首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
HtrA2/Omi, a mitochondrial serine protease in mammals, is important in programmed cell death. However, the underlining mechanism of HtrA2/Omi-mediated apoptosis remains unclear. Analogous to the bacterial homolog HtrA (DegP), the mature HtrA2 protein contains a central serine protease domain and a C-terminal PDZ domain. The 2.0 A crystal structure of HtrA2/Omi reveals the formation of a pyramid-shaped homotrimer mediated exclusively by the serine protease domains. The peptide-binding pocket of the PDZ domain is buried in the intimate interface between the PDZ and the protease domains. Mutational analysis reveals that the monomeric HtrA2/Omi mutants are unable to induce cell death and are deficient in protease activity. The PDZ domain modulates HtrA2/Omi-mediated cell death activity by regulating its serine protease activity. These structural and biochemical observations provide an important framework for deciphering the mechanisms of HtrA2/Omi-mediated apoptosis.  相似文献   

2.
Inhibitor of apoptosis proteins (IAPs) prevent apoptosis through direct inhibition of caspases. The serine protease HtrA2/Omi has an amino-terminal IAP interaction motif like that found in Reaper, which displaces IAPs from caspases, leading to enhanced caspase activity. The cell death-promoting properties of HtrA2/Omi are not only exerted through its capacity to oppose IAP inhibition of caspases but also through its integral serine protease activity. We have used peptide libraries to determine the optimal substrate sequence for cleavage by HtrA2 and also the preferred binding sequence for its PDZ domain. Using these peptides, we show that the PDZ domain of HtrA2/Omi suppresses the proteolytic activity unless it is engaged by a binding partner. Subjecting HtrA2/Omi to heat shock treatment also increases its protease activity. Unexpectedly, binding of X-linked inhibitor of apoptosis protein (XIAP) to the Reaper motif of HtrA2/Omi results in a marked increase in proteolytic activity, suggesting a new role for IAPs. When HtrA2/Omi is released from mitochondria following an apoptotic stimulus, binding to IAPs may switch their function from caspase inhibition to serine protease activation. Thus although IAP overexpression can suppress caspase activation, it could have the opposite effect on HtrA2/Omi-dependent cell death. This, together with the ability of HtrA2/Omi to degrade IAPs, may limit the overall cellular protection that can be provided by these proteins.  相似文献   

3.
The mitochondrial serine protease HtrA2/Omi helps to maintain mitochondrial function by handling misfolded proteins in the intermembrane space. In addition, HtrA2/Omi has been implicated as a proapoptotic factor upon release into the cytoplasm during the cell death cascade. The protein contains a C-terminal PDZ domain that packs against the protease active site and inhibits proteolytic activity. Engagement of the PDZ domain by peptide ligands has been shown to activate the protease and also has been proposed to mediate substrate recognition. We report a detailed structural and functional analysis of the human HtrA2/Omi PDZ domain using peptide libraries and affinity assays to define specificity, X-ray crystallography to view molecular details of PDZ-ligand interactions, and alanine-scanning mutagenesis to probe the peptide-binding groove. We show that the HtrA2/Omi PDZ domain recognizes both C-terminal and internal stretches of extended, hydrophobic polypeptides. High-affinity ligand recognition requires contacts with up to five hydrophobic side chains by distinct sites on the PDZ domain. However, no particular residue type is absolutely required at any position, and thus, the HtrA2/Omi PDZ domain appears to be a promiscuous module adapted to recognize unstructured, hydrophobic polypeptides. This type of specificity is consistent with the biological role of HtrA2/Omi in mitochondria, which requires the recognition of diverse, exposed stretches of hydrophobic sequences in misfolded proteins. The findings are less consistent with, but do not exclude, a role for the PDZ domain in targeting the protease to specific substrates during apoptosis.  相似文献   

