首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Glutathione S-transferases (GSTs) are multifunctional proteins and play a role in detoxification of xenobiotics as well as prevention of oxidative damage. This study exogenously overexpressed PtGSTF4 from Populus trichocarpa and its two orthologs from Populus yatungensis and Populus euphratica in Arabidopsis thaliana, respectively. To elucidate the function of three GSTF4 proteins in stress response, we compared germination and seedling growth in transgenic Arabidopsis with salt and drought treatments. All three Populus GSTF4 genes overexpressed Arabidopsis showed enhanced resistance to salt stress and drought. GSTF4 transgenic plants accumulated less hydrogen peroxide and more chlorophylls and decreased levels of lipid peroxidation under salt stress and drought comparing to the mock control plants. The difference observed by GSH and GSSG measurements indicated GSTF4 proteins may involve in glutathione-dependent peroxide scavenging which lead to reduced oxidative damage. The Arabidopsis transformed with the GSTF4 gene form P. euphratica showed higher germination rate and different performance of affecting GSSG contents comparing with the other two orthologous GST genes under NaCl treatment. These results suggested three Populus GSTF4 orthologs may have functional divergence in stress responding. This study provides insights into molecular mechanisms that underlie salt and drought stress tolerance of Phi GSTs and gives evidence for the functional divergence among orthologs in vivo.  相似文献   

2.
3.
Fingered citron (Citrus medica L. var. sarcodactylis Swingle), a precious fruit ornamental plant, is sensitive to low temperature. Cold tolerance, evaluated by semi-lethal temperature, was lower in wild-type ‘Qingpi’ than in its mutant ‘Aihua’ trees obtained by γ-radiation. The full-length cDNAs of two genes encoding fatty acid desaturases involved in unsaturated fatty acid biosynthesis were isolated from the fingered citron leaves. The CmsFAD2 open reading frame (ORF) had 1,152?bp and was uninterrupted, encoding a polypeptide of 384 amino acids that showing 82% homology with the microsomal ω-6 desaturase CiFAD2 in Davidia involucrate. The CmsFAD8 ORF contained 1,373?bp and 7 introns, encoding a polypeptide of 458 amino acids showing 76% homology with the plastidial ω-3 desaturase BpFAD8 in Betula pendula. CmsFAD2 was expressed highly in leaves but low in roots and flowers, while CmsFAD8 was obviously expressed in three tissues. Compared with control group (28°C), the expression of CmsFAD2 and CmsFAD8 in leaves of two genotypes was significantly induced at 6°C. The increase of CmsFAD2 and CmsFAD8 was earlier and larger in cold-tolerant ‘Aihua’ than in cold-sensitive ‘Qingpi’. The linolenic acid content increased significantly in leaves of mutant ‘Aihua’ plants exposed to low temperature of 6°C. The results showed that a positive relationship between CmsFAD expression and genotype tolerance to cold may exist.  相似文献   

4.
RPK1 (receptor-like protein kinase 1) localizes to the plasma membrane and functions as a regulator of abscisic acid (ABA) signaling in Arabidopsis. In our current study, we investigated the effect of RPK1 disruption and overproduction upon plant responses to drought stress. Transgenic Arabidopsis overexpressing the RPK1 protein showed increased ABA sensitivity in their root growth and stomatal closure and also displayed less transpirational water loss. In contrast, a mutant lacking RPK1 function, rpk1-1, was found to be resistant to ABA during these processes and showed increased water loss. RPK1 overproduction in these transgenic plants thus increased their tolerance to drought stress. We performed microarray analysis of RPK1 transgenic plants and observed enhanced expression of several stress-responsive genes, such as Cor15a, Cor15b, and rd29A, in addition to H2O2-responsive genes. Consistently, the expression levels of ABA/stress-responsive genes in rpk1-1 had decreased compared with wild type. The results suggest that the overproduction of RPK1 enhances both the ABA and drought stress signaling pathways. Furthermore, the leaves of the rpk1-1 plants exhibit higher sensitivity to oxidative stress upon ABA-pretreatment, whereas transgenic plants overproducing RPK1 manifest increased tolerance to this stress. Our current data suggest therefore that RPK1 overproduction controls reactive oxygen species homeostasis and enhances both water and oxidative stress tolerance in Arabidopsis.  相似文献   

