首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In cultures of L. lactis ssp. cremoris SK110, phage SK11G-resistant through the presence of pSK112, phage-sensitive variants segregated spontaneously that lacked the plasmid. In overnight batch culture these comprised up to 1% of the total population. Upon prolonged incubation in chemostat culture, a further loss of resistance was observed after a lag period. At high growth rates (0.7 h-1) this period amounted to approximately 35 generations, whereas cultures grown at rates of 0.4 and 0.1 h-1 remained resistant for 55 and 70 generations, respectively. At average-to-high growth rate, characteristics of the partially mixed populations that evolved were comparable to those of pure cultures of L. lactis ssp. cremoris SK110. However, in the culture fluid of the mixed populations that occurred at growth rate 0.1 h-1, higher acetate and formate concentrations were found than in the fluid of pure cultures of L. lactis ssp. cremoris SK110. This indicated that the former metabolized lactose more efficiently. Competition experiments between the resistant strain and a cured, sensitive derivative, L. lactis ssp. cremoris SK112, gave stable mixed populations. It is concluded that at average-to-high growth rates, loss of resistance from cultures of L. lactis ssp. cremoris SK110 had occurred due to instability of the plasmid and not to a competitive disadvantage of the resistant strain towards emerging sensitive variants.  相似文献   

2.
Evidence is presented that lactose-fermenting ability (Lac+) in Lactococcus lactis subsp. cremoris AM1, SK11, and ML1 is associated with plasmid DNA, even though these strains are difficult to cure of Lac plasmids. When the Lac plasmids from these strains were introduced into L. lactis subsp. lactis LM0230, they appeared to replicate in a thermosensitive manner; inheritance of the plasmid was less efficient at 32 to 40 degrees C than at 22 degrees C. The stability of the L. lactis subsp. cremoris Lac plasmids in lactococci appeared to be a combination of both host and plasmid functions. Stabilized variants were isolated by growing the cultures at 32 to 40 degrees C; these variants contained the Lac plasmids integrated into the L. lactis subsp. lactis LM0230 chromosome. In addition, the presence of the L. lactis subsp. cremoris Lac plasmids in L. lactis subsp. lactis resulted in a temperature-sensitive growth response; growth of L. lactis subsp. lactis transformants was significantly inhibited at 38 to 40 degrees C, thereby resembling some L. lactis subsp. cremoris strains with respect to temperature sensitivity of growth.  相似文献   

3.
Evidence is presented that lactose-fermenting ability (Lac+) in Lactococcus lactis subsp. cremoris AM1, SK11, and ML1 is associated with plasmid DNA, even though these strains are difficult to cure of Lac plasmids. When the Lac plasmids from these strains were introduced into L. lactis subsp. lactis LM0230, they appeared to replicate in a thermosensitive manner; inheritance of the plasmid was less efficient at 32 to 40 degrees C than at 22 degrees C. The stability of the L. lactis subsp. cremoris Lac plasmids in lactococci appeared to be a combination of both host and plasmid functions. Stabilized variants were isolated by growing the cultures at 32 to 40 degrees C; these variants contained the Lac plasmids integrated into the L. lactis subsp. lactis LM0230 chromosome. In addition, the presence of the L. lactis subsp. cremoris Lac plasmids in L. lactis subsp. lactis resulted in a temperature-sensitive growth response; growth of L. lactis subsp. lactis transformants was significantly inhibited at 38 to 40 degrees C, thereby resembling some L. lactis subsp. cremoris strains with respect to temperature sensitivity of growth.  相似文献   

4.
Multicopy plasmids that contained the complete of 3'-deleted forms of the proteinase (prtP) gene of Lactococcus lactis subsp. cremoris SK11 under the control of different promoters were constructed and introduced into Prt- lactococcal strains. The production and location of the SK11 proteinase was determined in different hosts grown in industrial and laboratory media. In spite of the 10-fold-higher copy number of the prt genes, no overproduction of proteinase was observed in strain SK1128, a Prt- derivative of L. lactis subsp. cremoris SK112. In contrast, an approximately threefold overproduction of the cell envelope-located or fully secreted proteinase was found in strain MG1820 compared with that of its parental strain L. lactis subsp. lactis SH4109. In all strains proteinase production appeared to be regulated by the medium composition. Highest proteinase production of the SK11 derivatives was found in milk, in contrast to derivatives of SH4109 that produced most proteinase in whey permeate medium. Analysis of single strains with different levels of proteinase production or mixed cultures containing various ratios of Prt+ and Prt- cells indicated that the amount of proteinase produced per cell or culture determines the specific growth rate in milk. Overproduction of cell envelope-located or secreted proteinase in strain MG1820 resulted in a 20%-higher specific growth and acidification rate in milk compared with that in the wild-type strain SH4109. These results indicate that the growth of lactococci in milk is limited by the caseinolytic activity of the proteinase.  相似文献   

