共查询到20条相似文献,搜索用时 0 毫秒
1.
Bihai Shi Xiaolu Guo Ying Wang Yuanyuan Xiong Jin Wang Ken-ichiro Hayashi Jinzhi Lei Lei Zhang Yuling Jiao 《Developmental cell》2018,44(2):204-216.e6
2.
3.
Auxin, cytokinin and the control of shoot branching 总被引:3,自引:0,他引:3
BACKGROUND: It has been known for many decades that auxin inhibits the activation of axillary buds, and hence shoot branching, while cytokinin has the opposite effect. However, the modes of action of these two hormones in branching control is still a matter of debate, and their mechanisms of interaction are equally unresolved. SCOPE: Here we review the evidence for various hypotheses that have been put forward to explain how auxin and cytokinin influence axillary bud activity. In particular we discuss the roles of auxin and cytokinin in regulating each other's synthesis, the cell cycle, meristem function and auxin transport, each of which could affect branching. These different mechanisms have implications for the main site of hormone action, ranging from systemic action throughout the plant, to local action at the node or in the bud meristem or leaves. The alternative models have specific predictions, and our increasing understanding of the molecular basis for hormone transport and signalling, cell cycle control and meristem biology is providing new tools to enable these predictions to be tested. 相似文献
4.
NiDA WangLJ 《Cell research》2001,11(4):273-278
INTRODUCTIONAuxin plays an important role in regu1ating celldivision, e1ongation and differentiatiou, vascular tis-sue fOrmation[1], pollen deve1opment[2] and 1eafyhead fOrmation[3]. Adrin polar transport is be-1ieved to invohe in a variety of important growthand developmenial processes, including the patternfOrmation of eInbryO, leaf morphogenesis and theroot gravity response[4--8]. Auxin po1ar transportinhibitor has been proved essential illterference ofataln transport leading to patte… 相似文献
5.
Plant development: A TALE story 总被引:2,自引:0,他引:2
6.
Auxin binding protein: curiouser and curiouser 总被引:8,自引:0,他引:8
Candace Timpte 《Trends in plant science》2001,6(12):436-590
Auxin is implicated in a variety of plant developmental processes, yet the molecular mechanism of auxin response remains largely unknown. Auxin binding protein 1 (ABP1) mediates cell expansion and might be involved in cell cycle control. Structural modeling shows that it is a β-barrel dimer, with the C terminus free to interact with other proteins. We do not know where ABP1 performs its receptor function. Most ABP1 is detected within the endoplasmic reticulum but the evidence indicates that it functions at the plasma membrane. ABP1 is established as a crucial component of auxin signaling, but its precise mechanism remains unclear. 相似文献
7.
8.
The transport and metabolism of indole-3-acetic acid (IAA) was studied in etiolated lupin (Lupinus albus L, cv. Multolupa) hypocotyls, following application of dual-isotope-labelled indole-3-acetic acid, [5-3H]IAA plus [1-14C]IAA, to decapitated plants. To study the radial distribution of the transported and metabolized IAA, experiments were carried out with plants in which the stele was separated from the cortex by a glass capillary. After local application of labelled IAA to the cortex, radioactivity remained immobilized in the cortex, near the application point, showing that polar transport cannot occur in the outer tissues. However, following application of IAA to the stele, radioactivity appeared in the cortex in those hypocotyl sections below the first 1 cm (in which the capillary was inserted), and the basipetal IAA movement was similar to that observed after application of IAA to the complete cut surface. In both assays, longitudinal distribution of 14C and 3H in the stele outside the first 1 cm was positively correlated with that of cortex, indicating that there was a lateral migration of IAA from the transport pathway (in the stele) to the outer tissues and that this migration depended on the amount of IAA in the stele. Both tissues (stele and cortex) exhibited intensive IAA metabolism, decarboxylation being higher in the stele than in the cortex while IAA conjugation was the opposite. Decapitation of the seedlings caused a drastic reduction of hypocotyl growth in the 24 h following decapitation, unless the hypocotyls were treated apically with IAA. Thus, exogenous IAA, polarly transported, was able to substitute the endogenous source of auxin (cotyledons plus meristem) to permit hypocotyl growth. It is proposed that IAA escapes from the transporting cells (in the stele) to the outer tissues in order to reach the growth-responsive cells. The IAA metabolism in the outer tissues could generate the IAA gradient necessary for the maintenance of its lateral flow, and consequently the auxin-induced cell elongation. 相似文献
9.
Auxin: regulation, action, and interaction 总被引:48,自引:0,他引:48
10.
This comprehensive study of early embryology in Ceratopteris richardii combines light microscopy with the first ultrastructural evaluation of any pteridophyte embryo. Emphasis is placed on ontogeny of the foot and placental transfer cells. The embryology of C. richardii shares many similarities with that of other polypodiacious ferns while exhibiting distinctive division patterns. Formative embryonic stages have been reconstructed into three-dimensional models for ease of interpretation. The zygote divides perpendicular to the gametophyte plane and anterioposterior axis. This division establishes a prone embryological habit that maximizes rapid independent establishment of a leaf-root axis in a cordate gametophyte. After the formation of a globular eight-celled stage, initials of the first leaf, and root and shoot apical meristems are defined early by discrete formative divisions. Concomitantly, the foot expands and differentiates to transport nutrients from the gametophyte for the developing embryonic organs. Transfer cell wall ingrowth deposition begins in the gametophyte placental cells before the adjacent sporophyte cells just after the eight-celled stage. These observations provide an anatomical framework for future comparative developmental genetic studies of embryogenesis in free-sporing plants. 相似文献
11.
