isolated TOM holo complex by treatment with the detergent dodecyl maltoside. It consists of Tom40, Tom22, and the small Tom components, Tom6 and Tom7. This core complex was also purified directly from mitochondria after solubilization with dodecyl maltoside. The TOM core complex has the characteristics of the general insertion pore; it contains high-conductance channels and binds preprotein in a targeting sequence-dependent manner. It forms a double ring structure that, in contrast to the holo complex, lacks the third density seen in the latter particles. Three-dimensional reconstruction by electron tomography exhibits two open pores traversing the complex with a diameter of approximately 2.1 nm and a height of approximately 7 nm. Tom40 is the key structural element of the TOM core complex.  相似文献   

6.
The preprotein translocase of the outer mitochondrial membrane (TOM) functions as the main entry gate for the import of nuclear-encoded proteins into mitochondria. The major subunits of the TOM complex are the three receptors Tom20, Tom22, and Tom70 and the central channel-forming protein Tom40. Cytosolic kinases have been shown to regulate the biogenesis and activity of the Tom receptors. Casein kinase 2 stimulates the biogenesis of Tom22 and Tom20, whereas protein kinase A (PKA) impairs the receptor function of Tom70. Here we report that PKA exerts an inhibitory effect on the biogenesis of the β-barrel protein Tom40. Tom40 is synthesized as precursor on cytosolic ribosomes and subsequently imported into mitochondria. We show that PKA phosphorylates the precursor of Tom40. The phosphorylated Tom40 precursor is impaired in import into mitochondria, whereas the nonphosphorylated precursor is efficiently imported. We conclude that PKA plays a dual role in the regulation of the TOM complex. Phosphorylation by PKA not only impairs the receptor activity of Tom70, but it also inhibits the biogenesis of the channel protein Tom40.  相似文献   

7.
The preprotein translocase of the yeast mitochondrial outer membrane (TOM) consists of the initial import receptors Tom70 and Tom20 and a approximately 400-kDa (400 K) general import pore (GIP) complex that includes the central receptor Tom22, the channel Tom40, and the three small Tom proteins Tom7, Tom6, and Tom5. We report that the GIP complex is a highly stable complex with an unusual resistance to urea and alkaline pH. Under mild conditions for mitochondrial lysis, the receptor Tom20, but not Tom70, is quantitatively associated with the GIP complex, forming a 500K to 600K TOM complex. A preprotein, stably arrested in the GIP complex, is released by urea but not high salt, indicating that ionic interactions are not essential for keeping the preprotein in the GIP complex. Under more stringent detergent conditions, however, Tom20 and all three small Tom proteins are released, while the preprotein remains in the GIP complex. Moreover, purified outer membrane vesicles devoid of translocase components of the intermembrane space and inner membrane efficiently accumulate the preprotein in the GIP complex. Together, Tom40 and Tom22 thus represent the functional core unit that stably holds accumulated preproteins. The GIP complex isolated from outer membranes exhibits characteristic TOM channel activity with two coupled conductance states, each corresponding to the activity of purified Tom40, suggesting that the complex contains two simultaneously active and coupled channel pores.  相似文献   

8.
The translocase of the outer membrane (TOM complex) is the central entry gate for nuclear-encoded mitochondrial precursor proteins. All Tom proteins are also encoded by nuclear genes and synthesized as precursors in the cytosol. The channel-forming beta-barrel protein Tom40 is targeted to mitochondria via Tom receptors and inserted into the outer membrane by the sorting and assembly machinery (SAM complex). A further outer membrane protein, Mim1, plays a less defined role in assembly of Tom40 into the TOM complex. The three receptors Tom20, Tom22, and Tom70 are anchored in the outer membrane by a single transmembrane alpha-helix, located at the N terminus in the case of Tom20 and Tom70 (signal-anchored) or in the C-terminal portion in the case of Tom22 (tail-anchored). Insertion of the precursor of Tom22 into the outer membrane requires pre-existing Tom receptors while the import pathway of the precursors of Tom20 and Tom70 is only poorly understood. We report that Mim1 is required for efficient membrane insertion and assembly of Tom20 and Tom70, but not Tom22. We show that Mim1 associates with SAM(core) components to a large SAM complex, explaining its role in late steps of the assembly pathway of Tom40. We conclude that Mim1 is not only required for biogenesis of the beta-barrel protein Tom40 but also for membrane insertion and assembly of signal-anchored Tom receptors. Thus, Mim1 plays an important role in the efficient assembly of the mitochondrial TOM complex.  相似文献   

