首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 37 毫秒
1.
2.
In plants, gametophytic apomixis is a form of asexual reproduction that leads to the formation of seed-derived offspring that are genetically identical to the mother plant. A common set of RFLP markers, including five rice anchor markers previously shown to be linked to apomixis in Paspalum simplex, were used to detect linkage with apomixis in P. notatum and P. malacophyllum. A comparative map of the region around the apomixis locus was constructed for the three Paspalum species, and compared to the rice map. The locus that controls apomixis in P. simplex was almost completely conserved in the closely related species P. malacophyllum, whereas it was only partially represented in the distantly related species P. notatum. Although strong synteny of markers was noted between this locus and a portion of rice chromosome 12 in both P. simplex and P. malacophyllum, the same locus in P. notatum was localized to a hybrid chromosome which carries markers that map to rice chromosomes 2 and 12. All three Paspalum species showed recombination suppression at the apomixis locus; in the case of P. notatum, this might be due to a heterozygosity for a translocation that most probably negatively interferes with chromosomal pairing near the locus. A common set of markers that show linkage with apomixis in all three Paspalum species define a portion of the apomixis-controlling locus that is likely to contain genes critical for apomictic reproduction.Communicated by R. Hagemann  相似文献   

3.
Segregating progenies of crosses between sexual and apomictic genotypes of Paspalum simplex were analysed for the formation of meiotic versus aposporous embryo sacs, zygotic versus parthenogenetic embryos, and autonomous versus pseudogamous endosperms by using cytoembryological and flow cytometric analyses. Reduced and unreduced 8-nucleated embryo sacs were the final product of female gametophyte development in sexual and aposporous genotypes, respectively. An incomplete penetrance of parthenogenesis was detected in aposporous genotypes. The relative DNA content of endosperm nuclei revealed the normal 2:1 maternal to paternal ratio in sexuals and a 4:1 ratio in apomicts, indicating insensitivity of the apomictic genotypes to endosperm imprinting. Apospory, parthenogenesis and pseudogamy are located on a relatively large linkage group and are inherited together with previously developed molecular markers as a single genetic unit in segregating progenies.  相似文献   

4.
 Crosses between triploid and diploid genotypes are usually the best sources of trisomics in potato as well as in several other crop species. However, 3×× 2× crosses between triploid (2n=3×=36; 2EBN) Solanum commersonii-S. tuberosum hybrids and diploid (2n= 2×=24; 2EBN) genotypes gave progenies with a high number of extra chromosomes, 29–36, suggesting that only eggs with 17–24 chromosomes produced embryos that reached full development. Our hypothesis is that although triploids produce eggs with a range of chromosome numbers, 3×× 2× crosses involving a 2×(2EBN) parent favor eggs with a high chromosome number. These eggs have higher probabilities of possessing the same endosperm balance number (EBN) value (i.e. 1) of gametes produced by the 2EBN diploid parent to give the required 2:1 maternal to paternal EBN ratio in the hybrid endosperm. Under this model, trisomics are produced only if the diploid parent has an EBN of 1. Based on our results and those reported in the literature, it is proposed that in 3×(2EBN) × 2×(2EBN) crosses the endosperm balance number exercises negative selection for gametes with a low chromosome number, and a corresponding low EBN, and positive selection for gametes with a high chromosome number and EBN. Received: 2 April 1998 / Revision accepted: 27 October 1998  相似文献   