5.
Multicopy plasmids that contained the complete of 3'-deleted forms of the proteinase (prtP) gene of Lactococcus lactis subsp. cremoris SK11 under the control of different promoters were constructed and introduced into Prt- lactococcal strains. The production and location of the SK11 proteinase was determined in different hosts grown in industrial and laboratory media. In spite of the 10-fold-higher copy number of the prt genes, no overproduction of proteinase was observed in strain SK1128, a Prt- derivative of L. lactis subsp. cremoris SK112. In contrast, an approximately threefold overproduction of the cell envelope-located or fully secreted proteinase was found in strain MG1820 compared with that of its parental strain L. lactis subsp. lactis SH4109. In all strains proteinase production appeared to be regulated by the medium composition. Highest proteinase production of the SK11 derivatives was found in milk, in contrast to derivatives of SH4109 that produced most proteinase in whey permeate medium. Analysis of single strains with different levels of proteinase production or mixed cultures containing various ratios of Prt+ and Prt- cells indicated that the amount of proteinase produced per cell or culture determines the specific growth rate in milk. Overproduction of cell envelope-located or secreted proteinase in strain MG1820 resulted in a 20%-higher specific growth and acidification rate in milk compared with that in the wild-type strain SH4109. These results indicate that the growth of lactococci in milk is limited by the caseinolytic activity of the proteinase.  相似文献   

6.
W M de Vos  P Vos  H de Haard  I Boerrigter 《Gene》1989,85(1):169-176
The Lactococcus lactis subsp. cremoris SK11 plasmid-located prtP gene, encoding a cell-envelope-located proteinase (PrtP) that degrades alpha s1-, beta- and kappa-casein, was identified in a lambda EMBL3 gene library in Escherichia coli using immunological methods. The complete prtP gene could not be cloned in E. coli and L. lactis on high-copy-number plasmid vectors. However, using a low-copy-number vector, the complete prtP gene could be cloned in strains MG1363 and SK1128, proteinase-deficient derivatives of L. lactis subsp. lactis 712 and L. lactis subsp. cremoris SK11, respectively. The proteinase deficiency of these hosts was complemented to wild-type (wt) levels by the cloned SK11 prtP gene. The caseinolytic specificity of the proteinase specified by the cloned prtP gene was identical to that encoded by the wt proteinase plasmid, pSK111. The expression of recombinant plasmids containing 3' and 5' deletions of prtP was analyzed with specific attention directed towards the location of the gene products. In this way the expression signals of prtP were localized and overproduction was obtained in L. lactis subsp. lactis. Furthermore, a region at the C terminus of PrtP was identified which is involved in cell-envelope attachment in lactococci. A deletion derivative of prtP was constructed which specifies a C-terminally truncated proteinase that is well expressed and fully secreted into the medium, and still shows the same capacity to degrade alpha s1-, beta- and kappa-casein.  相似文献   

7.
8.
Insertion elements on lactococcal proteinase plasmids.   总被引:10,自引:3,他引:7       下载免费PDF全文
DNA segments of 809 and 808 nucleotides, with 18-base-pair terminal inverted repeats, are present on the proteinase plasmids pWV05 from Lactococcus lactis subsp. cremoris Wg2 and pSK111 from L. lactis subsp. cremoris SK11, respectively. These DNA segments are highly similar: 77% identical nucleotides and both contain an open reading frame that can encode a protein of 226 amino acids. Furthermore, both DNA segments are located downstream of the proteinase maturation gene prtM, but they differ individually in their orientation with respect to the prtM gene. On the basis of the striking similarity between ISS1, an 808-base-pair insertion sequence (IS) from L. lactis subsp. lactis ML3 lactose plasmid pSK08, and the DNA segments of pWV05 and pSK111, we propose that these DNA segments comprise IS elements. The IS elements from strains Wg2 and SK11 were named ISS1W and ISS1N, respectively. On pWV05, ISS1W is flanked on one side by only part of a second IS element, indicating that pWV05 evolved as a deletion derivative of a precursor plasmid that carried at least two IS elements.  相似文献   

