首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Plethodontid salamanders in the genus Oedipina are characterized by a strongly heteromorphic sex-determining pair of X/Y chromosomes. The telocentric X chromosome and the subtelocentric Y chromosome are clearly distinguished from the autosomes and their behavior during meiosis can be sequentially followed in squash preparations of spermatocytes. In Oedipina the sex chromosomes are not obscured by an opaque sex vesicle during early meiotic stages, making it possible to observe details of sex bivalent structure and behavior not directly visible in other vertebrate groups. The sex chromosomes can first be distinguished from autosomal bivalents at the conclusion of zygotene, with X and Y synapsed only along a short segment at their non-centromeric ends, forming a bivalent that contrasts sharply with the completely synapsed autosomes. During pachytene, the XY bivalent becomes progressively shortened and more compact, disappearing as a visible structure when pachytene progresses into the diffuse stage of male meiosis. Diplotene bivalents gradually emerge from the diffuse nuclei, presumably by the return of the loops of chromatin into their respective chromomeres. During early diplotene, the X/Y bivalent is clearly visible with a single chiasma within the synapsed segment. This chiasma is terminalized by first meiotic metaphase with the X and Y appearing either in end-to-end synaptic contact or as univalents separated at opposite poles relative to the equatorially distributed autosomal bivalents. In C-banded preparations, the Y is entirely heterochromatic while the X contains a large centromeric C-band and another block of heterochromatin located at the telomeric end, in the region of synapsis with the Y. We find no cytological evidence of dosage compensation, such as differential staining of the X chromosomes or Barr bodies, in mitotic or interphase cells from female animals.  相似文献   

2.
The results of light and electron microscopic (EM) studies of meiosis in Microtus arvalis males of the karyoform "arvalis" (2n = 46, NFa = 80), in hybrids between the chromosomal forms arvalis and obscurus (2n = 46, NFa = 68), in M. rossiaemeridionalis voles (2n = 54, NFa = 54), and in a hybrid between the species M. rossiaemeridionalis and M. kermanensis (2n = 54, NFa = 54) are presented. SC (synaptonemal complex) karyotypes of the parental forms and the hybrids were constructed on the basis of measurements of the length ofautosomal SCs revealed by the EM analysis in spermatocytes at the stage of middle pachytene. The SC karyotypes of M. arvalis and the hybrids female obscurus x male arvalis consist of 22 synaptonemal complexes of autosomal bivalents and the axial elements of the synaptonemal complexes of the sex chromosomes X and Y. The SC karyotypes of M. rossiaemeridionalis and the hybrid M. rossiaemeridionalis x M. kermanensis consist of 26 synaptonemal complexes of autosomal bivalents and a sex bivalent; they differ only in the length of the Y chromosome axis (Y chromosome in the hybrid was inherited from M. kermanensis). Asynaptic configurations of the autosomal SCs were not observed in the hybrids. The SC axial elements of the X and Y chromosomes in the parental forms and in the hybrids were located close to each other throughout pachytene, but they did not form a synaptic region. The normal synapsis in sterile hybrids (M. rossiaemeridionalis x M. kermanensis) and the behavior of the sex chromosomes in meiosis in fertile and sterile hybrids are discussed in the context of specific features of meiosis and reproductive isolation.  相似文献   

