首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
Human porphobilinogen synthase [EC.4.2.1.24] is a homo-octamer enzyme. In the active center of each subunit, four cysteines are titrated with 5,5-dithiobis(2-nitrobenzoic acid). Cys122, Cys124 and Cys132 are placed near two catalytic sites, Lys199 and Lys252, and coordinate a zinc ion, referred to as a proximal zinc ion, and Cys223 is placed at the orifice of the catalytic cavity and coordinates a zinc ion, referred to as a distal zinc ion, with His131 . When the wild-type enzymes C122A (Cys122Ala), C124A (Cys124Ala), C132A (Cys132Ala) and C223A (Cys223Ala) were oxidized by hydrogen peroxide, the levels of activity were decreased. Two cysteines were titrated with 5,5-dithiobis(2-nitrobenzoic acid) in the wild-type enzyme, while on the other hand, one cysteine was titrated in the mutant enzymes. When wild-type and mutant enzymes were reduced by 2-mercaptoethanol, the levels of activity were increased: four and three cysteines were titrated, respectively, suggesting that a disulfide bond was formed among Cys122, Cys124 and Cys132 under oxidizing conditions. We analyzed the enzyme-bound zinc ion of these enzymes using inductively coupled plasma mass spectrometry with gel-filtration chromatography. The results for C223A showed that the number of proximal zinc ions correlated to the level of enzymatic activity. Furthermore, zinc-ion-free 2-mercaptoethanol increased the activity of the wild-type enzyme without a change in the total number of zinc ions, but C223A was not activated. These findings suggest that a distal zinc ion moved to the proximal binding site when a disulfide bond among Cys122, Cys124 and Cys132 was reduced by reductants. Thus, in the catalytic functioning of the enzyme, the distal zinc ion does not directly contribute but serves rather as a reserve as the next proximal one that catalyzes the enzyme reaction. A redox change of the three cysteines in the active center accommodates the catch and release of the reserve distal zinc ion placed at the orifice of the catalytic cavity.  相似文献   

2.
为了探讨重金属Cd2+和Cu2+胁迫对泥蚶消化酶活性的影响,运用酶学分析的方法,按《渔业水质标准》(GB 11607)规定的Cd2+、Cu2+最高限量值的1、2、5、10倍设置重金属离子Cd2+、Cu2+浓度及其组合,研究了在重金属Cd2+、Cu2+胁迫下,30d内泥蚶3种消化酶活性的变化规律。结果表明:与空白对照组相比,在重金属Cd2+、Cu2+或其组合的胁迫下,较低浓度组泥蚶的淀粉酶活性实验前期增强(即被诱导),实验后期减弱(即被抑制),较高浓度组泥蚶的淀粉酶活性从实验一开始就减弱,并保持在较低水平,毒性比较,同一重金属高浓度 > 低浓度,不同重金属及其组合Cu2+ > (Cd2++Cu2+)组合 > Cd2+;泥蚶脂肪酶的活性实验前期增强,实验后期转为微减弱或减弱,毒性比较,同一重金属高浓度 > 低浓度,不同重金属及其组合(Cd2++Cu2+)组合 > Cu2+ > Cd2+;泥蚶胃蛋白酶的活性实验前期增强,且活性呈现升高-降低-再升高-再降低的变化,实验后期分别表现微增强、微减弱和减弱,毒性比较,同一重金属高浓度 > 低浓度,不同重金属及其组合(Cd2++Cu2+)组合 > Cu2+ > Cd2+。可见:环境中的Cd2+和Cu2+对泥蚶的消化酶活性起着明显的影响作用。  相似文献   

3.
《FEBS letters》1998,425(3):407-410
The thioredoxin system is one of the major thiol reducing systems of the cell. Recent studies have revealed that Plasmodium falciparum and human thioredoxin reductase represent a novel class of enzymes, which are substantially different from the isofunctional prokaryotic Escherichia coli enzyme. We identified the cysteines Cys88 and Cys93 as the redox active disulfide and His509 as the active site base [Gilberger, T.-W., Walter, R.D. and Müller, S., J. Biol. Chem. 272 (1997) 29584–29589]. In addition to the active site thiols Cys88 and Cys93 the P. falciparum enzyme has another pair of cysteines at the C-terminus: Cys535 and Cys540. To assess the possible role of these peripheral cysteines in the catalytic process the single mutants PfTrxRC535A and PfTrxRC540A, the double mutant PfTrxRC535AC540A and the deletion mutant PfTrxRΔ9 (C-terminal deletion of the last nine amino acids) were constructed. All mutants are defective in their thioredoxin reduction activity, although they still show reactivity with 5,5′-dithiobis (2-nitrobenzoate). These data imply that the C-terminal cysteines are crucially involved in substrate coordination and/or electron transfer during reduction of the peptide substrate.  相似文献   

