首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
2.
3.
4.
5.
6.
M W Rixon  E A Harris  R E Gelinas 《Biochemistry》1990,29(18):4393-4400
Regulation of the human fetal (gamma) globin gene and a series of mutant gamma-globin genes was studied after retroviral transfer into erythroid cells with fetal or adult patterns of endogenous globin gene expression. Steady-state RNA from a virally transferred A gamma-globin gene with a normal promoter increased after induction of erythroid maturation of murine erythroleukemia cells and comprised from 2% to 23% of the mouse beta maj-globin RNA level. RNA expression from the virally transferred A gamma-globin gene comprised 23% of the endogenous G gamma- + A gamma-globin expression in K 562 cells after treatment with hemin. Expression from a virally transferred gamma- or beta-globin gene exceeded endogenous gamma- or beta-globin expression by a factor of 6 or more in the human erythroleukemia line KMOE, in which the endogenous globin genes are weakly inducible. In these experiments, no difference in expression was observed between the gene with the normal promoter and an A gamma-globin gene with a point mutation in its promoter (-196 C-to-T) that has been associated with hereditary persistence of fetal hemoglobin (HPFH). To test for cis-acting determinants located within the introns of the gamma-globin gene, expression was measured from a set of gamma-globin genes configured with either intron alone or with neither intron. In contrast to an intronless beta-globin gene, which is not expressed in MEL cells, the intronless gamma-globin gene was expressed in MEL cells at 24% of the level of an intron-containing gene.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
The human beta-globin Locus Control Region (LCR) has two important activities. First, the LCR opens a 200 kb chromosomal domain containing the human epsilon-, gamma- and beta-globin genes and, secondly, these sequences function as a powerful enhancer of epsilon-, gamma- and beta-globin gene expression. Erythroid-specific, DNase I hypersensitive sites (HS) mark sequences that are critical for LCR activity. Previous experiments demonstrated that a 1.9 kb fragment containing the 5' HS 2 site confers position-independent expression in transgenic mice and enhances human beta-globin gene expression 100-fold. Further analysis of this region demonstrates that multiple sequences are required for maximal enhancer activity; deletion of SP1, NF-E2, GATA-1 or USF binding sites significantly decrease beta-globin gene expression. In contrast, no single site is required for position-independent transgene expression; all mice with site-specific mutations in 5' HS 2 express human beta-globin mRNA regardless of the site of transgene integration. Apparently, multiple combinations of protein binding sites in 5' HS 2 are sufficient to prevent chromosomal position effects that inhibit transgene expression.  相似文献   

8.
G Kollias  N Wrighton  J Hurst  F Grosveld 《Cell》1986,46(1):89-94
We have introduced the human fetal gamma- and adult beta-globin genes into the germ line of mice. Analysis of the resulting transgenic mice shows that the human gamma-globin gene is expressed like an embryonic mouse globin gene; the human beta-globin gene is expressed (as previously shown) like an adult mouse globin gene. These results imply that the regulatory signals for tissue- and developmental stage-specific expression of the globin genes have been conserved between man and mouse but that the timing of the signals has changed. Because the two genes are expressed differently, we introduced a hybrid gamma beta-globin gene construct. The combination of the regulatory sequences resulted in the expression of the hybrid gene at all stages in all the murine erythroid tissues.  相似文献   

9.
Lemur beta-related globin genes have been isolated and sequenced. Orthology of prosimian and human epsilon-, gamma-, and beta-related globin genes was established by dot-matrix analysis. All of these lemur globin genes potentially encode functional beta-related globin polypeptides, though precisely when the gamma-globin gene is expressed remains unknown. The organization of the 18-kb brown lemur beta-globin gene cluster (5' epsilon-gamma-[psi eta-delta]-beta 3') is consistent with its evolution by contraction via unequal crossing-over from the putative ancestral mammalian beta-globin gene cluster (5' epsilon-gamma- eta-delta-beta 3'). The dwarf lemur nonadult globin genes are arranged as in the brown lemur. Similar levels of synonymous (silent) nucleotide substitutions and noncoding DNA sequence differences have accumulated between species in all of these genes, suggesting a uniform rate of noncoding DNA divergence throughout primate beta-globin gene clusters. These differences are comparable with those observed in the nonfunctional psi eta pseudogene and have therefore accumulated at the presumably maximal neutral rate. In contrast, nonsynonymous (replacement) nucleotide substitutions show a significant heterogeneity in distribution for both the same gene in different lineages and different genes in the same lineage. These major fluctuations in replacement but not silent substitution rates cannot be attributed to changes in mutation rate, suggesting that changes in the rate of globin polypeptide evolution in primates is not governed solely by variable mutation rates.   相似文献   