3.
Summary Nucleolar association and heterochromatin coalescence have both been invoked as mechanisms involved in the origin of chromosomal associations between nucleolar bivalents themselves, as well as between these bivalents and the XY pair, during meiotic prophase in human spermatocytes. However, these mechanisms do not satisfactorily explain how associating bivalents meet each other within the nuclear space. To elucidate this problem, we have characterized different types of nucleolar-nucleolar and nucleolar-XY bivalent associations, and their frequencies, in light and electron microscope serial sections of spermatocyte nuclei. In the pachytene nucleus, nucleolar bivalent associations were found to involve only one nucleolar sphere of RNP granules connected through a fibrillar center to a chromatin mass composed of two, or more, nucleolar-bivalent short arms. Structural relationships between these elements were examined using 3D computer models of various nucleolar associations. XY and nucleolar bivalents were usually located towards the nuclear periphery associated with the inner face of the nuclear envelope. Some nucleolar bivalents, whether single or associated appeared beside or over XY chromatin. When nucleolar-bivalent short arms (BK) were found over nucleolar or over XY chromatin, their telomeres were unattached to the nuclear envelope and the corresponding synaptonemal complexes were not observed. Ninety nucleoli were found in sixty pachytene nuclei. Thirty six percent of these nucleoli were bound to associated BKs and the remaining 64% to single BKs. Over 40% of individual spermatocytes showed at least one cluster of associated BKs and about 20% presented single or multiple BKs associated with the XY pair. The frequencies of random BK associations, over the total or restricted areas of the nuclear envelope, were calculated according to a probabilistic nuclear model. A correspondence was found in comparing the observed frequencies of associated BKs with those calculated on the basis of bouquet formation. Such an analysis strongly suggests that the occurrence of associations between nucleolar bivalents may arise at random within the bouquet. Thus, the architecture of the meiocyte nucleus, particularly the organization of the bouquet, may be the primary mechanism by which nucleolar bivalents meet each other and, consequently, become associated either through common nucleolus formation or by heterochromatin coalescence.  相似文献   

4.
5.
Xlr and Xmr are sex-specific genes which are expressed during the meiotic prophase I in the mouse. In spermatocytes, XMR concentrates on the asynapsed regions of the XY chromosomes, suggesting that XMR plays a role in sex chromosome condensation and silencing. The present study shows that in the mouse, XMR also concentrates in the nucleolus which is closely associated with the XY chromosome pair. In this species, the formation of a large fibrillo-granular nucleolus signals the activation of the ribosomal genes, but release of pre-ribosomal particles is inhibited. Using laser confocal microscopy we characterized the distribution of XMR in the XY body relative to the XY chromatin and the nucleolus. Immunoelectron microscopy showed that XMR concentrates in the fibrillo-granular component and the granular component (GC) of the nucleolus. In (T[X;16]16H) mouse spermatocytes, the nucleolus displays little or no activity and does not associate with the XY pair. XMR concentrated only on the XY chromosomes in (T[X;16]16H) mouse spermatocytes. These data suggest that XMR could play a role both in the XY pair and the nucleolus associated to the sex chromosomes.  相似文献   

6.
7.
8.
C. B. Gillies 《Chromosoma》1973,43(2):145-176
Aldehyde fixation followed by staining with phosphotungstic acid produces differential contrast between the synaptonemal complex and the chromatin of maize pachytene bivalents. Centromeres, heterochromatic knobs and large chromomeres are easily recognised. With this and other staining techniques the nucleolus organizer region can be differentiated into two components. — Microsporocyte nuclei at pachytene were serially sectioned and all ten bivalents reconstructed in five nuclei. An idiogram was derived from the mean chromosome (= synaptonemal complex) lengths, the arm ratios, positions of knobs and the nucleolus organizer region. The idiogram agrees well with that published from light microscopic analyses. However, bivalent lengths are only two thirds of those observed by light microscopy of squash preparations. Many telomeres of the bivalents are connected via chromatin to the nuclear envelope, but a varying number of free bivalent ends are observed in all five reconstructed nuclei. — Bivalents heterozygous for inversion 3b were reconstructed. In the presence of abnormal chromosome 10 (K10) the lateral components of the synaptonemal complex of chromosome 3 formed a typical inversion loop, while in one of the nuclei having no K10 the two lateral components of the long arms of chromosome 3 remained unpaired in the region of inversion heterozygosity. The presence of K10, which increases crossing-over frequencies and promotes intimate pairing at the light microscopic level, was thus found to permit formation of complete synaptonemal complexes in the inverted region. The extra terminal portion of the K10 chromosome folded back on itself and formed a morphologically normal synaptonemal complex in this — possibly non-homologously paired — region. The chromatin of centromeres and knobs from different bivalents were sometimes found to fuse, but the synaptonemal complexes transversing the fused centromeres or knobs retained their individuality.  相似文献   