4.
Limited proteolysis of intact yeast methionine aminopeptidase (MAP1) with trypsin releases a 34 kDa fragment whose NH2-terminal sequence begins at Asp70, immediately following Lys69. These results suggest that yeast MAP may have a two-domain structure consisting of an NH2-terminal zinc finger domain and a C-terminal catalytic domain. To test this, a mutant MAP lacking residues 2–69 was generated, overexpressed, purified and analyzed. Metal ion analyses indicate that 1 mol of wild-type yeast MAP contains 2 mol of zinc ions and at least 1 mol of cobalt ion, whereas 1 mol of the truncated MAP lacking the putative zinc fingers contains only a trace amount of zinc ions but still contains one mole of cobalt ion. These results suggest that the two zinc ions observed in the native yeast MAP are located at the Cys/His rich region and the cobalt ion is located in the catalytic domain. The k.at and Km values of the purified truncated MAP are similar to those of the wild-type MAP when measured with peptide substrates in vitro and it appears to be as active as the wild-type MAP in vivo. However, the truncated MAP is significantly less effective in rescuing the slow growth phenotype of map mutant than the wild-type MAP. These findings suggest that the zinc fingers are essential for normal MAP function in vivo, even though the in vitro enzyme assays indicate that they are not involved in catalysis. In addition, a series of single mutations were generated by changing the cysteines and the histidines in the zinc finger region to serines and arginines, respectively. Analyses of these point mutations provide further evidence that the cysteines and histidines are important for the growth promotion function of yeast MAP.  相似文献   

5.
Oxidative modification of Trigonopsis variabilisd-amino acid oxidase in vivo is traceable as the conversion of Cys108 into a stable cysteine sulfinic acid, causing substantial loss of activity and thermostability of the enzyme. To simulate native and modified oxidase each as a microheterogeneity-resistant entity, we replaced Cys108 individually by a serine (C108S) and an aspartate (C108D), and characterized the purified variants with regard to their biochemical and kinetic properties, thermostability, and reactivity towards oxidation by hypochlorite. Tandem MS analysis of tryptic peptides derived from a hypochlorite-treated inactive preparation of recombinant wild-type oxidase showed that Cys108 was converted into cysteine sulfonic acid, mimicking the oxidative modification of native enzyme as isolated. Colorimetric titration of protein thiol groups revealed that in the presence of ammonium benzoate (0.12 mM), the two muteins were not oxidized at cysteines whereas in the wild-type enzyme, one thiol group was derivatized. Each site-directed replacement caused a conformational change in d-amino acid oxidase, detected with an assortment of probes, and resulted in a turnover number for the O2-dependent reaction with D-Met which in comparison with the corresponding wild-type value was decreased two- and threefold for C108S and C108D, respectively. Kinetic analysis of thermal denaturation at 50 °C was used to measure the relative contributions of partial unfolding and cofactor dissociation to the overall inactivation rate in each of the three enzymes. Unlike wild-type, C108S and C108D released the cofactor in a quasi-irreversible manner and were therefore not stabilized by external FAD against loss of activity. The results support a role of the anionic side chain of Cys108 in the fine-tuning of activity and stability of d-amino acid oxidase, explaining why C108S was a surprisingly poor mimic of the native enzyme.  相似文献   

6.
Under appropriate conditions, divalent copper, lead, and cadmium ions significantly inhibit human DNA polymerase β (following accepted convention, the term DNA polymerase β refers to the low-molecular-weight, 3–4 S DNA polymerase of eukaryotic cells) at concentrations below 10?5m. Each metal showed apparent linear noncompetitive inhibition kinetics with respect to the template primer and the deoxynucleoside triphosphate substrate, indicating that complex formation with these components does not account for the inhibition. Apparently, neither lead nor cadmium inhibit by displacing required zinc atoms from the polymerase. The interaction of the metals with the enzyme can be reversed or prevented by EDTA or by thiol compounds, except that inhibition by cadmium ions can be reversed by monothiols but not by dithiols. The metals probably do not inhibit through reaction with thiol groups since the inhibition is not decreased by pretreating the enzyme with N-ethylmaleimide. Although divalent zinc is moderately inhibitory in manganese activated poly(dT) synthesis on a poly(dA) template, it can fill the requirement for a divalent metal ion and, under the conditions tested, is about 60% as effective as Mn2+.  相似文献   

7.
Streptomyces naraensis was inoculated into 100 ml of culture broth, containing 50 µCi of 65Zn, diluted with ZnCl2 solution to make 10-4 m Zn2+ ion, at 27°C for 5 days with shaking. 65Zn-labeled neutral proteinase from Streptomyces naraensis was prepared by the method described previously. The preparation was homogeneous by disc electrophoresis and contained 1 g-atom of zinc per mole of enzyme in calculation by radioactivity.