5.
Wild Mexican potato species are an important untapped source of useful variation for potato improvement. Introgression methods such as 2n gametes, chromosome doubling, and crossing with disomic 4x 2 endosperm balance number (EBN) bridge species have been used to overcome post-zygotic endosperm failure according to the EBN hypothesis. Stylar barriers can prevent zygote formation, bilaterally when zygote formation is blocked in both directions of the cross or unilaterally when zygote formation is blocked in self incompatible (SI) × self compatible (SC) crosses. In several Solanaceae species, the S-locus for SI has been implicated in interspecific incompatibility. The objectives of this research were to determine if: (1) disomic 4x 2EBN Solanum stoloniferum can be used as a bridge species for introgression of the Mexican 2x 1EBN species Solanum cardiophyllum and Solanum pinnatisectum, (2) pre- and/or post-zygotic barriers limit hybridization among EBN compatible Solanum inter-series crosses, and (3) reproductive barriers act unilaterally or bilaterally. Fruit formation and seed set was recorded for inter-pollinations of S. stoloniferum, 4x 2EBN chromosome doubled S. cardiophyllum and S. pinnatisectum, and 2x 2EBN S. tuberosum haploids (HAP) or haploid-species hybrids (H-S). In vivo pollen tube growth was analyzed for each cross combination with fluorescence microscopy. Attempts to create bridge hybrids between S. stoloniferum, and S. cardiophyllum or S. pinnatisectum were not successful. Pre- and post-zygotic barriers prevented seed formation in crosses involving S. cardiophyllum and S. pinnatisectum. Self compatibility in S. stoloniferum and S. pinnatisectum suggests that the S-locus does not contribute to the stylar barriers observed with these species. Alternatively, the presence of functional and nonfunctional (SC) S-alleles may explain interspecific incompatibility in intra- and inter-ploidy crosses. A non-stylar unilateral incongruity was discovered in H-S/HAP × S. stoloniferum crosses, indicating either a post-zygotic barrier, or a pre-zygotic barrier acting at or within the ovary. Furthermore, lack of S. stoloniferum pollen rejection may occur through absence of S. stoloniferum pollen-active genes needed to initiate pollen rejection, or through competitive interaction in S-locus heterozygous S. stoloniferum pollen. Introgression strategies using these species would benefit potato breeding by introducing genetic diversity for several traits simultaneously through co-current introgression.  相似文献   

6.
Since apomixis was first mapped in Paspalum, the absence of recombination that characterizes the related locus appeared to be the most difficult bottleneck to overcome for the dissection of the genetic determinants that control this trait. An approach to break the block of recombination was developed in this genus through an among-species comparative mapping strategy. A new apomictic species, P. procurrens (Q4094) was crossed with a sexual plant of P. simplex and their progeny was classified for reproductive mode with the aid of morphological, embryological and genetic analyses. On this progeny, a set of heterologous rice RFLP markers strictly co-segregating in coupling phase with apomixis was identified. These markers were all located on the telomeric region of the long arm of the chromosome 12 of rice. In spite of the lack of recombination exhibited by the apomixis-linked markers in P. procurrens, a comparative mapping analysis among P. simplex, P. malacophyllum, P. notatum and P. procurrens, allowed us to identify a small group of markers co-segregating with apomixis in all these species. These markers bracketed a chromosome region that likely contains all the genetic determinants of apomictic reproduction in Paspalum. The implications of this new inter-specific approach for overcoming the block of recombination to isolate the genetic determinants of apomixis and gain a better comprehension of genome structure of apomictic chromosome region are discussed.  相似文献   

7.
  • Paspalum is a noteworthy grass genus due to the forage quality of most species, with approximately 330 species, and the high proportion of those that reproduce via apomixis. Harnessing apomictic reproduction and widening knowledge about the cytogenetic relationships among species are essential tools for plant breeding.
  • We conducted cytogenetic analyses of inter‐ and intraspecific hybridisations involving a sexual, colchicine‐induced autotetraploid plant of P. plicatulum Michx. and five indigenous apomictic tetraploid (2n = 40) species: P. compressifolium Swallen, P. lenticulare Kunth, two accessions of P. nicorae Parodi, P. rojasii Hack. and two accessions of P. plicatulum. Fertility of the hybrids was investigated and their reproductive system was analysed considering the relative embryo:endosperm DNA content from flow cytometry. Morphological, nomenclatural and taxonomic issues were also analysed.
  • Cytogenetic analysis suggested that all indigenous tetraploid accessions of five apomictic species are autotetraploid or segmental allotetraploid. If segmental allotetraploids, they probably originated through autoploidy followed by diploidisation processes. Autosyndetic male chromosome pairing observed in all hybrid families supported this assertion. Allosyndetic chromosome associations were also observed in all hybrid families. In the hybrids, the proportion of male parent chromosomes involved in allosyndesis per pollen mother cell varied from 5.5% to 35.0% and the maximum was between 25% and 60%. The apomictic condition of the indigenous male parents segregated in the hybrids.
  • These results confirm a strong association between autoploidy and apomixis in Paspalum, and the existence of cytogenetic relationships between different species of the Plicatula group. Allosyndetic chromosome pairing and seed fertility of the hybrids suggest the feasibility of gene transfer among species.
  相似文献   