9.
Synaptic behaviour and the progression of morphological differentiation of the XY chromosome pair during pachytene was studied for the first time in three species of the South American subterranean rodents of the genus Ctenomys (tuco-tucos). In general, synapsis progression in the sex pair could be subdivided into four substages: (i) initial partial synapsis of the X and Y chromosome axes and beginning of the differentiation of the unsynapsed regions; (ii) complete or almost complete synapsis of the Y axis accompanied with morphological differentiation of the unsynapsed region of the X chromosome; (iii) a novel stage exclusive to Ctenomys perrensi consisting in a retraction of the free X axis, associated with the formation of a homogeneous and dense structure along the synaptic region, which leads to the achievement of full synapsis between sex chromosomes; or (iv) an increase in morphological complexity involving extreme splitting of the XY pair. The implications of the peculiar synaptic behaviour displayed by sex chromosomes in C. perrensi, a species complex highly polymorphic for Robertsonian translocations, are discussed in relation to both the triggering of the pachytene checkpoint and the avoidance of non-homologous associations between sex chromosomes and the asynaptic pericentromeric regions of trivalents in translocation heterozygotes.  相似文献   

10.
The karyotype with C-, G- and NOR-banding of Arctocephalus australis is reported for the first time. The chromosomal number is 2n = 36. The X chromosome, identified in G-banded metaphases from males, is metacentric and the Y chromosome is a minute chromosome, also metacentric. Pachytene spermatocytes were used for synaptonemal complexes analysis with a surface spreading technique. A total of 17 autosomal synaptonemal complexes are observed plus the XY pair. During early pachytene, the X and Y axes are thickened and remain unpaired. As pachytene advances, a short SC is formed between the gonosomes, as it is common among eutherian mammals. The particular asymmetrical appearance of the synaptonemal complex in the sex pair is described and compared to other cases among mammals.  相似文献   

11.
Meiotic and somatic cells at interphase in Triatoma infestans are characterized by the formation of a large chromocenter, which was assumed to contain the whole of the three large pairs of autosomes and the sex chromosomes. Observations with C-banding techniques show that the chromocenter is formed only by the terminal and subterminal heterochromatic blocks of the three large pairs of autosomes and the sex chromosomes. During pachytene the two largest autosomal pairs loop on themselves and their condensed ends form the chromocenter, together with the single heterochromatic end of the third autosomal pair. The X and Y chromosomes seem to associate with these condensed ends by their affinity for C-heterochromatin. During a very short pachytene stage, bivalents and synaptonemal complexes (SCs) are observed. Pachytene is followed by a very long diffuse stage, during which SCs are disassembled, multiple complexes aggregate on the inner face of the chromocenter and finally all complexes disappear and a dense material is extruded to the cytoplasm through the annuli. The 3-dimensional reconstruction of early pachytene chromocenters show 3 SCs entering and tunnelling the chromocenter, while during mid-pachytene 4 SCs enter this mass and a 5th SC is in a separate small mass. The looping of a whole SC which has both ends in the chromocenter was shown by the reconstructions. These data are interpreted as the progressive looping of the two largest bivalents during pachytene, forming finally the association of 5 bivalent ends corresponding to the 5 C-banding blocks of the large autosomal pairs. No single axis or SC that could be ascribed to the sex chromosomes was found. This agrees with the pachytene microspreads, which show only 10 SCs corresponding to the autosomal bivalents. The X and Y chromosomes are enclosed in the chromocenter, as shown by the unravelling chromocenters at diplotene-diakinesis. Thus the sex chromosomes do not form axial condensations, and this fact may be related to the ability of the X and Y chromosomes to divide equationally at metaphase I. SCsThis paper is dedicated to the memory of the late Professor Francisco A. Saez  相似文献   

12.
13.
An immunocytochemical method was used to label the kinetochores on human synaptonemal complexes. Synaptonemal complex spreads were labelled with autoimmune CREST serum, followed by a second antibody labelled with colloidal gold, and examined by electron microscopy. Clusters of gold particles were found at discrete sites which were identified as kinetochores on the autosomal synaptonemal complexes, as well as on the XY pair. This method was used to investigate the extent of pairing of the human X and Y chromosomes at pachytene. Our observations confirm earlier work, based purely on measurements, that the pairing of the sex chromosomes sometimes extends beyond the centromere of the Y chromosome into the long arm. At the same time we showed that the centromeric indices of the X and Y at pachytene are highly variable, so that measurements alone are not sufficient to estimate the degree of pairing of the sex chromosomes.  相似文献   

