首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Proteasome-dependent degradation of ubiquitinated proteins plays a key role in many important cellular processes. Ubiquitination requires the E1 ubiquitin activating enzyme, an E2 ubiquitin conjugating enzyme, and frequently a substrate-specific ubiquitin protein ligase (E3). One class of E3 ubiquitin ligases has been shown to contain a common zinc-binding RING finger motif. We have previously shown that herpes simplex virus type 1 ICP0, itself a RING finger protein, induces the proteasome-dependent degradation of several cellular proteins and induces the accumulation of colocalizing conjugated ubiquitin in vivo. We now report that both full-length ICP0 and its isolated RING finger domain induce the accumulation of polyubiquitin chains in vitro in the presence of E1 and the E2 enzymes UbcH5a and UbcH6. Mutations within the RING finger region that abolish the in vitro ubiquitination activity also cause severe reductions in ICP0 activity in other assays. We conclude that ICP0 has the potential to act as an E3 ubiquitin ligase during viral infection and to target specific cellular proteins for destruction by the 26S proteasome.  相似文献   

3.
The protein CNOT4 possesses an N-terminal RING finger domain that acts as an E3 ubiquitin ligase and specifically interacts with UbcH5B, a ubiquitin-conjugating enzyme. The structure of the CNOT4 RING domain has been solved and the amino acids important for the binding to UbcH5B have been mapped. Here, the residues of UbcH5B important for the binding to CNOT4 RING domain were identified by NMR chemical shift perturbation experiments, and these data were used to generate structural models of the complex with the program HADDOCK. Together with the NMR data, additional biochemical data were included in a second docking, and comparisons of the resulting model with the structure of the c-Cbl/UbcH7 complex reveal some significant differences, notably at specific residues, and give structural insights into the E2/E3 specificity.  相似文献   

4.
We recently reported the identification of a RING finger-containing protein, HHARI (human homologue of Drosophila ariadne), which binds to the human ubiquitin-conjugating enzyme UbcH7 in vitro. We now demonstrate that HHARI interacts and co-localizes with UbcH7 in mammalian cells, particularly in the perinuclear region. We have further defined a minimal interaction region of HHARI comprising residues 186-254, identified individual amino acid residues essential for the interaction, and determined that the distance between the RING1 finger and IBR (in between RING fingers) domains is critical to maintaining binding. We have also established that the RING1 finger of HHARI cannot be substituted for by the highly homologous RING finger domains of either of the ubiquitin-protein ligase components c-CBL or Parkin, despite their similarity in structure and their independent capabilities to bind UbcH7. Furthermore, mutation of the RING1 finger domain of HHARI from a RING-HC to a RING-H2 type abolishes interaction with UbcH7. These studies demonstrate that very subtle changes to the domains that regulate recognition between highly conserved components of the ubiquitin pathway can dramatically affect their ability to interact.  相似文献   

5.
While some intracellular bacterial and viral proteins secreted into host cell possess ubiquitin ligase (E3) activity for their profit, it has not been reported whether intracellular parasites secrete such molecules. We identified a gene that encodes a protein containing a secretory signal peptide and a RING finger domain in the intracellular protozoan parasite, Trypanosoma cruzi . This gene was specific to T. cruzi and was designated spring ( secretory p rotein with RING finger domain). An in vitro ubiquitination assay showed that SPRING possessed E3 activity in a RING finger domain-dependent manner. SPRING could utilize human ubiquitin-activating enzymes (E2), UbcH5 and UbcH13. Although SPRING was found to be a secretory protein, the signal peptide-cleaved mature form of SPRING was localized in the nucleus of host cells, indicating that SPRING may function in the host cell nuclei. Yeast two-hybrid screening identified 52 putative SPRING interactors in HeLa cells, suggesting that SPRING affects the stability or function of a number of host proteins. Furthermore, a co-immunoprecipitation assay showed that breast cancer-associated protein 3 interacted with SPRING, as well as being ubiquitinated by SPRING in vitro . These findings are the first to show that this protozoan parasite secretes an ubiquitin ligase-related protein into host cells.  相似文献   