4.
High-temperature requirement A (HtrA) and its homologs contain a serine protease domain followed by one or two PDZ domains. Bacterial HtrA proteins and the mitochondrial protein HtrA2/Omi maintain cell function by acting as both molecular chaperones and proteases to manage misfolded proteins. The biological roles of the mammalian family members HtrA1 and HtrA3 are less clear. We report a detailed structural and functional analysis of the PDZ domains of human HtrA1 and HtrA3 using peptide libraries and affinity assays to define specificity, structural studies to view the molecular details of ligand recognition, and alanine scanning mutagenesis to investigate the energetic contributions of individual residues to ligand binding. In common with HtrA2/Omi, we show that the PDZ domains of HtrA1 and HtrA3 recognize hydrophobic polypeptides, and while C-terminal sequences are preferred, internal sequences are also recognized. However, the details of the interactions differ, as different domains rely on interactions with different residues within the ligand to achieve high affinity binding. The results suggest that mammalian HtrA PDZ domains interact with a broad range of hydrophobic binding partners. This promiscuous specificity resembles that of bacterial HtrA family members and suggests a similar function for recognizing misfolded polypeptides with exposed hydrophobic sequences. Our results support a common activation mechanism for the HtrA family, whereby hydrophobic peptides bind to the PDZ domain and induce conformational changes that activate the protease. Such a mechanism is well suited to proteases evolved for the recognition and degradation of misfolded proteins.  相似文献   

5.
The mitochondrial serine protease HtrA2/Omi: an overview   总被引:2,自引:0,他引:2  
The HtrA family refers to a group of related oligomeric serine proteases that combine a trypsin-like protease domain with at least one PDZ interaction domain. Mammals encode four HtrA proteases, named HtrA1-4. The protease activity of the HtrA member HtrA2/Omi is required for mitochondrial homeostasis in mice and humans and inactivating mutations associated with neurodegenerative disorders such as Parkinson's disease. Moreover, HtrA2/Omi is released in the cytosol, where it contributes to apoptosis through both caspase-dependent and -independent pathways. Here, we review the current knowledge of HtrA2/Omi biology and discuss the signaling pathways that underlie its mitochondrial and apoptotic functions from an evolutionary perspective.  相似文献   

6.
Omi/HtrA2 is a mitochondrial serine protease that is released into the cytosol during apoptosis and promotes cytochrome c (Cyt c)dependent caspase activation by neutralizing inhibitor of apoptosis proteins (IAPs) via its IAP-binding motif. The protease activity of Omi/HtrA2 also contributes to the progression of both apoptosis and caspase-independent cell death. In this study, we found that wild-type Omi/HtrA2 is more effective at caspase activation than a catalytically inactive mutant of Omi/HtrA2 in response to apoptotic stimuli, such as UV irradiation or tumor necrosis factor. Although similar levels of Omi/HtrA2 expression, XIAP-binding activity, and Omi/HtrA2 mitochondrial release were observed among cells transfected with catalytically inactive and wild-type Omi/HtrA2 protein, XIAP protein expression after UV irradiation was significantly reduced in cells transfected with wild-type Omi/HtrA2. Recombinant Omi/HtrA2 was observed to catalytically cleave IAPs and to inactivate XIAP in vitro, suggesting that the protease activity of Omi/HtrA2 might be responsible for its IAP-inhibiting activity. Extramitochondrial expression of Omi/HtrA2 indirectly induced permeabilization of the outer mitochondrial membrane and subsequent Cyt c-dependent caspase activation in HeLa cells. These results indicate that protease activity of Omi/HtrA2 promotes caspase activation through multiple pathways.  相似文献   

7.
HtrA2/Omi is a mammalian mitochondrial serine protease, and was found to have dual roles in mammalian cells, not only acting as an apoptosis-inducing protein but also maintaining mitochondrial homeostasis. PDZ domain is one of the most important protein-protein interaction modules and is involved in a variety of important cellular functions, such as signal transduction, degradation of proteins, and formation of cytoskeleton. Recently, it was reported that the PDZ domain of HtrA2/Omi might regulate proteolytic activity through its interactions with ligand proteins. In this study, we rapidly characterized the binding properties of HtrA2/Omi PDZ domain by validation screening of the PDZ ligand library with yeast two-hybrid approach. Then, we predicted its novel ligand proteins in human proteome and reconfirmed them in the yeast two-hybrid system. Finally, we analyzed the smallest networks bordered by the shortest path length between the protein pairs of novel interactions to evaluate the confidence of the identified interactions. The results revealed some novel binding properties of HtrA2/Omi PDZ domain. Besides the reported Class II PDZ motif, it also binds to Class I and Class III motifs, and exhibits restricted variability at P−3, which means that the P−3 residue is selected according to the composition of the last three residues. Seven novel ligand proteins of HtrA2/Omi PDZ domain were discovered, providing significant clues for further clarifying the roles of HtrA2/Omi. Moreover, this study proves the high efficiency and practicability of the newly developed validation screening of candidate ligand library method for binding property characterization of peptide-binding domains.  相似文献   