5.
Four genes encoding cold shock domain (CSD) proteins have been identified in salt cress Thellungiella salsuginea (halophila), an extremophyte currently recognized as a promising model for studying stress tolerance]. The deduced proteins prove highly homologous to those of Arabidopsis thaliana (up to 95% identity) and are accordingly enumerated TsCSDP1-TsCSDP4; after the N-proximal conserved CSD, they have respectively 6, 2, 7, and 2 zinc finger motifs evenly spaced by Gly-rich stretches. Much lower similarity (∼45%) is observed in the regions upstream of TATA-box promoters of TsCSDP1 vs. AtCSP1, with numerous distinctions in the sets of identifiable cis-regulatory elements. Plasmid expression of TsCSDP1 (like AtCSP1/3) rescues a cold-sensitive csp-lacking mutant of Escherichia coli, confirming that the protein is functional. In leaves of salt cress plants under normal conditions, the mRNA levels for the four TsCSDPs relate as 10: 27: 1: 31. Chilling to 4°C markedly alters the gene expression; the 4-day dynamics are different for all four genes and quite dissimilar from those reported for their Arabidopsis homologous under comparable conditions. Thus, the much greater cold hardiness of Thellungiella vs. Arabidopsis cannot be explained by structural distinctions of its CSDPs, but rather may be due to expedient regulation of their expression at low temperature.  相似文献   

6.
7.
Plant cells respond to cold stress via a regulatory mechanism leading to enhanced cold acclimation accompanied by growth retardation. The C-repeat binding factor (CBF) signaling pathway is essential for cold response of flowering plants. Our previously study documented a novel CBF-like gene from the cold-tolerant Capsella bursa-pastoris named CbCBF, which was responsive to chilling temperatures. Here, we show that CbCBF expression is obviously responsive to chilling, freezing, abscisic acid, gibberellic acid (GA), indoleacetic acid or methyl jasmonate treatments and that the CbCBF:GFP fusion protein was localized to the nucleus. In addition, CbCBF overexpression conferred to the cold-sensitive tobacco plants enhanced tolerance to chilling and freezing, as well as dwarfism and delayed flowering. The leaf cells of CbCBF overexpression tobacco lines attained smaller sizes and underwent delayed cell division with reduced expression of cyclin D genes. The dwarfism of CbCBF transformants can be partially restored by GA application. Consistently, CbCBF overexpression reduced the bioactive gibberellin contents and disturbed the expression of gibberellin metabolic genes in tobacco. Meanwhile, cold induced CbCBF expression and cold tolerance in C. bursa-pastoris are reduced by GA. We conclude that CbCBF confers cold resistance and growth inhibition to tobacco cells by interacting with gibberellin and cell cycle pathways, likely through activation of downstream target genes.  相似文献   

8.
9.
Cassava (Manihot esculenta) is an important tropical crop with extraordinary tolerance to drought stress but few reports on it. In this study, MeDREB1D was significantly and positively induced by drought stress. Two allelic variants of the gene named MeDREB1D(R-2) and MeDREB1D(Y-3) were identified. Overexpressing MeDREB1D(R-2) and MeDREB1D(Y-3) in Arabidopsis resulted in stronger tolerance to drought and cold stresses. Under drought stress, transgenic plants had more biomass, higher survival rates and less MDA content than wild-type plants. Under cold stress, transgenic plants also had higher survival rates than wild-type plants. To further characterize the molecular function of MeDREB1D, we conducted an RNA-Seq analysis of transgenic and wild-type Arabidopsis plants. The results showed that the Arabidopsis plants overexpressing MeDREB1D led to changes in downstream genes. Several POD genes, which may play a vital role in drought and cold tolerance, were up-regulated in transgenic plants. In brief, these results suggest that MeDREB1D can simultaneously improve plant tolerance to drought and cold stresses.  相似文献   

10.
11.
Handa H 《Nucleic acids research》2003,31(20):5907-5916
The entire mitochondrial genome of rapeseed (Brassica napus L.) was sequenced and compared with that of Arabidopsis thaliana. The 221 853 bp genome contains 34 protein-coding genes, three rRNA genes and 17 tRNA genes. This gene content is almost identical to that of Arabidopsis. However the rps14 gene, which is a pseudo-gene in Arabidopsis, is intact in rapeseed. On the other hand, five tRNA genes are missing in rapeseed compared to Arabidopsis, although the set of mitochondrially encoded tRNA species is identical in the two Cruciferae. RNA editing events were systematically investigated on the basis of the sequence of the rapeseed mitochondrial genome. A total of 427 C to U conversions were identified in ORFs, which is nearly identical to the number in Arabidopsis (441 sites). The gene sequences and intron structures are mostly conserved (more than 99% similarity for protein-coding regions); however, only 358 editing sites (83% of total editings) are shared by rapeseed and Arabidopsis. Non-coding regions are mostly divergent between the two plants. One-third (about 78.7 kb) and two-thirds (about 223.8 kb) of the rapeseed and Arabidopsis mitochondrial genomes, respectively, cannot be aligned with each other and most of these regions do not show any homology to sequences registered in the DNA databases. The results of the comparative analysis between the rapeseed and Arabidopsis mitochondrial genomes suggest that higher plant mitochondria are extremely conservative with respect to coding sequences and somewhat conservative with respect to RNA editing, but that non-coding parts of plant mitochondrial DNA are extraordinarily dynamic with respect to structural changes, sequence acquisition and/or sequence loss.  相似文献   