It was suggested that the protein-bound zinc of neutral proteinase was not essential for enzymatic activity. Thus, this zinc was an essential component for the higher order structure of the protein, and the removal of zinc treated with EDTA* inactivated the enzyme. The enzymatic activity was maintained in the presence of calcium ion.  相似文献   

8.
Limited proteolysis of intact yeast methionine aminopeptidase (MAP1) with trypsin releases a 34 kDa fragment whose NH2-terminal sequence begins at Asp70, immediately following Lys69. These results suggest that yeast MAP may have a two-domain structure consisting of an NH2-terminal zinc finger domain and a C-terminal catalytic domain. To test this, a mutant MAP lacking residues 2–69 was generated, overexpressed, purified and analyzed. Metal ion analyses indicate that 1 mol of wild-type yeast MAP contains 2 mol of zinc ions and at least 1 mol of cobalt ion, whereas 1 mol of the truncated MAP lacking the putative zinc fingers contains only a trace amount of zinc ions but still contains one mole of cobalt ion. These results suggest that the two zinc ions observed in the native yeast MAP are located at the Cys/His rich region and the cobalt ion is located in the catalytic domain. The k.at and Km values of the purified truncated MAP are similar to those of the wild-type MAP when measured with peptide substrates in vitro and it appears to be as active as the wild-type MAP in vivo. However, the truncated MAP is significantly less effective in rescuing the slow growth phenotype of map mutant than the wild-type MAP. These findings suggest that the zinc fingers are essential for normal MAP function in vivo, even though the in vitro enzyme assays indicate that they are not involved in catalysis. In addition, a series of single mutations were generated by changing the cysteines and the histidines in the zinc finger region to serines and arginines, respectively. Analyses of these point mutations provide further evidence that the cysteines and histidines are important for the growth promotion function of yeast MAP.  相似文献   

9.
5-Aminolevulinic acid dehydratase (ALAD) from bovine liver contains zinc that is partially lost during the isolation of the enzyme. ALAD has its maximal activity at 10?5 M ZnCl2. It binds 7.4 Zn per octameric protein with an association constant of 5.3 × 106 M?1. ALAD is inactivated by 1,10-phenanthroline or ethylenediaminetetraacetic acid (EDTA) but not by monodentate anions like cyanide or sulfide. After removal of zinc by chelating agents, the enzyme activity may be restored by Zn2+ or Cd2+. Removal or zinc by EDTA increases KM 60-fold and decreases Vmax to about 12 of its original value. The 113Cd nuclear magnetic resonance spectrum of the enzyme reconstituted with 113Cd-acetate exhibits a single sharp resonance signal at 79 ppm. It does not change by the addition of substrate but disappears when the inhibitor lead acetate is added. Therefore, an immediate interaction between the metal ion of the enzyme and the substrate is excluded, whereas lead changes the environment of cadmium and probably of zinc too.  相似文献   

10.
Angiotensin-I converting enzyme (ACE, a zinc dependent dipeptidyl carboxypeptidase) is a major target of drugs due to its role in the modulation of blood pressure and cardiovascular disorders. Here we present a crystal structure of AnCE (an ACE homologue from Drosophila melanogaster with a single enzymatic domain) in complex with a natural product-phosphonotripeptide, K-26 at 1.96 Å resolution. The inhibitor binds exclusively in the S1 and S2 binding pockets of AnCE (coordinating the zinc ion) through ionic and hydrogen bond interactions. A detailed structural comparison of AnCE·K-26 complex with individual domains of human somatic ACE provides useful information for further exploration of ACE inhibitor pharmacophores involving phosphonic acids.  相似文献   