8.
InRubus L. a connection seems to exist between the degree of meiotic disturbances on the one hand, and the production of unreduced embryo sacs, pollen fertility and relative seed set on the other hand. Severe meiotic disturbances commonly encountered in apomictic taxa decrease pollen fertility and thereby seed set since pollen is necessary for endosperm development. By contrast interspecific hybrids between apomictic taxa appear to be sexual and exhibit high pollen fertilities, probably due to an improved meiosis. Thus, apomixis leads to a decreased fertility inRubus, not the opposite, as often discussed.  相似文献   

9.
Paspalum simplex is a grass distributed throughout the phytogeographic Chaco region in South America from which sexual diploid and apomictic tetraploid races have been reported. We analysed native populations to determine their homogeneity of ploidy level, and the relationship between geographic distribution, ploidy levels, and reproductive systems. The ploidy level was established for 379 plants from 32 wild populations. Tetraploidy and apomixis constitute the most common combination for this species all over the Chaco region. Apomictic hexaploid plants were found associated with 4x populations. Diploids were confined to a small sector of the region. One sexual triploid plant arose from seed harvested in a pure 2x population, and one apomictic 3x plant was found in a mixed 2x-4x population. The results suggest that P. simplex is a core agamic complex characteristic of the Chaco region from which other apomictic polyploid species of the subgenus Anachyris could have evolved. Received July 24, 2002; accepted September 12, 2002 Published online: December 11, 2002  相似文献   

10.
 The Endosperm Balance Number (EBN) hypothesis was developed in the early ’80s to explain the basis for normal seed development after intra- and inter-specific crosses, first in the potato and then in several other crop species. According to this hypothesis, each species has a genome-specific effective ploidy, the EBN, which must be in a 2 : 1 maternal to paternal ratio in the hybrid endosperm for normal development of the endosperm itself. This paper reviews how the EBN may act as a powerful isolating mechanism in sexual reproduction, maintaining the genome integrity of the species and playing an important role in the speciation of polyploids from diploids. We also provide further evidence that EBN is more important than chromosome ploidy in determining the success or failure of interspecific crosses. In fact, results from inter-ploidy and inter-EBN crosses to infuse 1EBN Solanum commersonii into 4EBN S. tuberosum demonstrated that the knowledge and manipulation of EBN is a useful tool in designing breeding schemes and in predicting the offspring ploidy and EBN. In this paper we also discuss the exceptions to the 2 : 1 EBN ratio, and report the evidence for endomitosis in the polar nuclei to explain exceptions to the EBN model in the potato. Received: 22 December 1997 / Accepted: 19 May 1998  相似文献   

11.
 The genetic control of Endosperm Balance Number (EBN), a mechanism of effective ploidy that controls seed development, was studied using aneuploidy. The Endosperm Balance Number hypothesis proposes that each species has an effective ploidy (EBN) in the endosperm and that it is the effective ploidies, rather than the numerical (actual) ploidies, that must be in a 2:1 maternal to paternal ratio for normal endosperm development. Experiments were conducted in Datura stramonium L. (2n=4x=48) to determine if more than one chromosome but less than the whole genome could change the EBN of the female. Triploids were crossed with tetraploids to produce aneuploids. Most plump seeds gave rise to 2n=4x=48 chromosome plants. Six plants had between 38 and 47 chromosomes. Karyotyping of these plants supported the conclusion that only two chromosomes (1.2 and 19.20), when extra, were necessary to change the EBN of the central cell. Received: 25 April 1998 / Revision accepted: 25 January 1999  相似文献   