12.
Small-molecule heat shock response inducers are known to enhance heat tolerance in plants. In this paper, we report that a plant alkaloid enhances the heat tolerance of Arabidopsis. We investigated 12 commercially available alkaloids to determine whether they enhance the heat tolerance of Arabidopsis seedlings using an in vitro assay system with geldanamycin, which is a known heat shock response inducer, as a positive control. Accordingly we found that the isoquinoline alkaloid sanguinarine can enhance heat tolerance in Arabidopsis. No such effect was shown for the other 11 alkaloids. The sanguinarine treatment increased the expression of heat shock protein genes such as HSP17.6C-CI, HSP70, and HSP90.1, which were up-regulated by geldanamycin. Treatments with other isoquinoline alkaloids (berberine and papaverine), which showed few heat tolerance-enhancing effects, did not promote the expression of the heat shock protein genes. These results suggest that sanguinarine influenced the heat tolerance of Arabidopsis by enhancing the expression of heat shock protein genes.  相似文献   

13.
14.
Citrus is a cold-sensitive genus and most commercially important varieties of citrus are susceptible to freezes. On the other hand, Poncirus trifoliata (L.) Raf. is an interfertile Citrus relative that can tolerate temperatures as low as −26°C when fully cold acclimated. Therefore, it has been used for improving cold tolerance in cold-sensitive commercial citrus rootstock varieties and in attempts to improve scion varieties. In this study, cDNA libraries were constructed from both 2-day cold-acclimated and from non-acclimated Poncirus seedlings using a subtractive hybridization method with the objective of identifying cold-regulated genes. A total of 192 randomly picked clones, 136 from the cold-induced library and 56 from the cold-repressed library, were sequenced. The majority of these clones showed sequence homology to previously identified cold-induced and/or environmental stress-regulated genes in Arabidopsis. In addition, some of them shared homology with cold and/or environmental stress-induced genes previously identified in other herbaceous and woody perennial plants and some showed no homology with sequences in GenBank. When these 192 cDNAs were analyzed by reverse northern blot with cold-acclimated and non-acclimated probes, 92 of the cDNAs displayed significantly increased expression, ranging from 2 to 49-fold, during cold acclimation; all 92 were from the cold-induced library. Surprisingly no clones displayed significantly repressed expression in response to cold. Analysis of a number of selected genes individually in northern blots of mRNA from cold-acclimated and non-acclimated plants largely confirmed the reverse northern analysis, verifying induction of expression of selected cDNAs in response to cold. The results showed that subtractive hybridization is an efficient method for identification of cold-induced genes in plants with limited sequence information available. This study also revealed that genes induced during cold acclimation of the cold-hardy citrus relative P. trifoliata are similar to those in Arabidopsis, indicating that similar pathways may be present and activated during cold acclimation in woody perennial plants.  相似文献   

15.
The vernalization gene 2 (VRN2), is a major flowering repressor in temperate cereals that is regulated by low temperature and photoperiod. Here we show that the gene from Triticum aestivum (TaVRN2) is also regulated by salt, heat shock, dehydration, wounding and abscissic acid. Promoter analysis indicates that TaVRN2 regulatory region possesses all the specific responsive elements to these stresses. This suggests pleiotropic effects of TaVRN2 in wheat development and adaptability to the environment. To test if TaVRN2 can act as a flowering repressor in species different from the temperate cereals, the gene was ectopically expressed in the model plant Arabidopsis. Transgenic plants showed no alteration in morphology, but their flowering time was significantly delayed compared to controls plants, indicating that TaVRN2, although having no ortholog in Brassicaceae, can act as a flowering repressor in these species. To identify the possible mechanism by which TaVRN2 gene delays flowering in Arabidopsis, the expression level of several genes involved in flowering time regulation was determined. The analysis indicates that the late flowering of the 35S::TaVRN2 plants was associated with a complex pattern of expression of the major flowering control genes, FCA, FLC, FT, FVE and SOC1. This suggests that heterologous expression of TaVRN2 in Arabidopsis can delay flowering by modulating several floral inductive pathways. Furthermore, transgenic plants showed higher freezing tolerance, likely due to the accumulation of CBF2, CBF3 and the COR genes. Overall, our data suggests that TaVRN2 gene could modulate a common regulator of the two interacting pathways that regulate flowering time and the induction of cold tolerance. The results also demonstrate that TaVRN2 could be used to manipulate flowering time and improve cold tolerance in other species.  相似文献   

16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号