11.
Using a redox-inert methyl acceptor, we show that betaine-homocysteine S-methyltransferase (BHMT) requires a thiol reducing agent for activity. Short-term exposure of BHMT to reducing agent-free buffer inactivates the enzyme without causing any loss of its catalytic zinc. Activity can be completely restored by the re-addition of a thiol reducing agent. The catalytic zinc of BHMT is bound by three thiolates and one hydroxyl group. Thiol modification experiments indicate that a disulfide bond is formed between two of the three zinc-binding ligands when BHMT is inactive in a reducing agent-free buffer, and that this disulfide can be readily reduced with the concomitant restoration of activity by re-establishing reducing conditions. Long-term exposure of BHMT to reducing agent-free buffer results in the slow, irreversible loss of its catalytic Zn and a corresponding loss of activity. Experiments using the glutamate-cysteine ligase modifier subunit knockout mice Gclm(−/−), which are severely impaired in glutathione synthesis, show that BHMT activity is reduced about 75% in Gclm(−/−) compared to Gclm(+/+) mice.  相似文献   

12.
We studied the transition metal ion requirements for activity and sulfhydryl group reactivity in phosphoenolpyruvate carboxykinase (PEP-carboxykinase; ATP:oxaloacetate carboxylase (transphosphorylating), EC 4.1.1.49), a key enzyme in the energy metabolism of the protozoan parasite Trypanosoma (Schizotrypanum) cruzi. As for other PEP-carboxykinases this enzyme has a strict requirement of transition metal ions for activity, even in the presence of excess Mg2+ ions for the carboxylation reaction; the order of effectiveness of these ions as enzyme activators was: Co2+ > Mn2+ > Cdu2+ > Ni2+ ⪢ Fe2+ > VO2+, while Zn2+ and Ca2+ had no activating effects. When we investigated the effect of varying the type or concentration of the transition metal ions on the kinetic parameters of the enzyme the results suggested that the stimulatory effects of the transition metal center were mostly associated with the activation of the relatively inert CO2 substrate. The inhibitory effects of 3-mercaptopicolinic acid (3MP) on the enzyme were found to depend on the transition metal ion activator: for the Mn2+ activated enzyme the inhibition was purely non-competitive (Kii = Kis) towards all substrates, while for the Co2+-activated enzyme the inhibitor was much less effective, produced a mixed-type inhibition and affected differentially the interaction of the enzyme with its substrates. The modification of a single, highly reactive, cysteine per enzyme molecule by 5,5′-dithiobis(2-nitro-benzoate) (DTNB) lead to an almost complete inhibition of Mn2+-activated T. cruzi PEP-carboxykinase; however, in contrast with the results of previous studies in vertebrate and yeast enzymes, the substrate ADP slowed the chemical modification and enzyme inactivation but did not prevent it. PEP and HCO3 had no significant effect on the rate or extent of the enzyme inactivation. The kinetics of the enzyme inactivation by DTNB was also dependent on the transition metal activator, being much slower for the Co2+-activated enzyme than for its Mn2+-activated counterpart. When the bulkier but more hydrophobic reagent N-(7-dimethylamino-4-methylcoumarinyl)maleimide (DACM) was used the enzyme was slowly and incompletely inactivated in the presence of Mn2+ and ADP afforded almost complete protection from inactivation; in the presence of Co2+ the enzyme was completely resistant to inactivation. Taken together, our results indicate that the parasite enzyme has a specific requirement of transition metal ions for activity and that they modulate the reactivity of a single, essential thiol group, different from the hyperreactive cysteines present in vertebrate or yeast enzymes.  相似文献   

13.
This study concerned the role of the sulfhydryl groups in urocanase of Pseudomonas putida. When p-chloromercuribenzoate was added to the enzyme, two sulfhydryl groups reacted at once with little inhibition; the enzyme slowly became inhibited while further sulfhydryls reacted. After the p-chloromercuribenzoate inhibition occurred, if a thiol was subsequently added, most of the original activity was recovered. As the incubation time with p-chloromercuribenzoate was increased, the thiol became less effective in reversing the inhibition. However, if NAD+ (10 μm) was added with the thiol, 60–90% of the initial activity was restored even after long p-chloromercuribenzoate incubations. Restoration of activity by NAD+ was concentration dependent and specific for NAD+. Radioactive NAD+ could be bound to urocanase. These results confirm the coenzyme role for NAD+ in urocanase. In urea, p-chloromercuribenzoate titration of urocanase measured 11.9 -SH groups per molecule. Sulfite-modified enzyme treated with p-chloromercuribenzoate and dialyzed was substantially photoactivated in the presence of a thiol; that is, NAD+ was not required to restore activity. From these results, it is proposed that this enzyme contains two reactive —SH groups and that an essential —SH group is involved in NAD+ binding. Forces present in the sulfite-modified enzyme prevent the release of the NAD+ in the presence of mercurials.  相似文献   