9.
The preprotein translocase of the outer mitochondrial membrane (Tom) is a multisubunit machinery containing receptors and a general import pore (GIP). We have analyzed the molecular architecture of the Tom machinery. The receptor Tom22 stably associates with Tom40, the main component of the GIP, in a complex with a molecular weight of ~400,000 (~400K), while the other receptors, Tom20 and Tom70, are more loosely associated with this GIP complex and can be found in distinct subcomplexes. A yeast mutant lacking both Tom20 and Tom70 can still form the GIP complex when sufficient amounts of Tom22 are synthesized. Besides the essential proteins Tom22 and Tom40, the GIP complex contains three small subunits, Tom5, Tom6, and Tom7. In mutant mitochondria lacking Tom6, the interaction between Tom22 and Tom40 is destabilized, leading to the dissociation of Tom22 and the generation of a subcomplex of ~100K containing Tom40, Tom7, and Tom5. Tom6 is required to promote but not to maintain a stable association between Tom22 and Tom40. The following conclusions are suggested. (i) The GIP complex, containing Tom40, Tom22, and three small Tom proteins, forms the central unit of the outer membrane import machinery. (ii) Tom20 and Tom70 are not essential for the generation of the GIP complex. (iii) Tom6 functions as an assembly factor for Tom22, promoting its stable association with Tom40.  相似文献   

10.
The preprotein translocase of the outer mitochondrial membrane (TOM) consists of a central β-barrel channel, Tom40, and six proteins with α-helical transmembrane segments. The precursor of Tom40 is imported from the cytosol by a pre-existing TOM complex and inserted into the outer membrane by the sorting and assembly machinery (SAM). Tom40 then assembles with α-helical Tom proteins to the mature TOM complex. The outer membrane protein Mim1 promotes membrane insertion of several α-helical Tom proteins but also affects the biogenesis of Tom40 by an unknown mechanism. We have identified a novel intermediate in the assembly pathway of Tom40, revealing a two-stage interaction of the precursor with the SAM complex. The second SAM stage represents assembly of Tom5 with the precursor of Tom40. Mim1-deficient mitochondria accumulate Tom40 at the first SAM stage like Tom5-deficient mitochondria. Tom5 promotes formation of the second SAM stage and thus suppresses the Tom40 assembly defect of mim1Δ mitochondria. We conclude that the assembly of newly imported Tom40 is directly initiated at the SAM complex by its association with Tom5. The involvement of Mim1 in Tom40 biogenesis can be largely attributed to its role in import of Tom5.  相似文献   