6.
Natural killer (NK) cells target and kill tumor cells by direct anti-tumor cytotoxicity. NK lytic-associated molecule (NKLAM) is a protein involved in this cytolytic function. Acting as an E3 ubiquitin ligase, NKLAM binds to and ubiquitinates a novel protein, uridine-cytidine kinase like-1 (UCKL-1), targeting it for degradation. However, UCKL-1’s function in tumor cell survival and NK cell cytotoxicity is unknown. UCKL-1’s homology to uridine kinases and over expression in tumor cells suggests a role for UCKL-1 in tumor growth and/or survival. We propose that NKLAM and UCKL-1 interact in the tumor cell, where degradation of UCKL-1 leads to increased tumor cell apoptosis. Here we use RNA interference to downregulate UCKL-1 expression in K562 erythroleukemia cells. It was seen that downregulation of UCKL-1 initiated apoptosis and slowed the cell cycle, resulting in lower growth in the small interfering UCKL-1 RNA treated K562 cell culture. In addition, the chemotherapeutic agent staurosporine was seen to be more effective in inducing cell death by apoptosis in UCKL-1 depleted K562 cells compared with controls. We also found that UCKL-1 depleted K562 cells were more susceptible to NK mediated cytolysis than controls. These results indicate a role for UCKL-1 in tumor cell survival and suggest possible therapeutic potential of UCKL-1 inhibitors in cancer treatment.  相似文献   

7.
Herpes simplex virus type 1 regulatory protein ICP0 contains a zinc-binding RING finger and has been shown to induce the proteasome-dependent degradation of a number of cellular proteins in a RING finger-dependent manner during infection. This domain of ICP0 is also required to induce the formation of unanchored polyubiquitin chains in vitro in the presence of ubiquitin-conjugating enzymes UbcH5a and UbcH6. These data indicate that ICP0 has the potential to act as a RING finger ubiquitin ubiquitin-protein isopeptide ligase (E3) and to induce the degradation of certain cellular proteins through ubiquitination and proteasome-mediated degradation. Here we demonstrate that ICP0 is a genuine RING finger ubiquitin E3 ligase that can interact with and mediate the ubiquitination of the major oncoprotein p53 both in vitro and in vivo. Ubiquitination of p53 requires ICP0 to have an intact RING finger domain and occurs independently of its ability to bind to the ubiquitin-specific protease USP7.  相似文献   

8.
Mutations in Parkin and PINK1 cause an inherited early‐onset form of Parkinson's disease. The two proteins function together in a mitochondrial quality control pathway whereby PINK1 accumulates on damaged mitochondria and activates Parkin to induce mitophagy. How PINK1 kinase activity releases the auto‐inhibited ubiquitin ligase activity of Parkin remains unclear. Here, we identify a binding switch between phospho‐ubiquitin (pUb) and the ubiquitin‐like domain (Ubl) of Parkin as a key element. By mutagenesis and SAXS, we show that pUb binds to RING1 of Parkin at a site formed by His302 and Arg305. pUb binding promotes disengagement of the Ubl from RING1 and subsequent Parkin phosphorylation. A crystal structure of Parkin Δ86–130 at 2.54 Å resolution allowed the design of mutations that specifically release the Ubl domain from RING1. These mutations mimic pUb binding and promote Parkin phosphorylation. Measurements of the E2 ubiquitin‐conjugating enzyme UbcH7 binding to Parkin and Parkin E3 ligase activity suggest that Parkin phosphorylation regulates E3 ligase activity downstream of pUb binding.  相似文献   

9.
LINCR was identified as a glucocorticoid-attenuated response gene induced in the lung during endotoxemia. The LINCR protein has structural similarities to Drosophila Neuralized, which regulates the developmentally important Notch signaling pathway. Endotoxemia-induced LINCR expression in vivo was localized by in situ hybridization to alveolar epithelial type II cells, and shown to be induced by LPS and inflammatory cytokines in the T7 alveolar epithelial type II cell line. RING domain-dependent ubiquitin E3 ligase activity of LINCR was demonstrated using full-length FLAG-LINCR or a deletion mutant lacking the RING domain expressed in 293T cells, and using a GST-LINCR RING fusion protein expressed in Escherichia coli. LINCR preferentially interacted with the ubiquitin-conjugating enzyme UbcH6 and preferentially generated polyubiquitin chains linked via non-canonical lysine residues. We conclude that LINCR is a novel inflammation-induced ubiquitin E3 ligase expressed in alveolar epithelial type II cells, and discuss its potential role in the lung response to inflammation.  相似文献   