14.
The Cu,Zn superoxide dismutases (Cu,Zn SOD) isolated from some Gram-negative bacteria possess a His-rich N-terminal metal binding extension. The N-terminal domain of Haemophilus ducreyi Cu,Zn SOD has been previously proposed to play a copper(II)-, and may be a zinc(II)-chaperoning role under metal ion starvation, and to behave as a temporary (low activity) superoxide dismutating center if copper(II) is available. The N-terminal extension of Cu,Zn SOD from Actinobacillus pleuropneumoniae starts with an analogous sequence (HxDHxH), but contains considerably fewer metal binding sites. In order to study the possibility of the generalization of the above mentioned functions over all Gram-negative bacteria possessing His-rich N-terminal extension, here we report thermodynamic and solution structural analysis of the copper(II) and zinc(II) complexes of a peptide corresponding to the first eight amino acids (HADHDHKK-NH2, L) of the enzyme isolated from A. pleuropneumoniae. In equimolar solutions of Cu(II)/Zn(II) and the peptide the MH2L complexes are dominant in the neutral pH-range. L has extraordinary copper(II) sequestering capacity (KD,Cu = 7.4 × 10− 13 M at pH 7.4), which is provided only by non-amide (side chain) donors. The central ion in CuH2L is coordinated by four nitrogens {NH2,3Nim} in the equatorial plane. In ZnH2L the peptide binds to zinc(II) through a {NH2,2Nim,COO} donor set, and its zinc binding affinity is relatively modest (KD,Zn = 4.8 × 10− 7 M at pH 7.4). Consequently, the presented data do support a general chaperoning role of the N-terminal His-rich region of Gram-negative bacteria in copper(II) uptake, but do not confirm similar function for zinc(II). Interestingly, the complex CuH2L has very high SOD-like activity, which may further support the multifunctional role of the copper(II)-bound N-terminal His-rich domain of Cu,Zn SODs of Gram-negative bacteria. The proposed structure for the MH2L complexes has been verified by semiempirical quantum chemical calculations (PM6), too.  相似文献   

15.
The crystal structures of CsGST in two different space groups revealed that Asp26 and His79 coordinate a zinc ion. In one space group, His46 of an adjacent molecule participates in the coordination within 2.0 Å. In the other space group, Asp26, His79 and a water molecule coordinate a zinc ion. The CsGST–D26H structure showed that four histidine residues – His26 and His79 from one molecule and the same residues from a symmetry-related neighboring molecule – coordinate a zinc ion. The coordinated zinc ions are located between two molecules and mediate molecular contacts within the crystal.  相似文献   

16.
When ferric ion was added to solutions of the enzyme dextransucrase, first-order followed by second-order inactivation behavior was observed. The initial rapid activity loss was attributed to a ferric ion interacting with the thiol group of the native monomer to form a less active enzyme-ion complex; the second inactivation stage involved enzyme-ion complex aggregation and disulfide cross-link formation. In contrast, Cu2+ ion inactivation demonstrated simple first-order kinetics. As with Fe3+, Cu2+ ions can form complexes with enzyme thiol groups. However, unlike ferric ions, cupric ions can also strongly interact with the imidazole ring of histidine. Since the dextransucrase active site contains two key histidines, imidazole-cupric-ion interactions could potentially inhibit enzymatic activity. Thus, it was hypothesized that first-order Cu2+ inactivation kinetics involved the adsorption of this ion to the enzyme's activity site. The addition of a reducing agent such as dithiothreitol can inhibit the second enzyme aggregation stage by breaking disulfide cross-links but cannot restrict the initial formation of metal-enzyme complexes.  相似文献   