8.
HtrA2(Omi), belonging to the high-temperature requirement A (HtrA) family of stress proteins, is involved in the maintenance of mitochondrial homeostasis and in the stimulation of apoptosis, as well as in cancer and neurodegenerative disorders. The protein comprises a serine protease domain and a postsynaptic density of 95 kDa, disk large, and zonula occludens 1 (PDZ) regulatory domain and functions both as a protease and a chaperone. Based on the crystal structure of the HtrA2 inactive trimer, it has been proposed that PDZ domains restrict substrate access to the protease domain and that during protease activation there is a significant conformational change at the PDZ–protease interface, which removes the inhibitory effect of PDZ from the active site. The crystal structure of the HtrA2 active form is not available yet. HtrA2 activity markedly increases with temperature. To understand the molecular basis of this increase in activity, we monitored the temperature-induced structural changes using a set of single-Trp HtrA2 mutants with Trps located at the PDZ–protease interface. The accessibility of each Trp to aqueous medium was assessed by fluorescence quenching, and these results, in combination with mean fluorescence lifetimes and wavelength emission maxima, indicate that upon an increase in temperature the HtrA2 structure relaxes, the PDZ–protease interface becomes more exposed to the solvent, and significant conformational changes involving both domains occur at and above 30 °C. This conclusion correlates well with temperature-dependent changes of HtrA2 proteolytic activity and the effect of amino acid substitutions (V226K and R432L) located at the domain interface, on HtrA2 activity. Our results experimentally support the model of HtrA2 activation and provide an insight into the mechanism of temperature-induced changes in HtrA2 structure.

Electronic supplementary material

The online version of this article (doi:10.1007/s12192-012-0355-1) contains supplementary material, which is available to authorized users.  相似文献   

9.
Omi/HtrA2 is a mammalian serine protease with high homology to bacterial HtrA chaperones. Omi/HtrA2 is localized in mitochondria and is released to the cytoplasm in response to apoptotic stimuli. Omi/HtrA2 induces cell death in a caspase-dependent manner by interacting with the inhibitor of apoptosis protein as well as in a caspase-independent manner that relies on its protease activity. We describe the identification and characterization of a novel compound as a specific inhibitor of the proteolytic activity of Omi/HtrA2. This compound (ucf-101) was isolated in a high throughput screening of a combinatorial library using bacterially made Omi-(134-458) protease and fluorescein-casein as a generic substrate. ucf-101 showed specific activity against Omi/HtrA2 and very little activity against various other serine proteases. This compound has a natural fluorescence that was used to monitor its ability to enter mammalian cells. ucf-101, when tested in caspase-9 (-/-) null fibroblasts, was found to inhibit Omi/HtrA2-induced cell death.  相似文献   

10.
The mature serine protease Omi/HtrA2 is released from the mitochondria into the cytosol during apoptosis. Suppression of Omi/HtrA2 by RNA interference in human cell lines reduces cell death in response to TRAIL and etoposide. In contrast, ectopic expression of mature wildtype Omi/HtrA2, but not an active site mutant, induces potent caspase activation and apoptosis. In vitro assays demonstrated that Omi/HtrA2 could degrade inhibitor of apoptosis proteins (IAPs). Consistent with this observation, increased expression of Omi/HtrA2 in cells increases degradation of XIAP, while suppression of Omi/HtrA2 by RNA interference has an opposite effect. Combined, our data demonstrate that IAPs are substrates for Omi/HtrA2, and their degradation could be a mechanism by which the mitochondrially released Omi/HtrA2 activates caspases during apoptosis.  相似文献   