10.
Huang J  Xu LG  Liu T  Zhai Z  Shu HB 《FEBS letters》2006,580(3):940-947
Recently, it has been shown that really interesting new gene (RING)-in between ring finger (IBR)-RING domain-containing proteins, such as Parkin and Parc, are E3 ubiquitin ligases and are involved in regulation of apoptosis. In this report, we show that p53-inducible RING-finger protein (p53RFP), a p53-inducible E3 ubiquitin ligase, induces p53-dependent but caspase-independent apoptosis. p53RFP contains an N-terminal RING-IBR-RING domain and an uncharacterized, evolutionally highly conserved C-terminal domain. p53RFP interacts with E2 ubiquitin-conjugating enzymes UbcH7 and UbcH8 but not with UbcH5, and this interaction is mediated through the RING-IBR-RING domain of p53RFP. Interestingly, the conserved C-terminal domain of p53RFP is required and sufficient for p53RFP-mediated apoptosis, suggesting p53RFP-mediated apoptosis does not require its E3 ubiquitin ligase activity. Together with a recent report showing that p53RFP is involved in ubiquitination and degradation of p21, a p53 downstream protein promoting growth arrest and antagonizing apoptosis, our findings suggest that p53RFP is involved in switching a cell from p53-mediated growth arrest to apoptosis.  相似文献   

11.
The poxvirus p28 virulence factor is an E3 ubiquitin ligase   总被引:1,自引:0,他引:1  
A majority of the orthopoxviruses, including the variola virus that causes the dreaded smallpox disease, encode a highly conserved 28-kDa protein with a classic RING finger sequence motif (C(3)HC(4)) at their carboxyl-terminal domains. The RING domain of p28 has been shown to be a critical determinant of viral virulence for the ectromelia virus (mousepox virus) in a murine infection model (Senkevich, T. G., Koonin, E. V., and Buller, R. M. (1994) Virology 198, 118-128). Here, we demonstrate that the p28 proteins encoded by the ectromelia virus and the variola virus possess E3 ubiquitin ligase activity in biochemical assays as well as in cultured mammalian cells. Point mutations disrupting the RING finger domain of p28 completely abolish its E3 ligase activity. In addition, p28 functions cooperatively with Ubc4 and UbcH5c, the E2 conjugating enzymes involved in 26 S proteasome degradation of protein targets. Moreover, p28 catalyzes the formation of Lys-63-linked polyubiquitin chains in the presence of Ubc13/Uev1A, a heterodimeric E2 conjugating enzyme, indicating that p28 may regulate the biological activity of its cognate viral and/or host cell target(s) by Lys-63-linked ubiquitin multimers. We thus conclude that the poxvirus p28 virulence factor is a new member of the RING finger E3 ubiquitin ligase family and has a unique polyubiquitylation activity. We propose that the E3 ligase activity of the p28 virulence factor may be targeted for therapeutic intervention against infections by the variola virus and other poxviruses.  相似文献   

12.
NK cells are most effective in killing a broad spectrum of primary tumor cells after stimulation with cytokines. We have cloned a novel gene, designated NKLAM (for NK lytic-associated molecule), whose expression is associated with this cytokine-enhanced process. NKLAM expression is up-regulated in NK cells by IL-2 and IFN-beta. NKLAM is also selectively expressed by activated macrophages and CTL. Treatment of NK cells and CTL with NKLAM antisense oligonucleotides specifically decreases their cytolytic activity, while having no effect on cell growth. The NKLAM gene encodes a 62-kDa ring finger-containing protein that localizes to the cytoplasmic granules in NK cells. Further study of this gene may add to our understanding of cytotoxic processes common to NK cells, CTL, and activated macrophages.  相似文献   