11.
The pro-apoptotic Bcl-2-family protein Bim belongs to the BH3-only proteins known as initiators of apoptosis. Recent data show that Bim is constitutively inserted in the outer mitochondrial membrane via a C-terminal transmembrane anchor from where it can activate the effector of cytochrome c-release, Bax. To identify regulators of Bim-activity, we conducted a search for proteins interacting with Bim at mitochondria. We found an interaction of Bim with Tom70, Tom20 and more weakly with Tom40, all components of the Translocase of the Outer Membrane (TOM). In vitro import assays performed on tryptically digested yeast mitochondria showed reduced Bim insertion into the outer mitochondrial membrane (OMM) indicating that protein receptors may be involved in the import process. However, RNAi against components of TOM (Tom40, Tom70, Tom22 or Tom20) by siRNA, individually or in combination, did not consistently change the amount of Bim on HeLa mitochondria, either at steady state or upon de novo-induction. In support of this, the individual or combined knock-downs of TOM receptors also failed to alter the susceptibility of HeLa cells to Bim-induced apoptosis. In isolated yeast mitochondria, lack of Tom70 or the TOM-components Tom20 or Tom22 alone did not affect the import of Bim into the outer mitochondrial membrane. In yeast, expression of Bim can sensitize the cells to Bax-dependent killing. This sensitization was unaffected by the absence of Tom70 or by an experimental reduction in Tom40. Although thus the physiological role of the Bim-TOM-interaction remains unclear, TOM complex components do not seem to be essential for Bim insertion into the OMM. Nevertheless, this association should be noted and considered when the regulation of Bim in other cells and situations is investigated.  相似文献   

12.
Mitochondria cannot be made de novo. Mitochondrial biogenesis requires that up to 1000 proteins are imported into mitochondria, and the protein import pathway relies on hetero-oligomeric translocase complexes in both the inner and outer mitochondrial membranes. The translocase in the outer membrane, the TOM complex, is composed of a core complex formed from the β-barrel channel Tom40 and additional subunits each with single, α-helical transmembrane segments. How α-helical transmembrane segments might be assembled onto a transmembrane β-barrel in the context of a membrane environment is a question of fundamental importance. The master receptor subunit of the TOM complex, Tom20, recognizes the targeting sequence on incoming mitochondrial precursor proteins, binds these protein ligands, and then transfers them to the core complex for translocation across the outer membrane. Here we show that the transmembrane segment of Tom20 contains critical residues essential for docking the Tom20 receptor into its correct environment within the TOM complex. This crucial docking reaction is catalyzed by the unique assembly factor Mim1/Tom13. Mutations in the transmembrane segment that destabilize Tom20, or deletion of Mim1, prevent Tom20 from functioning as a receptor for protein import into mitochondria.  相似文献   

13.
Tom7 is a component of the translocase of the outer mitochondrial membrane (TOM) and assembles into a general import pore complex that translocates preproteins into mitochondria. We have identified the human Tom7 homolog and characterized its import and assembly into the mammalian TOM complex. Tom7 is imported into mitochondria in a nucleotide-independent manner and is anchored to the outer membrane with its C terminus facing the intermembrane space. Unlike studies in fungi, we found that human Tom7 assembles into an approximately 120-kDa import intermediate in HeLa cell mitochondria. To detect subunits within this complex, we employed a novel supershift analysis whereby mitochondria containing newly imported Tom7 were incubated with antibodies specific for individual TOM components prior to separation by blue native electrophoresis. We found that the 120-kDa complex contains Tom40 and lacks receptor components. This intermediate can be chased to the stable approximately 380-kDa mammalian TOM complex that additionally contains Tom22. Overexpression of Tom22 in HeLa cells results in the rapid assembly of Tom7 into the 380-kDa complex indicating that Tom22 is rate-limiting for TOM complex formation. These results indicate that the levels of Tom22 within mitochondria dictate the assembly of TOM complexes and hence may regulate its biogenesis.  相似文献   

14.
Translocation of preproteins across the mitochondrial outer membrane is mediated by the translocase of the outer mitochondrial membrane (TOM) complex. We report the molecular identification of Tom6 and Tom7, two small subunits of the TOM core complex in the fungus Neurospora crassa. Cross-linking experiments showed that both proteins were found to be in direct contact with the major component of the pore, Tom40. In addition, Tom6 was observed to interact with Tom22 in a manner that depends on the presence of preproteins in transit. Precursors of both proteins are able to insert into the outer membrane in vitro and are assembled into authentic TOM complexes. The insertion pathway of these proteins shares a common binding site with the general import pathway as the assembly of both Tom6 and Tom7 was competed by a matrix-destined precursor protein. This assembly was dependent on the integrity of receptor components of the TOM machinery and is highly specific as in vitro-synthesized yeast Tom6 was not assembled into N. crassa TOM complex. The targeting and assembly information within the Tom6 sequence was found to be located in the transmembrane segment and a flanking segment toward the N-terminal, cytosolic side. A hybrid protein composed of the C-terminal domain of yeast Tom6 and the cytosolic domain of N. crassa Tom6 was targeted to the mitochondria but was not taken up into TOM complexes. Thus, both segments are required for assembly into the TOM complex. A model for the topogenesis of the small Tom subunits is discussed.  相似文献   