11.
Omi/HtrA2 is a pro-apoptotic mitochondrial serine protease involved in both forms of apoptosis, caspase-dependent as well as caspase-independent cell death. However, the impact of Omi/HtrA2 in the apoptotic cell machinery that takes place in vivo under pathological conditions such as cerebral ischemia remains unknown. The present study was monitored in order to examine whether Omi/HtrA2 plays a decisive role in apoptosis observed after focal cerebral ischemia in rats. Male adult rats were subjected to 90min of focal cerebral ischemia followed by reperfusion and treated with vehicle or ucf-101, a novel and specific Omi/HtrA2 inhibitor, prior reperfusion. Focal cerebral ischemia/reperfusion induced a mitochondrial up-regulation of Omi/HtrA2 and significantly increased cytosolic accumulation of Omi/HtrA2. Furthermore, ischemia led to activation of caspase-3 and degradation X-linked inhibitor of apoptosis protein (XIAP). Treatment of animals prior ischemia with ucf-101, the specific inhibitor of Omi/HtrA2, was able to (1) reduce the number of TUNEL-positive cells, to (2) attenuate the XIAP-breakdown and to (3) reduce the infarct size. This study shows for the first time that focal cerebral ischemia in rats results in Omi/HtrA2 translocation from the mitochondria to the cytosol, where it participates in neuronal cell death. Blocking the proteolytic activity of Omi/HtrA2 with specific inhibitors, such as the ucf-101, could be a novel way to afford neuroprotection and minimize cellular damage in cerebral ischemia/reperfusion.  相似文献   

12.
ped/pea-15 is a ubiquitously expressed 15-kDa protein featuring a broad anti-apoptotic function. In a yeast two-hybrid screen, the pro-apoptotic Omi/HtrA2 mitochondrial serine protease was identified as a specific interactor of the ped/pea-15 death effector domain. Omi/HtrA2 also bound recombinant ped/pea-15 in vitro and co-precipitated with ped/pea-15 in 293 and HeLa cell extracts. In these cells, the binding of Omi/HtrA2 to ped/pea-15 was induced by UVC exposure and followed the mitochondrial release of Omi/HtrA2 into the cytoplasm. Upon UVC exposure, cellular ped/pea-15 protein expression levels decreased. This effect was prevented by the ucf-101 specific inhibitor of the Omi/HtrA2 proteolytic activity, in a dose-dependent fashion. In vitro incubation of ped/pea-15 with Omi/HtrA2 resulted in ped/pea-15 degradation. In intact cells, the inhibitory action of ped/pea-15 on UVC-induced apoptosis progressively declined at increasing Omi/HtrA2 expression. This further effect of Omi/HtrA2 was also inhibited by ucf-101. In addition, ped/pea-15 expression blocked Omi/HtrA2 co-precipitation with the caspase inhibitor protein XIAP and caspase 3 activation. Thus, in part, apoptosis following Omi/HtrA2 mitochondrial release is mediated by reduction in ped/pea-15 cellular levels. The ability of Omi/HtrA2 to relieve XIAP inhibition on caspases is modulated by the relative levels of Omi/HtrA2 and ped/pea-15.  相似文献   

13.
The serine protease HtrA2/Omi is released from the mitochondria into the cytosol following apoptosis stimuli, leading to the programmed cell death in caspase-dependent and -independent manners. The function of HtrA2/Omi closely relates to its protease activity, which is required for cleavage of its substrate such as the members of the X-linked inhibitor of apoptotic protein family. However, the regulation of HtrA2/Omi by signaling molecule has not been documented. Here we report that serine/threonine kinases Akt1 and Akt2 phosphorylate mitochondria-released HtrA2/Omi on serine 212 in vivo and in vitro, which results in attenuation of its serine protease activity and pro-apoptotic function. Abolishing HtrA2/Omi phosphorylation by Akt through mutation of serine 212 to alanine (HtrA2/Omi-S212A) retains its serine protease activity and induces more apoptosis as compared with wild-type HtrA2/Omi. Conversely, HtrA2/Omi-S212D, a mutant mimicking phosphorylation, lost the protease activity and failed to induce the programmed cell death. Furthermore, the phosphorylated HtrA2/Omi fails to cleave X-linked inhibitor of apoptotic protein without interfering with their complex formation. In addition, Akt inhibits the release of HtrA2/Omi from the mitochondria into the cytoplasm in response to cisplatin treatment. These data reveal for the first time that HtrA2/Omi is directly regulated by Akt and provide a mechanism by which Akt induces cell survival at post-mitochondrial level.  相似文献   