14.
Electron microscopy of ultrathin serial sections has been used to study the origin and fate of a mass of fibrillar material (FM) during spermatogenesis in the wood lemming Myopus schisticolor. In the course of early pachytene, one of the two nucleoli completely disappears. The remaining nucleolus loses its granular portion and acquires a "round body" encased by the fibrillar moiety, and the restructuring is accompanied by the appearance of FM in the close vicinity of this nucleolus. During diakinesis, the FM increases in volume and density and selectively infiltrates the chromatin of the XY pair. The intermingling of sex chromosomes and FM is at its maximum in metaphase I, giving the XY chromatin a patchy appearance. The FM separates along with the chromatin during the ensuing anaphase I and is shed from the chromosomes during early telophase I. By the time the nuclear envelope is reconstituted, the FM is completely separated from the chromatin. It disintegrates in the spermatids. The FM could not be stained using the Ag-NOR technique. In the wood lemming, X and Y chromosomes show an end-to-end association without a detectable synaptonemal complex. The FM may contribute to the attachment of the two sex chromosomes to each other. Thus, the FM is considered to be a substitute for a chiasma, which normally guarantees proper segregation in anaphase I.  相似文献   

15.
The results of light and electron microscopic (EM) studies of meiosis in Microtus arvalis males of the karyoform “arvalis” (2n = 46, NFa = 80), in hybrids between the chromosomal forms arvalis and obscurus (2n = 46, NFa = 68), in M. rossiaemeridionalis voles (2n = 54, NFa = 54), and in a hybrid between the species M. rossiaemeridionalis and kermanensis (2n = 54, NFa = 54) are presented. SC (synaptonemal complex) karyotypes of the parental forms and the hybrids were constructed on the basis of measurements of the length of autosomal SCs revealed by the EM analysis in spermatocytes at the stage of middle pachytene. The SC karyotypes of M. arvalis and the hybrids ♀ obscurus × ♂ arvalis consist of 22 synaptonemal complexes of autosomal bivalents and the axial elements of the synaptonemal complexes of the sex chromosomes X and Y. The SC karyotypes of M. rossiaemeridionalis and the hybrid M. rossiaemeridionalis × M. kermanensis consist of 26 synaptonemal complexes of autosomal bivalents and a sex bivalent; they differ only in the length of the Y chromosome axis (Y chromosome in the hybrid was inherited from M. kermanensis). Asynaptic configurations of the autosomal SCs were not observed in the hybrids. The SC axial elements of the X and Y chromosomes in the parental forms and in the hybrids were located close to each other throughout pachytene, but they did not form a synaptic region. The normal synapsis in sterile hybrids (M. rossiaemeridionalis × M. kermanensis) and the behavior of the sex chromosomes in meiosis in fertile and sterile hybrids are discussed in the context of specific features of meiosis and reproductive isolation.  相似文献   

16.
Xie Y  Li F  Zhang C  Yu K  Xiang J 《Tissue & cell》2008,40(5):343-350
A modified surface spreading technique for synaptonemal complex (SC) analysis was tested to assess the process of chromosome synapsis in spermatocytes of diploid and induced triploid Fenneropenaeus chinensis. Spermatocytes of diploid shrimp showed typical morphological characteristics of eukaryote SC, with complete synapsis of bivalents. No recognizable bivalent associated with sex chromosomes was observed in spermatocytes of diploid shrimp. However, differences in morphology of SC, including unsynapsed univalents, bivalents, totally paired trivalents with non-homologous synapsis, partner switches and triple synapsis were identified at early pachytene stage of triploid spermatocytes. Triple synapsis was especially common at late pachytene stage in spermatocytes of triploid shrimp. The observed abnormal synapsis behavior of chromosomes in spermatocytes indicated that triploid male shrimp may find it difficult to develop normal haploid sperm.  相似文献   