15.
Transport of nuclear encoded proteins into mitochondria is mediated by multisubunit translocation machineries in the outer and inner membranes of mitochondria. The TOM complex contains receptor and pore components that facilitate the recognition of preproteins and their transfer through the outer membrane. In addition, the complex contains a set of small proteins. Tom7 and Tom6 have been found in Neurospora and yeast, Tom5 has been found so far only in the latter organism. In the present study, we identified Neurospora Tom5 and analyzed its function in comparison to yeast Tom5, which has been proposed to play a role as a receptor-like component. Neurospora Tom5 crosses the outer membrane with its carboxyl terminus facing the intermembrane space like the other small Tom components. The temperature-sensitive growth phenotype of the yeast TOM5 deletion was rescued by overexpression of Neurospora Tom5. On the other hand, Neurospora cells deficient in tom5 did not exhibit any defect in growth. The structural stability of TOM complexes from cells devoid of Tom5 was significantly altered in yeast but not in Neurospora. The efficiency of protein import in Neurospora mitochondria was not affected by deletion of tom5, whereas in yeast it was reduced as compared with wild type. We conclude that the main role of Tom5, rather than being a receptor, is maintaining the structural integrity of the TOM complex.  相似文献   

16.
The TOM complex (Translocase of the Outer mitochondrial Membrane) is responsible for the recognition of mitochondrial preproteins synthesized in the cytosol and for their translocation across or into the outer mitochondrial membrane. Tom40 is the major component of the TOM complex and forms the translocation pore. We have created a tom40 mutant of Neurospora crassa and have demonstrated that the gene is essential for the viability of the organism. Mitochondria with reduced levels of Tom40 were deficient for import of mitochondrial preproteins and contained reduced levels of the TOM complex components Tom22 and Tom6, suggesting that the import and/or stability of these proteins is dependent on the presence of Tom40. Mutant Tom40 preproteins were analyzed for their ability to be assembled into the TOM complex. In vitro import assays revealed that conserved regions near the N terminus (residues 51-60) and the C terminus (residues 321-323) of the 349-amino acid protein were required for assembly beyond a 250-kDa intermediate form. Mutant strains expressing Tom40 with residues 51-60 deleted were viable but exhibited growth defects. Slow growing mutants expressing Tom40, where residues 321-323 were changed to Ala residues, were isolated but showed TOM complex defects, whereas strains in which residues 321-323 were deleted could not be isolated. Analysis of the assembly of mutant Tom40 precursors in vitro supported a previous model in which Tom40 precursors progress from the 250-kDa intermediate to a 100-kDa form and then assemble into the 400-kDa TOM complex. Surprisingly, when wild type mitochondria containing Tom40 precursors arrested at the 250-kDa intermediate were treated with sodium carbonate, further assembly of intermediates into the TOM complex occurred, suggesting that disruption of protein-protein interactions may facilitate assembly. Import of wild type Tom40 precursor into mitochondria containing a mutant Tom40 lacking residues 40-48 revealed an alternate assembly pathway and demonstrated that the N-terminal region of pre-existing Tom40 molecules in the TOM complex plays a role in the assembly of incoming Tom40 molecules.  相似文献   