14.
HtrA2/Omi is a mammalian mitochondrial serine protease, and was found to have dual roles in mammalian cells, not only acting as an apoptosis-inducing protein but also maintaining mitochondrial homeostasis. PDZ domain is one of the most important protein-protein interaction modules and is involved in a variety of important cellular functions, such as signal transduction, degradation of proteins,and formation of cytoskeleton. Recently, it was reported that the PDZ domain of HtrA2/Omi might regulate proteolytic activity through its interactions with ligand proteins. In this study, we rapidly characterized the binding properties of HtrA2/Omi PDZ domain by validation screening of the PDZ ligand library with yeast two-hybrid approach. Then, we predicted its novel ligand proteins in human proteome and reconfirmed them in the yeast two-hybrid system. Finally, we analyzed the smallest networks bordered by the shortest path length between the protein pairs of novel interactions to evaluate the confidence of the identified interactions. The results revealed some novel binding properties of HtrA2/Omi PDZ domain. Besides the reported Class Ⅱ PDZ motif, it also binds to Class Ⅰ and Class Ⅲ motifs, and exhibits restricted variability at P-3, which means that the P-3 residue is selected according to the composition of the last three residues. Seven novel ligand proteins of HtrA2/Omi PDZ domain were discovered, providing significant clues for further clarifying the roles of HtrA2/Omi.Moreover, this study proves the high efficiency and practicability of the newly developed validation screening of candidate ligand library method for binding property characterization of peptide-binding domains.  相似文献   

15.
Rami A  Kim M  Niquet J 《Neurochemical research》2010,35(12):2199-2207
Omi/HtrA2 is a pro-apoptotic mitochondrial serine protease involved in caspase-dependent as well as caspase-independent cell death upon various brain injuries. However, the role of Omi/HtrA2 in neuronal death induced by status epilepticus (SE) in the immature brain has not been reported. In this study, we analyzed the contribution of serine protease Omi/HtrA2, its substrate X-linked inhibitor of apoptosis protein (XIAP) and the caspase-3 activation to damage of hippocamplal CA1 cells following lithium-pilocarpine SE in P14 rat pups. Status epilepticus in the immature brain significantly induced translocation of Omi/HtrA2 from mitochondria into the cytosol, increased cytosolic accumulation of Omi/HtrA2, induced appearance of XIAP-breakdown products and enhanced caspase-3 activity in the selectively vulnerable hippocampal CA1-subfield. Taken together, these results demonstrate for the first time that SE in the immature brain results in Omi/HtrA2 accumulation in the cytosol, where it probably promotes neuronal death by neutralizing and cleaving XIAP, one of the most potent endogenous inhibitors of apoptosis.  相似文献   

16.
Omi/HtrA2 is a nuclear-encoded mitochondrial serine protease that has a pro-apoptotic function in mammalian cells. Upon induction of apoptosis, Omi translocates to the cytoplasm and participates in caspase-dependent apoptosis by binding and degrading inhibitor of apoptosis proteins. Omi can also initiate caspase-independent apoptosis in a process that relies entirely on its ability to function as an active protease. To investigate the mechanism of Omi-induced apoptosis, we set out to isolate novel substrates that are cleaved by this protease. We identified HS1-associated protein X-1 (HAX-1), a mitochondrial anti-apoptotic protein, as a specific Omi interactor that is cleaved by Omi both in vitro and in vivo. HAX-1 degradation follows Omi activation in cells treated with various apoptotic stimuli. Using a specific inhibitor of Omi, HAX-1 degradation is prevented and cell death is reduced. Cleavage of HAX-1 was not observed in a cell line derived from motor neuron degeneration 2 mice that carry a mutated form of Omi that affects its proteolytic activity. Degradation of HAX-1 is an early event in the apoptotic process and occurs while Omi is still confined in the mitochondria. Our results suggest that Omi has a unique pro-apoptotic function in mitochondria that involves removal of the HAX-1 anti-apoptotic protein. This function is distinct from its ability to activate caspase-dependent apoptosis in the cytoplasm by degrading inhibitor of apoptosis proteins.  相似文献   

17.
HtrA2/Omi, a mitochondrial trypsin-like serine protease, is pivotal in regulating apoptotic cell death; however, the underlying mechanism of HtrA2/Omi-mediated apoptosis remains to be elucidated. Using the pGEX bacterial expression system, we investigated the expression patterns of various forms of HtrA2/Omi. Full-length mouse HtrA2/Omi (mHtrA2/Omi) was successfully expressed in E. coli and purified as a proteolytically active protein. In contrast, the expression of full-length human HtrA2/Omi (hHtrA2/Omi) in E. coli was barely detected. On the basis of this result, we characterized further the expression patterns of N- or C-terminally truncated hHtrA2/Omi proteins. We found that three copies of the PRAXXTXXTP motif, which exist only in hHtrA2/Omi, might serve as a primary site that is highly susceptible to proteolytic degradation by host proteases. Removal of the N-terminal region containing the PRAXXTXXTP motifs produced a form resistant to proteolytic degradation during expression in E. coli and purification, consequently improving the production of a catalytically active, mature hHtrA2/Omi. Our study provides a method for generating useful reagents to investigate molecular mechanism by which HtrA2/Omi contributes to regulating apoptotic cell death and to identify natural substrates of HtrA2/Omi.  相似文献   