12.
Summary A triploid hybrid (2n=3x=36) between a colchicine-induced 4x(2EBN) Solanum brevidens (a non-tuber-bearing species) and 2x(2EBN) S. chacoense (a tuber-bearing species) was used as a vehicle for germplasm transfer to S. tuberosum Group Tuberosum. The use of 2n gametes from the triploid allowed the unique opportunity for transferring exotic germplasm from Series Etuberosa to Gp. Tuberosum material. The triploid hybrid used had a pollen stainability of less than 0.1%. Observations of microsporogenesis revealed that metaphase I pairing configurations were primarily 12 bivalents and 12 univalents with occasional trivalents. Anaphase I separations were irregular, often with lagging univalents. Meiotic observations and pollen morphology suggest that the stainable pollen produced by the hybrid was 2n=3x=36. A single pentaploid hybrid (2n=5x=60) was produced by the fertilization of a rare 2n egg from the triploid with a normal male gamete from the clone Wis AG 231 (2n=4x=48). Limited crosses to other 1, 2 and 4EBN species and cultivars were unsuccessful. The pentaploid hybrid had a more regular meiosis than the triploid and dramatically improved pollen stainability (37% stainable pollen). Stylar blocks prevented estimates of male fertility in crosses. Female fertility in 47 crosses with nine cultivars averaged 19 seeds per fruit. Although S. brevidens is non-tuber-bearing, and the triploid produced only stolons, the pentaploid hybrid tuberized well under field conditions, despite being very late. Results suggest that the tuberization response is a dosage and/or threshold effect. This approach to the incorporation of 1EBN germplasm indicates the utility of the EBN concept coupled with 2n gametes. Further, it demonstrates a means for the introgression of 1EBN species genes into Gp. Tuberosum material.  相似文献   

13.
Bahiagrass (Paspalum notatum Flüggé) is the predominant forage grass in the southeastern US. The commercially important bahiagrass cultivar ‘Argentine’ is preferred for genetic transformation over sexual diploid cytotypes, since it produces uniform seed progeny through apomixis. Pseudogamous apomictic seed production in Argentine bahiagrass may contribute to transgene confinement. It is characterized by embryo development which is independent of fertilization of the egg cell, but requires fertilization with compatible pollen to produce the endosperm. Pollen-mediated gene transfer from transgenic, glufosinate-resistant apomictic bahiagrass as pollen donor at close proximity (0.5–3.5 m) with non-transgenic sexual or apomictic bahiagrass cultivars as pollen receptors was evaluated under field conditions. Hybridization frequency was evaluated by glufosinate herbicide resistance in >23,300 seedlings derived from open-pollinated (OP) pollen receptor plants. Average gene transfer between transgenic apomictic, tetraploid and sexual diploid bahiagrass was 0.03%. Herbicide-resistant hybrids confirmed by immuno-chromatographic detection of the PAT protein displayed a single copy bar gene identical to the pollen parent. Hybrids resulting from diploid pollen receptors were confirmed as triploids or aneu-triploids with significantly reduced vigor and seed set as compared to the parents. Transmission of transgenes to sexual bahiagrass is severely restricted by the ploidy difference between tetraploid apomicts and diploid sexual bahiagrass. Average gene transfer between transgenic apomictic tetraploid and non-transgenic, apomictic tetraploid bahiagrass was 0.17%, confirming a very low frequency of amphimixis in apomictic bahiagrass cultivars. While not providing complete transgene containment, gene transfer between transgenic apomictic and non-transgenic bahiagrass occurs at a much lower frequency than reported for other cross-pollinating or facultative apomictic grasses.  相似文献   

14.
Summary The genetic control of Endosperm Balance Number (EBN) was investigated by a complete diallel of four exceptional diploid Solanum commersonii-S. chacoense hybrids (1 1/2 EBN) and backcrosses to their species parents, S. commersonii (1 EBN) and S. chacoense (2 EBN). Crosses in which the female parent had a higher EBN value than the male, S. chacoense (2 EBN)XF1 (11/2 EBN) and F1 (11/2 EBN)X S. commersonii (1 EBN), produced viable seed to aborted seed ratios of 11.1 and 11.3, respectively, and had average to small sized viable seed. Crosses in which the female parent had a lower EBN value than the male, S. commersonii (1 EBN)XF1 (11/2 EBN) and F1 (11/2 EBN)XS. chacoense (2 EBN), produced viable seed to aborted seed ratios of 1 7.9 and 1 6.7, respectively, and had average to large sized viable seeds. The results of these crosses appear to be consistent with the relative EBN values of the male and female parent. A model is proposed for the system regulating endosperm development. The assumptions of this model are: (1) three unlinked loci control the system; (2) the loci are homozygous within a species; (3) the genes have additive effects and are of equal strength within a species; (4) the genes within S. chacoense have twice the effect with respect to endosperm regulation as those within S. commersonii; and (5) a slight excess maternal dosage will produce the qualitative effect of small but viable seed. This model, in which quantitative genes operate in a dosage dependent system bears many similarities to classical, threshold-type genetic models.  相似文献   

15.