9.
Resistance of Lactococcus lactis subsp. cremoris SK110 to bacteriophage sk11G, encoded on the plasmid pSK112, is due to poor phage adsorption. Its phage-sensitive variant SK112, cured of pSK112, adsorbs phages effectively. Incubation of SK112 with concanavalin A remarkably reduced phage adsorption to this strain. This treatment also caused agglutination of SK112 that was not found with SK110, indicating different concanavalin A adsorption characteristics of cell walls of both strains. The differences between the two strains were reduced by a mild alkali treatment of cells. This resulted in a positive agglutination with concanavalin A for both strains and in parallel adsorption of phage sk11G to both. Moreover, isolated cell walls of the two strains were investigated, and both bound phage sk11G. These observations suggest the presence of phage receptor material in SK112 as well as in SK110. SK110 contained a relatively high level of bound galactose when compared with the phage-sensitive SK112. After the mild alkali treatment, however, the galactose content of SK110 was diminished such that it became comparable with that of SK112. It is hypothesized that the alkali treatment liberates a galactose-containing component from the cell wall and causes phage sensitivity in L. lactis subsp. cremoris SK110.  相似文献   

10.
Conjugation was used to construct nisin-producing Lactococcus lactis subsp. cremoris strains. Recipients were obtained by electroporation of L. lactis subsp. cremoris strains with the drug resistance plasmid pGK13 or pGB301. A method, direct-plate conjugation, was developed in which donor and recipient cells were concentrated and then combined directly on selective media. This method facilitated transfer of the nisin-sucrose (Nip+ Suc+) phenotype from the donor strain, L. lactis subsp. lactis 11454, to three L. lactis subsp. cremoris recipient strains. Nip+ Suc+ L. lactis subsp. cremoris transconjugants were obtained at frequencies which ranged from 10(-7) to 10(-8) per donor CFU. DNA-DNA hybridization to transconjugant DNAs, performed with an oligonucleotide probe synthesized to detect the nisin precursor gene, showed that this gene was transferred during conjugation but was not associated with detectable plasmid DNA. Further investigation indicated that L. lactis subsp. cremoris Nip+ Suc+ transconjugants retained the recipient strain phenotype with respect to bacteriophage resistance and acid production in milk. Results suggested that it would be feasible to construct nisin-producing L. lactis subsp. cremoris strains for application as mixed and multiple starter systems. Additionally, the direct-plate conjugation method required less time than filter or milk agar matings and may also be useful for investigations of conjugal mechanisms in these organisms.  相似文献   

11.
Conjugation was used to construct nisin-producing Lactococcus lactis subsp. cremoris strains. Recipients were obtained by electroporation of L. lactis subsp. cremoris strains with the drug resistance plasmid pGK13 or pGB301. A method, direct-plate conjugation, was developed in which donor and recipient cells were concentrated and then combined directly on selective media. This method facilitated transfer of the nisin-sucrose (Nip+ Suc+) phenotype from the donor strain, L. lactis subsp. lactis 11454, to three L. lactis subsp. cremoris recipient strains. Nip+ Suc+ L. lactis subsp. cremoris transconjugants were obtained at frequencies which ranged from 10(-7) to 10(-8) per donor CFU. DNA-DNA hybridization to transconjugant DNAs, performed with an oligonucleotide probe synthesized to detect the nisin precursor gene, showed that this gene was transferred during conjugation but was not associated with detectable plasmid DNA. Further investigation indicated that L. lactis subsp. cremoris Nip+ Suc+ transconjugants retained the recipient strain phenotype with respect to bacteriophage resistance and acid production in milk. Results suggested that it would be feasible to construct nisin-producing L. lactis subsp. cremoris strains for application as mixed and multiple starter systems. Additionally, the direct-plate conjugation method required less time than filter or milk agar matings and may also be useful for investigations of conjugal mechanisms in these organisms.  相似文献   

12.
Previously we showed that glutathione (GSH) can protect Lactococcus lactis against oxidative stress (Y. Li et al., Appl. Environ. Microbiol. 69:5739-5745, 2003). In the present study, we show that the GSH imported by L. lactis subsp. cremoris SK11 or produced by engineered L. lactis subsp. cremoris NZ9000 can protect both strains against a long-term mild acid challenge (pH 4.0) and a short-term severe acid challenge (pH 2.5). This shows for the first time that GSH can protect a gram-positive bacterium against acid stress. During acid challenge, strain SK11 containing imported GSH and strain NZ9000 containing self-produced GSH exhibited significantly higher intracellular pHs than the control. Furthermore, strain SK11 containing imported GSH had a significantly higher activity of glyceraldehyde-3-phosphate dehydrogenase than the control. These results suggest that the acid stress resistance of starter culture can be improved by selecting L. lactis strains capable of producing or importing GSH.  相似文献   