18.
Human HtrA3 protease, which induces mitochondria-mediated apoptosis, can be a tumor suppressor and a potential therapeutic target in the treatment of cancer. However, there is little information about its structure and biochemical properties. HtrA3 is composed of an N-terminal domain not required for proteolytic activity, a central serine protease domain and a C-terminal PDZ domain. HtrA3S, its short natural isoform, lacks the PDZ domain which is substituted by a stretch of 7 C-terminal amino acid residues, unique for this isoform. This paper presents the crystal structure of the HtrA3 protease domain together with the PDZ domain (ΔN-HtrA3), showing that the protein forms a trimer whose protease domains are similar to those of human HtrA1 and HtrA2. The ΔN-HtrA3 PDZ domains are placed in a position intermediate between that in the flat saucer-like HtrA1 SAXS structure and the compact pyramidal HtrA2 X-ray structure. The PDZ domain interacts closely with the LB loop of the protease domain in a way not found in other human HtrAs. ΔN-HtrA3 with the PDZ removed (ΔN-HtrA3-ΔPDZ) and an N-terminally truncated HtrA3S (ΔN-HtrA3S) were fully active at a wide range of temperatures and their substrate affinity was not impaired. This indicates that the PDZ domain is dispensable for HtrA3 activity. As determined by size exclusion chromatography, ΔN-HtrA3 formed stable trimers while both ΔN-HtrA3-ΔPDZ and ΔN-HtrA3S were monomeric. This suggests that the presence of the PDZ domain, unlike in HtrA1 and HtrA2, influences HtrA3 trimer formation. The unique C-terminal sequence of ΔN-HtrA3S appeared to have little effect on activity and oligomerization. Additionally, we examined the cleavage specificity of ΔN-HtrA3. Results reported in this paper provide new insights into the structure and function of ΔN-HtrA3, which seems to have a unique combination of features among human HtrA proteases.  相似文献   

19.
We report the isolation and characterization of a cDNA encoding the novel mammalian serine protease Omi. Omi protein consists of 458 amino acids and has homology to bacterial HtrA endoprotease, which acts as a chaperone at low temperatures and as a proteolytic enzyme that removes denatured or damaged substrates at elevated temperatures. The carboxyl terminus of Omi has extensive homology to a mammalian protein called L56 (human HtrA), but unlike L56, which is secreted, Omi is localized in the endoplasmic reticulum. Omi has several novel putative protein-protein interaction motifs, as well as a PDZ domain and a Src homology 3-binding domain. Omi mRNA is expressed ubiquitously, and the gene is localized on human chromosome 2p12. Omi interacts with Mxi2, an alternatively spliced form of the p38 stress-activated kinase. Omi protein, when made in a heterologous system, shows proteolytic activity against a nonspecific substrate beta-casein. The proteolytic activity of Omi is markedly up-regulated in the mouse kidney following ischemia/reperfusion.  相似文献   

20.
A mature form of nuclear-encoded mitochondrial serine protease HtrA2/Omi is pivotal in regulating apoptotic cell death; however, the underlying mechanism of the processing event of HtrA2/Omi and its relevant biological function remain to be clarified. Here, we describe that HtrA2/Omi is autocatalytically processed to the 36-kDa protein fragment, which is required for the cytochrome c-dependent caspase activation along with neutralizing XIAP-mediated inhibition of caspases through interaction with XIAP, eventually promoting apoptotic cell death. We have shown that the autocatalytic processing of HtrA2/Omi occurs via an intermolecular event, demonstrated by incubating an in vitro translated HtrA2/Omi (S306A) mutant with the enzymatically active glutathione S-transferase-HtrA2/Omi protein. Using N-terminal amino acid sequencing and mutational analysis, we identified that the autocatalytic cleavage site is the carboxyl side of alanine 133 of HtrA2/Omi, resulting in exposure of an inhibitor of apoptosis protein binding motif in its N terminus. Our study provides evidence that the autocatalytic processing of HtrA2/Omi is crucial for regulating HtrA2/Omi-mediated apoptotic cell death.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号