Background and Aims

Interspecific hybridization and polyploidy are key processes in plant evolution and are responsible for ongoing genetic diversification in the genus Sorbus (Rosaceae). The Avon Gorge, Bristol, UK, is a world ‘hotspot’ for Sorbus diversity and home to diploid sexual species and polyploid apomictic species. This research investigated how mating system variation, hybridization and polyploidy interact to generate this biological diversity.

Methods

Mating systems of diploid, triploid and tetraploid Sorbus taxa were analysed using pollen tube growth and seed set assays from controlled pollinations, and parent–offspring genotyping of progeny from open and manual pollinations.

Key Results

Diploid Sorbus are outcrossing and self-incompatible (SI). Triploid taxa are pseudogamous apomicts and genetically invariable, but because they also display self-incompatibility, apomictic seed set requires pollen from other Sorbus taxa – a phenomenon which offers direct opportunities for hybridization. In contrast tetraploid taxa are pseudogamous but self-compatible, so do not have the same obligate requirement for intertaxon pollination.

Conclusions

The mating inter-relationships among Avon Gorge Sorbus taxa are complex and are the driving force for hybridization and ongoing genetic diversification. In particular, the presence of self-incompatibility in triploid pseudogamous apomicts imposes a requirement for interspecific cross-pollination, thereby facilitating continuing diversification and evolution through rare sexual hybridization events. This is the first report of naturally occurring pseudogamous apomictic SI plant populations, and we suggest that interspecific pollination, in combination with a relaxed endosperm balance requirement, is the most likely route to the persistence of these populations. We propose that Avon Gorge Sorbus represents a model system for studying the establishment and persistence of SI apomicts in natural populations.  相似文献   

16.
Summary The endosperm has played a significant role in the evolution of angiosperms because of its physiological and genetic relationships to the embryo. One manifestation of this evolutionary role is its abnormal development in interploidy crosses. It is now established that the endosperm develops abnormally in interploidy-intraspecific crosses when the maternal: paternal genome ratio deviates from 21 in the endosperm itself. We propose an Endosperm Balance Number (EBN) hypothesis to explain endosperm development in both interploidy-intraspecific and interspecific crosses. Each species is assigned an EBN on the basis of its crossing behavior to a standard species. It is the EBN which determines the effective ploidy in the endosperm of each species, and it is the EBNs which must be in a 21, maternal:paternal ratio. The EBN of a species may be determined by a few genes rather than the whole genome. This hypothesis brings most intraspecific-interploidy and interspecific crossing data under a single concept with respect to endosperm function. The implications of this hypothesis to isolating mechanisms, 2n gametes, the evolution of disomic polyploids, and reciprocal differences in seed development are discussed.  相似文献   

17.
Paspalum is an important genus of the family Gramineae that includes several valuable forage grasses. Many of the species are polyploid and either obligate or facultative apomicts. Cyto-embryological observations of several tetraploid genotypes of P. notatum were performed to determine their mode of reproduction. Afterwards, selfed progenies of the genotypes F131, Q3664 and Q4117 were analysed using RFLP and RAPD genetic fingerprints to identify maternal and non-maternal (aberrant) plants, and to establish the degree of apomictic reproduction. Five maize clones and six primers were used for detecting genetic deviations from the maternal profile. Maize clones umc379, umc384 and umc318 and primers OPG10 and OPI4 were the most informative for discriminating between maternal and aberrant individuals within the progenies of F131 and Q3664. The combined results of three RFLP clones or 4–6 RAPD primers were necessary to ascertain the mode of reproduction in plants F131 and Q3664. The results obtained with the RFLP and RAPD markers were in agreement with the cyto-embryological studies in ascertaining the mode and degree of apomictic reproduction. Plant F131 showed a completely sexual reproductive behaviour, Q3664 an elevated expression of sexuality, while Q4117 was highly apomictic. A fingerprint analysis of an outcrossing population, aimed at the identification of hybrid plants, was also performed. Maize clones um318 and umc379 and primers OPC2 and OPC9 were used. The presence of specific bands belonging to the male parent permitted a rapid and easy detection of hybrids. The methodology described here can be applied both for the characterisation of P. notatum populations and to identify hybrid progenies in Paspalum breeding programs. Received: 5 March 1997 / Accepted: 13 May 1997  相似文献   