13.
Twenty Lactococcus lactis strains with an L. lactis subsp. lactis phenotype isolated from five traditional cheeses made of raw milk with no added starters belonging to the L. lactis subsp. lactis and L. lactis subsp. cremoris genotypes (lactis and cremoris genotypes, respectively; 10 strains each) were subjected to a series of phenotypic and genetic typing methods, with the aims of determining their phylogenetic relationships and suitability as starters. Pulsed-field gel electrophoresis (PFGE) analysis of intact genomes digested with SalI and SmaI proved that all strains were different except for three isolates of the cremoris genotype, which showed identical PFGE profiles. Multilocus sequence typing (MLST) analysis using internal sequences of seven loci (namely, atpA, rpoA, pheS, pepN, bcaT, pepX, and 16S rRNA gene) revealed considerable intergenotype nucleotide polymorphism, although deduced amino acid changes were scarce. Analysis of the MLST data for the present strains and others from other dairy and nondairy sources showed that all of them clustered into the cremoris or lactis genotype group, by using both independent and combined gene sequences. These two groups of strains also showed distinctive carbohydrate fermentation and enzyme activity profiles, with the strains in the cremoris group showing broader profiles. However, the profiles of resistance/susceptibility to 16 antibiotics were very similar, showing no atypical resistance, except for tetracycline resistance in three identical cremoris genotype isolates. The numbers and concentrations of volatile compounds produced in milk by the strains belonging to these two groups were clearly different, with the cremoris genotype strains producing higher concentrations of more branched-chain, derived compounds. Together, the present results support the idea that the lactis and cremoris genotypes of phenotypic Lactococcus lactis subsp. lactis actually represent true subspecies. Some strains of the two subspecies in this study appear to be good starter candidates.  相似文献   

14.
The proteinase genes from Lactococcus lactis subsp. lactis UC317 were identified on a plasmid, pCI310, which is a deletion derivative of a cointegrate between pCI301, the 75 kb Lac Prt plasmid from UC317 and the 38.5 kb cryptic plasmid from that strain. The prt genes were cloned using a replacement cloning strategy whereby fragments from pCI310 were exchanged with the equivalent fragments in pNZ521, which contains the cloned proteinase genes from L. lactis subsp. lactis SK112. This generated two plasmids which encoded a cell-envelope-associated and a secreted proteinase, respectively. Specific regions of the UC317 structural prtP gene known to encode seven of the amino acids essential for substrate cleavage specificity were sequenced and compared with the known sequences of prt genes from L. lactis strains SK112, Wg2 and NCDO763. In spite of various differences that were detected in the nucleotide sequence of this region, it appears that these seven amino acids in strains UC317 and NCDO763 are identical, and represent a combination of three of the amino acids from SK112 and four from Wg2. These results indicate that the UC317 proteinase is a natural hybrid of the SK112 and Wg2 proteinases.  相似文献   

15.
Lactococcus lactis subsp. cremoris is widely used in the manufacture of fermented milk products. Despite numerous attempts, efforts to isolate new strains by traditional plating and identification methods have not been successful. Previously, we described oligonucleotide probes for 16S rRNAs which could be used to discriminate L. lactis subsp. cremoris from related strains. These probes were used in colony hybridization experiments to screen large numbers of colonies obtained from enrichment cultures. A total of 170 strains of L. lactis were isolated from six milk samples, two colostrum samples, and one corn sample by using oligonucleotide probe 212RLa specific for the species L. lactis. Fifty-nine of these isolates also hybridized to L. lactis subsp. cremoris-specific probe 68RCa, and 26 of the strains which hybridized to the L. lactis subsp. cremoris-specific probe had the L. lactis subsp. cremoris phenotype.  相似文献   