17.
During male meiosis in mammals the X and Y chromosomes become condensed to form the sex body (XY body), which is the morphological manifestation of the process of meiotic sex chromosome inactivation (MSCI). An increasing number of sex body located proteins are being identified, but their functions in relation to MSCI are unclear. Here we demonstrate that assaying male sex body located proteins during XY female mouse meiosis, where MSCI does not take place, is one way in which to begin to discriminate between potential functions. We show that a newly identified protein, "Asynaptin" (ASY), detected in male meiosis exclusively in association with the X and Y chromatin of the sex body, is also expressed in pachytene oocytes of XY females where it coats the chromatin of the asynapsed X in the absence of MSCI. Furthermore, in pachytene oocytes of females carrying a reciprocal autosomal translocation, ASY associates with asynapsed autosomal chromatin. Thus the location of ASY to the sex body during male meiosis is likely to be a response to the asynapsis of the non-homologous regions [outside the pseudoautosomal region (PAR)] of the heteromorphic X-Y bivalent, rather than being related to MSCI. In contrast to ASY, the previously described sex body protein XY77 proved to be male sex body specific. Potential functions for MSCI and the sex body are discussed together with the possible roles of these two proteins.  相似文献   

18.
The spatial reconstruction of the XY pair of chromosomes from human spermatocytes has been made by the study of serial sections 1000 A in thickness. The sex pair during zygotene-pachytene forms a condensed mass of chromatin that has two filamentous, electron-opaque cores: the long and the short core. During early pachytene both cores have a common ending region, about 0.4–0.8 µ long. This common end is a synaptonemal complex, and each of the cores forms a lateral element of that complex. The cores become more convoluted during middle pachytene forming "ringlike bodies." Nucleoli from spermatocytes have three distinct regions: (a) granular; (b) dense fibrillar; and (c) clear intermediate. Occasional association of the XY pair and the heteropycnotic "basal knobs" results in apparent association of nucleoli and the sex pair in a minority of cells. The evidence presented is interpreted as a strong support of the hypothesis of homologous regions in the human XY pair.  相似文献   

19.
The behavior of the X and Y chromosomes in somatic and testicular cells of the sand rat (P. obesus) has been investigated with light and electron-microscope procedures. The Y chromosome has been identified as the fourth longest of the complement, both by C-banding and by its meiotic behavior. The X chromosome is the longest of the complement and carries two major C-heterochromatic blocks, one in the distal part of the long arm and the other forming most of the short arm. During presynaptic stages in spermatocytes, separate C-heterochromatic blocks, representing the sex chromosomes, are observed in the nuclei. An XY body is regularly formed at pachytene. During first meiotic metaphase the X and Y chromosomes show variable associations, none of them chiasmatic. Second meiotic metaphases contain, as in other mammals, a single sex chromosome, suggesting normal segregation between the X and the Y. — Electron microscopic observations of the autosomal synaptonemal complexes (SCs) and the single axes of the X and Y chromosomes during pachytene permit accurate, statistically significant identification of each of the largest chromosomes of the complement and determination of the mean arm ratios of the X and Y axes. The X and Y axes always lie close to each other but do not form a SC. The ends of the X and Y axes are attached to the nuclear envelope and associate with each other in variable ways, both autologously (X with X or Y with Y) and heterologously (X with Y), with a tendency to form a maximum number (four) of associated ends. Analysis of 36 XY pairs showed no significant preference for any single specific attachment between arm ends. The eighth longest autosomal bivalent is frequently partially asynaptic during early pachytene, and only at that time is often near or touching one end of the X axis. — It is concluded that while axis formation and migration of the axes along the plane of the nuclear envelope proceed normally in the X and Y chromosomes, true synapsis (with SC formation) does not occur because the pairing region of the X chromosome has probably been relocated far from the chromosome termini by the insertion of distal C-heterochromatic blocks.  相似文献   

20.
Chromosome pairing during meiosis I in D. melanogaster males was investigated ultrastructurally by examining complete bivalents in electron micrographs of serial thin sections. The XY bivalent is characterized by the presence of unique material located between the two half-bivalents at the site of synapsis. The material has a fibrillar appearance and is less electron dense than the surrounding chromatin. YY bivalents in XYY males and XY bivalents containing the X chromosome, In(1)sc 4Lsc8R, where the pairing sites of the X chromosome are inverted and partially deleted also possess this material. The material is not associated with autosomal bivalents and may represent a morphological manifestation of the hypothetical cohesive elements (collochores) which are thought to function in conjunction of the X and Y chromosomes (Cooper, 1964).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号