18.
Noyes RD  Baker R  Mai B 《Heredity》2007,98(2):92-98
The inheritance of asexual seed development (apomixis) in Erigeron annuus (Asteraceae) was evaluated in a triploid (2n=3x=27) population resulting from a cross between an apomictic tetraploid (2n=4x=36) pollen parent and a sexual diploid (2n=2x=18) seed parent. Diplospory (unreduced female gametophyte formation) and autonomous development (embryo and endosperm together) segregated independently in the population yielding four distinct phenotype classes: (1) apomictic plants combining diplospory and autonomous development, (2) diplosporous plants lacking autonomous development, (3) meiotic plants with autonomous (though abortive) development and (4) meiotic plants lacking autonomous development. Each class was represented by approximately one-quarter of the population (n=117), thus corresponding to a two-factor genetic model with no linkage (chi(2)=2.59, P=0.11). Observations demonstrate that autonomous embryo and endosperm development (jointly) may occur in either reduced or unreduced egg cells. The cosegregation of the traits is attributed to tight linkage or pleiotropy. The data are consistent with the hypothesis that autonomous development in E. annuus is regulated by a single fertilization factor, F, which initiates development of both the embryo and the endosperm in the absence of fertilization.  相似文献   

19.
Self‐compatibility in apomictic pseudogamic species is considered fundamental to assure reproduction by seeds in extreme situations, making apomictic species more advantageous than sexual ones in these scenarios. Anemopaegma acutifolium is a polyploidy, apomictic sporophytic species with no endosperm development in ovules of unpollinated pistils, which indicates obligate pseudogamy. Thus, the aim of the present work is to study the breeding system and post‐pollination events to test if there is similar pseudogamous development irrespective of pollination treatment. We analysed fruit and seed set obtained in controlled experimental pollinations, as well as embryo number per seed, and the progress of ovule penetration, fertilisation and early endosperm development between self‐ and cross‐pollinated pistils. We found that the species is self‐fertile and that spontaneous selfing fruit set is also possible, although emasculated flowers never form fruits. Selfed pistils were as efficient as crossed ones for all parameters analysed, except for a delay in endosperm development observed in the former that may be an effect of the late‐acting self‐incompatibility. Therefore, the avoidance of selfed pistil abortion seems to be promoted by the presence of adventitious embryos and a normal endosperm. We conclude that A. acutifolium shows apomixis‐related pseudo‐self‐compatibility, as in other self‐fertile apomictic species of Bignoniaceae, which confer reproductive assurance and increases fruit‐set and persistence ability in fast‐changing tropical habitats.  相似文献   

20.
Summary Accessions of eight Lycopersicon species and five yellow-flowered Solanum species were used as males in crosses with 2x and 4x L. esculentum to observe seed set and progeny ploidy. Species which failed in crosses to L. esculentum were crossed as males to 2x and 4x L. peruvianum. In cases of low seed set, chromosome counts were undertaken to establish the nature of the progeny. Endosperm Balance Number (EBN) relationships were determined for the crossability groups. Results support the basic concept of an L. esculentum crossability complex and an L. peruvianum crossability complex. Within the L. esculentum complex, all EBNs appear identical with a value of 2. Within the L. peruvianum complex, more variability appears to exist. The EBN values of this group are higher, and may be approximately double those of the L. esculentum complex. The EBN of L. peruvianum var humifusum appears to be somewhat lower than other L. peruvianum types. The EBN values of S. lycopersicoides, S. rickii, S. ochranthum and S. juglandtfolium could not be determined experimentally. Differential aspects of Lycopersicon and tuber-bearing Solanum evolution may be interpreted on the basis of endosperm compatibility.Co-operative investigation of the Vegetable Crops Research Unit, U.S. Department of Agriculture, Agricultural Research Service, and the Wisconsin Agricultural Experiment Station  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号