16.
Regulation of Proteolytic Enzyme Activity in Lactococcus lactis   总被引:3,自引:1,他引:2       下载免费PDF全文
Two different Lactococcus lactis host strains, L. lactis subsp. lactis MG1363 and L. lactis subsp. cremoris SK1128, both containing plasmid pNZ521, which encodes the extracellular serine proteinase (PrtP) from strain SK110, were used to study the medium and growth-rate-dependent activity of three different enzymes involved in the proteolytic system of lactococci. The activity levels of PrtP and both the intracellular aminopeptidase PepN and the X-prolyl-dipeptidyl aminopeptidase PepXP were studied during batch and continuous cultivation. In both strains, the PrtP activity level was regulated by the peptide content of the medium. The highest activity level was found during growth in milk, and the lowest level was found during growth in the peptide-rich laboratory medium M17. Regulation of the intracellular peptidase activity appeared to be a strain-dependent phenomenon. In cells of strain MG1363, the activity levels of PepN and PepXP were regulated in a similar way to that observed for PrtP. In cells of strain SK1128, the levels of both peptidases were not significantly influenced by the peptide content of the medium. The presence of specific concentrations of the dipeptide prolylleucine could mimic the low activity levels of the regulated proteolytic enzymes, even to the activity level found on M17 medium. The effect of the presence of the dipeptide prolylleucine in the medium on the activity level of the regulated proteolytic enzymes was confirmed at fixed growth rates in chemostat cultures.  相似文献   

17.
Insertion elements on lactococcal proteinase plasmids   总被引:1,自引:0,他引:1  
DNA segments of 809 and 808 nucleotides, with 18-base-pair terminal inverted repeats, are present on the proteinase plasmids pWV05 from Lactococcus lactis subsp. cremoris Wg2 and pSK111 from L. lactis subsp. cremoris SK11, respectively. These DNA segments are highly similar: 77% identical nucleotides and both contain an open reading frame that can encode a protein of 226 amino acids. Furthermore, both DNA segments are located downstream of the proteinase maturation gene prtM, but they differ individually in their orientation with respect to the prtM gene. On the basis of the striking similarity between ISS1, an 808-base-pair insertion sequence (IS) from L. lactis subsp. lactis ML3 lactose plasmid pSK08, and the DNA segments of pWV05 and pSK111, we propose that these DNA segments comprise IS elements. The IS elements from strains Wg2 and SK11 were named ISS1W and ISS1N, respectively. On pWV05, ISS1W is flanked on one side by only part of a second IS element, indicating that pWV05 evolved as a deletion derivative of a precursor plasmid that carried at least two IS elements.  相似文献   

18.
Glutathione protects Lactococcus lactis against oxidative stress   总被引:2,自引:0,他引:2  
Glutathione was found in several dairy Lactococcus lactis strains grown in M17 medium. None of these strains was able to synthesize glutathione. In chemically defined medium, L. lactis subsp. cremoris strain SK11 was able to accumulate up to approximately 60 mM glutathione when this compound was added to the medium. Stationary-phase cells of strain SK11 grown in chemically defined medium supplemented with glutathione showed significantly increased resistance (up to fivefold increased resistance) to treatment with H2O2 compared to the resistance of cells without intracellular glutathione. The resistance to H2O2 treatment was found to be dependent on the accumulation of glutathione in 16 strains of L. lactis tested. We propose that by taking up glutathione, L. lactis might activate a glutathione-glutathione peroxidase-glutathione reductase system in stationary-phase cells, which catalyzes the reduction of H2O2. Glutathione reductase, which reduces oxidized glutathione, was detectable in most strains of L. lactis, but the activities of different strains were very variable. In general, the glutathione reductase activities of L. lactis subsp. lactis are higher than those of L. lactis subsp. cremoris, and the activities were much higher when strains were grown aerobically. In addition, glutathione peroxidase is detectable in strain SK11, and the level was fivefold greater when the organism was grown aerobically than when the organism was grown anaerobically. Therefore, the presence of glutathione in L. lactis could result in greater stability under storage conditions and quicker growth upon inoculation, two important attributes of successful starter cultures.  相似文献   

19.
20.
Relatedness between Lactococcus lactis subsp. cremoris and L. lactis subsp. lactis was assessed by Southern hybridization analysis, with cloned chromosomal genes as probes. The results indicate that strains of the two subspecies form two distinct groups and that the DNA sequence divergence between L. lactis subsp. lactis and L. lactis subsp. cremoris is estimated to be between 20 and 30%. The previously used phenotypic criteria do not fully discriminate between the groups; therefore, we propose a new classification which is based on DNA homology. In agreement with this revised classification, the L. lactis subsp. lactis and L. lactis subsp. cremoris strains from our collection have distinct phage sensitivities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号