13.
Ubiquitin ligases are critical components of the ubiquitination process that determine substrate specificity and, in collaboration with E2 ubiquitin-conjugating enzymes, regulate the nature of polyubiquitin chains assembled on their substrates. Cellular inhibitor of apoptosis (c-IAP1 and c-IAP2) proteins are recruited to TNFR1-associated signalling complexes where they regulate receptor-stimulated NF-κB activation through their RING domain ubiquitin ligase activity. Using a directed yeast two-hybrid screen, we found several novel and previously identified E2 partners of IAP RING domains. Among these, the UbcH5 family of E2 enzymes are critical regulators of the stability of c-IAP1 protein following destabilizing stimuli such as TWEAK or CD40 signalling or IAP antagonists. We demonstrate that c-IAP1 and UbcH5 family promote K11-linked polyubiquitination of receptor-interacting protein 1 (RIP1) in vitro and in vivo. We further show that TNFα-stimulated NF-κB activation involves endogenous K11-linked ubiquitination of RIP1 within the TNFR1 signalling complex that is c-IAP1 and UbcH5 dependent. Lastly, NF-κB essential modifier efficiently binds K11-linked ubiquitin chains, suggesting that this ubiquitin linkage may have a signalling role in the activation of proliferative cellular pathways.  相似文献   

14.
The E2 ubiquitin-conjugating enzymes UbcH7 and UbcH5B both show specific binding to the RING (really interesting new gene) domain of the E3 ubiquitin-protein ligase c-Cbl, but UbcH7 hardly supports ubiquitination of c-Cbl and substrate in a reconstituted system. Here, we found that neither structural changes nor subtle differences in the E2-E3 interaction surface are possible explanations for the functional specificity of UbcH5B and UbcH7 in their interaction with c-Cbl. The quick transfer of ubiquitin from the UbcH5B∼Ub thioester to c-Cbl or other ubiquitin acceptors suggests that UbcH5B might functionally be a relatively pliable E2 enzyme. In contrast, the UbcH7∼Ub thioester is too stable to transfer ubiquitin under our assay conditions, indicating that UbcH7 might be a more specific E2 enzyme. Our results imply that the interaction specificity between c-Cbl and E2 is required but not sufficient for transfer of ubiquitin to potential targets.  相似文献   

15.
Autosomal recessive juvenile parkinsonism (AR-JP), a common familial form of Parkinson's disease, is caused by mutations of human Parkin. To deepen the understanding of Parkin biology in an in vivo model of Drosophila, we attempted to characterize the function of Drosophila melanogaster Parkin and found that D. melanogaster Parkin exhibited UbcH8-dependent E3 ubiquitin-protein ligase activity. Using E2 binding and in vitro ubiquitination assays, UbcH8 preferentially was found to bind to Parkin mutants harboring functional RING1 domains, but failed to bind to mutants harboring point mutants with complete loss of function. This inability of UbcH8 binding to such mutants was accompanied by abrogation of an E3 ligase activity, indicating that D. melanogaster Parkin as an E3 ligase interacts with UbcH8 through its RING1 domain. An in vivo ubiquitination assay revealed that D. melanogaster Parkin existed in ubiquitinated form in vivo. Moreover, peanut and septin1, D. melanogaster septin proteins, were also ubiquitinated by D. melanogaster Parkin. Co-immunoprecipitation with membrane protein Syntaxin indicated direct binding of septin proteins to syntaxin, implicating their relevance in the exocytosis of dopamine in cells. Western blot analysis and DNA fragmentation indicated that the rate and efficiency of p53-dependent apoptosis were significantly higher in the presence of dopamine than without the septin proteins. Therefore, our findings in the present study demonstrate that Parkin possibly influences septin protein effects on p53-mediated apoptosis, helping to extend the utility of Drosophila as a model system for the study of neurodegeneration.  相似文献   

16.
In the present study, we report the identification and characterization of MEX (MEKK1-related protein X), a protein with homology to MEKK1 that is expressed uniquely in the testis. MEX is comprises four putative zinc-binding domains including an N-terminal SWIM (SWI2/SNF2 and MuDR) domain of unknown function and two RING (really interesting new gene) fingers separated by a ZZ zinc finger domain. Biochemical analyses revealed that MEX is self-ubiquitinated and targeted for degradation through the proteasome pathway. MEX can act as an E3, Ub (ubiquitin) ligase, through the E2, Ub-conjugating enzymes UbcH5a, UbcH5c or UbcH6. A region of MEX that contains the RING fingers and the ZZ zinc finger was required for interaction with UbcH5a and MEX self-association, whereas the SWIM domain was critical for MEX ubiquitination. The expression of MEX promoted apoptosis that was induced through Fas, DR (death receptor) 3 and DR4 signalling, but not that mediated by the BH3 (Bcl-2 homology 3)-only protein BimEL or the chemotherapeutic drug adriamycin. The enhancement of apoptosis by MEX required a functional SWIM domain, suggesting that MEX ubiquitination is critical for the enhancement of apoptosis. These results indicate that MEX acts as an E3 Ub ligase, an activity that is dependent on the SWIM domain and suggest a role for MEX in the regulation of death receptor-induced apoptosis in the testes.  相似文献   