17.
d-Serine is a physiological co-agonist of the N-methyl-d-aspartate receptor. It regulates excitatory neurotransmission, which is important for higher brain functions in vertebrates. In mammalian brains, d-amino acid oxidase degrades d-serine. However, we have found recently that in chicken brains the oxidase is not expressed and instead a d-serine dehydratase degrades d-serine. The primary structure of the enzyme shows significant similarities to those of metal-activated d-threonine aldolases, which are fold-type III pyridoxal 5′-phosphate (PLP)-dependent enzymes, suggesting that it is a novel class of d-serine dehydratase. In the present study, we characterized the chicken enzyme biochemically and also by x-ray crystallography. The enzyme activity on d-serine decreased 20-fold by EDTA treatment and recovered nearly completely by the addition of Zn2+. None of the reaction products that would be expected from side reactions of the PLP-d-serine Schiff base were detected during the >6000 catalytic cycles of dehydration, indicating high reaction specificity. We have determined the first crystal structure of the d-serine dehydratase at 1.9 Å resolution. In the active site pocket, a zinc ion that coordinates His347 and Cys349 is located near the PLP-Lys45 Schiff base. A theoretical model of the enzyme-d-serine complex suggested that the hydroxyl group of d-serine directly coordinates the zinc ion, and that the ϵ-NH2 group of Lys45 is a short distance from the substrate Cα atom. The α-proton abstraction from d-serine by Lys45 and the elimination of the hydroxyl group seem to occur with the assistance of the zinc ion, resulting in the strict reaction specificity.  相似文献   

18.
19.
The HNH motif was originally identified in the subfamily of HNH homing endonucleases, which initiate the process of the insertion of mobile genetic elements into specific sites. Several bacteria toxins, including colicin E7 (ColE7), also contain the 30 amino acid HNH motif in their nuclease domains. In this work, we found that the nuclease domain of ColE7 (nuclease-ColE7) purified from Escherichia coli contains a one-to-one stoichiometry of zinc ion and that this zinc-containing enzyme hydrolyzes DNA without externally added divalent metal ions. The apo-enzyme, in which the indigenous zinc ion was removed from nuclease-ColE7, had no DNase activity. Several divalent metal ions, including Ni2+, Mg2+, Co2+, Mn2+, Ca2+, Sr2+, Cu2+ and Zn2+, re-activated the DNase activity of the apo-enzyme to various degrees, however higher concentrations of zinc ion inhibited this DNase activity. Two charged residues located at positions close to the zinc-binding site were mutated to alanine. The single-site mutants, R538A and E542A, showed reduced DNase activity, whereas the double-point mutant, R538A + E542A, had no observable DNase activity. A gel retardation assay further demonstrated that the nuclease-ColE7 hydrolyzed DNA in the presence of zinc ions, but only bound to DNA in the absence of zinc ions. These results demonstrate that the zinc ion in the HNH motif of nuclease-ColE7 is not required for DNA binding, but is essential for DNA hydrolysis, suggesting that the zinc ion not only stabilizes the folding of the enzyme, but is also likely to be involved in DNA hydrolysis.  相似文献   

20.
3-Deoxy-d-manno-octulosonate 8-phosphate synthase (KDO8PS) catalyzes the reaction between phosphoenol pyruvate and d-arabinose 5-phosphate to generate KDO8P. This reaction is part of the biosynthetic pathway to 3-deoxy-d-manno-octulosonate, a component of the lipopolysaccharide of the Gram-negative bacterial cell wall. Two distinct groups of KDO8PSs exist, differing by the absolute requirement of a divalent metal ion. In this study Acidithiobacillus ferrooxidans KDO8PS has been expressed and purified and shown to require a divalent metal ion, with Mn2+, Co2+ and Cd2+ (in decreasing order) being able to restore activity to metal-free enzyme. Cd2+ significantly enhanced the stability of the enzyme, raising the Tm by 14 °C. d-Glucose 6-phosphate and d-erythrose 4-phosphate were not substrates for A. ferrooxidans KDO8PS, whereas 2-deoxy-d-ribose 5-phosphate was a poor substrate and there was negligible activity with d-ribose 5-phosphate. The 243AspGlyPro245 motif is absolutely conserved in the metal-independent group of synthases, but the Gly and Pro sites are variable in the metal-dependent enzymes. Substitution of the putative metal-binding Asp243 to Ala in A. ferrooxidans KDO8PS gave inactive enzyme, whereas substitutions Asp243Glu or Pro245Ala produced active enzymes with altered metal-dependency profiles. Prior studies indicated that exchange of a metal-binding Cys for Asn converts metal-dependent KDO8P synthase into a metal-independent form. Unexpectedly, this mutation in A. ferrooxidans KDO8P synthase (Cys21Asn) gave inactive enzyme. This finding, together with modest activity towards 2-deoxy-d-ribose 5-phosphate suggests similarities between the A. ferrooxidans KDO8PS and the related metal-dependent 3-deoxy-d-arabino-heptulosonate phosphate synthase, and highlights the importance of the AspGlyPro loop in positioning the substrate for effective catalysis in all KDO8P synthases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号