10.
Nuclease hypersensitivity in the beta-globin gene region of K562 cells   总被引:2,自引:0,他引:2  
We have investigated chromatin structure in the beta-globin gene region of the K562 human erythroleukemic cell line by using S1 and DNase I nuclease sensitivity assays. Despite the lack of beta-globin gene expression in these cells, we find nuclease-hypersensitive sites to these enzymes in its 5' and 3' flanking regions in K562 chromatin. This result is in contrast to previous reports in which no hypersensitive sites were found in the immediate vicinity of this gene. In the 3' region, one major hypersensitive site at 0.9 kpb 3' and three minor hypersensitive sites at 0.7 kbp, 0.5 kbp 3' and 0.2 kbp 5' of the polyadenylation site were observed; these sites are very similar to those found in fetal liver and adult bone marrow cells in which the beta-globin gene is expressed. We find hypersensitive sites to both enzymes in the 5' region of the beta-globin gene: a major site 0.8 kbp 5' to the cap site, and two minor sites 1.2 and 1.5 kbp 5' to the cap site. The -0.8 kbp site is also present in plasmids containing the beta-globin gene. Our results suggest that the lack of beta-globin gene expression may be related to the lack of hypersensitivity sites in the immediate (150 bp) 5' flanking region of the beta-globin gene, as occurs in other active globin genes.  相似文献   

11.
12.
13.
14.
15.
The developmental regulation of the human globin genes involves a key switch from fetal (gamma-) to adult (beta-) globin gene expression. It is possible to study the mechanism of this switch by expressing the human globin genes in transgenic mice. Previous work has shown that high-level expression of the human globin genes in transgenic mice requires the presence of the locus control region (LCR) upstream of the genes in the beta-globin locus. High-level, correct developmental regulation of beta-globin gene expression in transgenic mice has previously been accomplished only in 30- to 40-kb genomic constructs containing the LCR and multiple genes from the locus. This suggests that either competition for LCR sequences by other globin genes or the presence of intergenic sequences from the beta-globin locus is required to silence the beta-globin gene in embryonic life. The results presented here clearly show that the presence of the gamma-globin gene (3.3 kb) alone is sufficient to down-regulate the beta-globin gene in embryonic transgenic mice made with an LCR-gamma-beta-globin mini construct. The results also show that the gamma-globin gene is down-regulated in adult mice from most transgenic lines made with LCR-gamma-globin constructs not including the beta-globin gene, i.e., that the gamma-globin gene can be autonomously regulated. Evidence presented here suggests that a region 3' of the gamma-globin gene may be important for down-regulation in the adult. The 5'HS2 gamma en beta construct described is a suitable model for further study of the mechanism of human gamma- to beta-globin gene switching in transgenic mice.  相似文献   

16.
17.
18.
19.
The expression of epsilon- and gamma-globin mRNA and protein has been determined in three Old World monkey species (Macaca mulatta, Macaca nemestrina, and Cercopithecus aethiops). Using RT-PCR with primers for epsilon- and gamma-globin, both mRNAs were detected in early fetal stages, whereas at 128 days (85% of full term), only gamma was expressed. High-performance liquid chromatography was used for separation and quantitation, and matrix-assisted laser desorption/ionization mass spectrometry was used for identification of globin polypeptides. An alpha-globin polymorphism was observed in all of the species examined. During fetal life, gamma-globin was the predominant expressed beta-type globin. The red blood cells of infants still contained substantial amounts of gamma-globin, which declined to negligible levels in 14 weeks as beta-globin expression reached adult values. The ratio of gamma1- to gamma2-globins (equivalent to Ggamma/Agamma in humans) was approximately 2.5, similar to the Ggamma/Agamma ratio observed in humans. Thus, gamma-globin gene expression in these Old World monkeys species has three features in common with human expression: expression of both duplicated gamma genes, the relative preponderance of gamma1 over gamma2 expression, and the delay of the switch from gamma- to beta-globin until the perinatal period. Thus, the catarrhines seem to share a common pattern of developmental switching in the beta-globin gene cluster, which is distinct from the timing of expression in either prosimians or the New World monkeys. Our results indicate that an Old World monkey, such as Rhesus, could serve as a model organism (resembling humans) for experimentally investigating globin gene expression patterns during the embryonic, fetal, and postnatal stages.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号