17.
Ubiquitinylation of proteins appears to be mediated by the specific interplay between ubiquitin-conjugating enzymes (E2s) and ubiquitin-protein ligases (E3s). However, cognate E3s and/or substrate proteins have been identified for only a few E2s. To identify proteins that can interact with the human E2 UbcH7, a yeast two-hybrid screen was performed. Two proteins were identified and termed human homologue of Drosophila ariadne (HHARI) and UbcH7-associated protein (H7-AP1). Both proteins, which are widely expressed, are characterized by the presence of RING finger and in between RING fingers (IBR) domains. No other overt structural similarity was observed between the two proteins. In vitro binding studies revealed that an N-terminal RING finger motif (HHARI) and the IBR domain (HHARI and H7-AP1) are involved in the interaction of these proteins with UbcH7. Furthermore, binding of these two proteins to UbcH7 is specific insofar that both HHARI and H7-AP1 can bind to the closely related E2, UbcH8, but not to the unrelated E2s UbcH5 and UbcH1. Although it is not clear at present whether HHARI and H7-AP1 serve, for instance, as substrates for UbcH7 or represent proteins with E3 activity, our data suggests that a subset of RING finger/IBR proteins are functionally linked to the ubiquitin/proteasome pathway.  相似文献   

18.
19.
Herpes simplex virus type 1 immediate-early regulatory protein ICP0 stimulates lytic infection and reactivation from latency, processes that require the ubiquitin E3 ligase activity mediated by the RING finger domain in the N-terminal portion of the protein. ICP0 stimulates the production of polyubiquitin chains by the ubiquitin-conjugating enzymes UbcH5a and UbcH6 in vitro, and in infected and transfected cells it induces the proteasome-dependent degradation of a number of cellular proteins including PML, the major constituent protein of PML nuclear bodies. However, ICP0 binds strongly to the cellular ubiquitin-specific protease USP7, a member of a family of proteins that cleave polyubiquitin chains and/or ubiquitin precursors. The region of ICP0 that is required for its interaction with USP7 has been mapped, and mutations in this domain reduce the functionality of ICP0. These findings pose the question: why does ICP0 include domains that are associated with the potentially antagonistic functions of ubiquitin conjugation and deconjugation? Here we report that although neither protein affected the intrinsic activities of the other in vitro, USP7 protected ICP0 from autoubiquitination in vitro, and their interaction can greatly increase the stability of ICP0 in vivo. These results demonstrate that RING finger-mediated autoubiquitination of ICP0 is biologically relevant and can be regulated by interaction with USP7. This principle may extend to a number of cellular RING finger E3 ubiquitin ligase proteins that have analogous interactions with ubiquitin-specific cleavage enzymes.  相似文献   

20.
RING proteins constitute the largest class of E3 ubiquitin ligases. Unlike most RINGs, AO7 (RNF25) binds the E2 ubiquitin-conjugating enzyme, UbcH5B (UBE2D2), with strikingly high affinity. We have defined, by co-crystallization, the distinctive means by which AO7 binds UbcH5B. AO7 contains a structurally unique UbcH5B binding region (U5BR) that is connected by an 11-amino acid linker to its RING domain, forming a clamp surrounding the E2. The U5BR interacts extensively with a region of UbcH5B that is distinct from both the active site and the RING-interacting region, referred to as the backside of the E2. An apparent paradox is that the high-affinity binding of the AO7 clamp to UbcH5B, which is dependent on the U5BR, decreases the rate of ubiquitination. We establish that this is a consequence of blocking the stimulatory, non-covalent, binding of ubiquitin to the backside of UbcH5B. Interestingly, when non-covalent backside ubiquitin binding cannot occur, the AO7 clamp now enhances the rate of ubiquitination. The high-affinity binding of the AO7 clamp to UbcH5B has also allowed for the co-crystallization of previously described and functionally important RING mutants at the RING-E2 interface. We show that mutations having marked effects on function only minimally affect the intermolecular interactions between the AO7 RING and UbcH5B, establishing a high degree of complexity in activation through the RING-E2 interface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号