17.
A majority of the proteins targeted to the mitochondria are transported through the translocase of the outer membrane (TOM) complex. Tom70 is a major surface receptor for mitochondrial protein precursors in the TOM complex. To investigate how Tom70 receives the mitochondrial protein precursors, we have determined the crystal structure of yeast Tom70p to 3.0 A. Tom70p forms a homodimer in the crystal. Each subunit consists primarily of tetratricopeptide repeat (TPR) motifs, which are organized into a right-handed superhelix. The TPR motifs in the N-terminal domain of Tom70p form a peptide-binding groove for the C-terminal EEVD motif of Hsp70, whereas the C-terminal domain of Tom70p contains a large pocket that may be the binding site for mitochondrial precursors. The crystal structure of Tom70p provides insights into the mechanisms of precursor transport across the mitochondrion's outer membrane.  相似文献   

18.
Mitochondrial proteins are synthesized on cytosolic ribosomes and imported into mitochondria with the help of protein translocases. For the majority of precursor proteins, the role of the translocase of the outer membrane (TOM) and mechanisms of their transport across the outer mitochondrial membrane are well recognized. However, little is known about the mode of membrane translocation for proteins that are targeted to the intermembrane space via the redox-driven mitochondrial intermembrane space import and assembly (MIA) pathway. On the basis of the results obtained from an in organello competition import assay, we hypothesized that MIA-dependent precursor proteins use an alternative pathway to cross the outer mitochondrial membrane. Here we demonstrate that this alternative pathway involves the protein channel formed by Tom40. We sought a translocation intermediate by expressing tagged versions of MIA-dependent proteins in vivo. We identified a transient interaction between our model substrates and Tom40. Of interest, outer membrane translocation did not directly involve other core components of the TOM complex, including Tom22. Thus MIA-dependent proteins take another route across the outer mitochondrial membrane that involves Tom40 in a form that is different from the canonical TOM complex.  相似文献   

19.
Proteins targeted to mitochondria are transported into the organelle through a high molecular weight complex called the translocase of the outer mitochondrial membrane (TOM). At the core of this machinery is a multisubunit general import pore (GIP) of 400 kDa. Here we report the assembly of the yeast GIP that involves two successive intermediates of 250 kDa and 100 kDa. The precursor of the channel-lining Tom40 is first targeted to the membrane via the receptor proteins Tom20 and Tom22; it then assembles with Tom5 to form the 250 kDa intermediate exposed to the intermembrane space. The 250 kDa intermediate is followed by the formation of the 100 kDa intermediate that associates with Tom6. Maturation to the 400 kDa complex occurs by association of Tom7 and Tom22. Tom7 functions by promoting both the dissociation of the 400 kDa complex and the transition from the 100 kDa intermediate to the mature complex. These results indicate that the dynamic conversion between the 400 kDa complex and the 100 kDa late intermediate allows integration of new precursor subunits into pre-existing complexes.  相似文献   

20.
Dissection of the mitochondrial import and assembly pathway for human Tom40   总被引:8,自引:0,他引:8  
Tom40 is the channel-forming subunit of the translocase of the mitochondrial outer membrane (TOM complex), essential for protein import into mitochondria. Tom40 is synthesized in the cytosol and contains information for its mitochondrial targeting and assembly. A number of stable import intermediates have been identified for Tom40 precursors in fungi, the first being an association with the sorting and assembly machinery (SAM) of the outer membrane. By examining the import pathway of human Tom40, we have been able to elucidate additional features in its import. We identify that Hsp90 is involved in delivery of the Tom40 precursor to mitochondria in an ATP-dependent manner. The precursor then forms its first stable intermediate with the outer face of the TOM complex before its membrane integration and assembly. Deletion of an evolutionary conserved region within Tom40 disrupts the TOM complex intermediate and causes it to stall at a new complex in the intermembrane space that we identify to be the mammalian SAM. Unlike its fungal counterparts, the human Tom40 precursor is not found stably arrested at a SAM intermediate. Nevertheless, we show that Tom40 assembly is reduced in mitochondria depleted of human Sam50. These findings are discussed in context with current models from fungal studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号