BACKGROUND AND AIMS: Electric fields are an important environmental factor that can influence the development of plants organs. Such a field can either inhibit or stimulate root growth, and may also affect the direction of growth. Many developmental processes directly or indirectly depend upon the activity of the root apical meristem (RAM). The aim of this work was to examine the effects of a weak electric field on the organization of the RAM. METHODS: Roots of Zea mays seedlings, grown in liquid medium, were exposed to DC electric fields of different strengths from 0.5 to 1.5 V cm(-1), with a frequency of 50 Hz, for 3 h. The roots were sampled for anatomical observation immediately after the treatment, and after 24 and 48 h of further undisturbed growth. KEY RESULTS: DC fields of 1 and 1.5 V cm(-1) resulted in noticeable changes in the cellular pattern of the RAM. The electric field activated the quiescent centre (QC): the cells of the QC penetrated the root cap junction, disturbing the organization of the closed meristem and changing it temporarily into the open type. CONCLUSIONS: Even a weak electric field disturbs the pattern of cell divisions in plant root meristem. This in turn changes the global organization of the RAM. A field of slightly higher strength also damages root cap initials, terminating their division. 相似文献
12.
Auxin transport inhibitors act through ethylene to regulate dichotomous branching of lateral root meristems in pine 总被引:1,自引:2,他引:1
Many soil fungi colonize the roots of pines to form symbiotic organs known as ectomycorrhizas. Dichotomous branching of short lateral roots and the formation of coralloid organs are diagnostic of ectomycorrhizas in many pine species, although the regulation of these changes in root morphology is not well understood. We used axenic root cultures of six pine species to examine the role of auxin, cytokinin, ethylene and nutrients in the regulation of root architecture. Surprisingly, extensive dichotomous and coralloid branching of lateral roots occurred spontaneously in Pinus taeda , P. halepensis and P. muricata . In P. sylvestris , P. ponderosa and P. nigra , treatment with auxin transport inhibitors (ATIs), the ethylene precursor 1-aminocyclopropane-1-carboxylic acid (ACC) or the ethylene-releasing compound 2-chloroethylphosphonic acid (CEPA or ethephon) induced extensive dichotomous branching and coralloid organ formation. Formation of both spontaneous and ATI-induced coralloid structures was blocked by treatment with an ethylene synthesis inhibitor L-α-(2-aminoethoxyvinyl)glycine; this inhibition was reversed by either ACC or CEPA. In addition, the induction of this unique morphogenetic pattern in pine root cultures was regulated by nutrient levels. The morphology and anatomical organization of the chemically induced dichotomous and coralloid structures, as well as the regulation of their formation by nutrient levels, show a striking similarity to those of ectomycorrhizas. 相似文献
13.
14.
The 1-N-naphthylphthalamic acid (NPA)-binding protein is a putative negative regulator of polar auxin transport that has been shown to block auxin efflux from both whole plant tissues and microsomal membrane vesicles. We previously showed that NPA is hydrolyzed by plasma-membrane amidohydrolases that co-localize with tyrosine, proline, and tryptophan-specific aminopeptidases (APs) in the cotyledonary node, hypocotyl-root transition zone and root distal elongation zone of Arabidopsisthaliana (L.) Heynh. seedlings. Moreover, amino acyl-β-naphthylamide (aa-NA) conjugates resembling NPA in structure have NPA-like inhibitory activity on growth, suggesting a possible role of APs in NPA action. Here we report that the same aa-NA conjugates and the AP inhibitor bestatin also block auxin efflux from seedling tissue. Bestatin and, to a lesser extent, some aa-NA conjugates were more effective inhibitors of low-affinity specific [3H]NPA-binding than were the flavonoids quercetin and kaempferol but had no effect on high-affinity binding. Since the APs are inhibited by flavonoids, we compared the localization of endogenous flavonoids and APs in seedling tissue. A correlation between AP and flavonoid localization was found in 5- to 6-d-old seedlings. Evidence that these flavonoids regulate auxin accumulation in vivo was obtained using the flavonoid-deficient mutant, tt4. In whole-seedling [14C]indole-3-acetic acid transport studies, the pattern of auxin distribution in the tt4 mutant was shown to be altered. The defect appeared to be in auxin accumulation, as a considerable amount of auxin escaped from the roots. Treatment of the tt4 mutant with the missing intermediate naringenin restored normal auxin distribution and accumulation by the root. These results implicate APs and endogenous flavonoids in the regulation of auxin efflux. Received: 2 December 1999 / Accepted: 16 January 2000 相似文献
15.
16.
Veit B 《Plant molecular biology》2009,69(4):397-408
Recent work on hormone mediated regulation of the SAM is reviewed, emphasizing how combinations of genetic, molecular and
modelling approaches have refined models based on classic experimental and physiological work. Special emphasis is given to
newly described mechanisms that modulate the responsiveness of specific tissues to hormones and their potential to direct
position dependent determination processes. 相似文献
17.
Ethylene and gibberellins have a synergistic stimulatory effect on hypocotyl elongation of light-grown Arabidopsis thaliana (L.) Heynh. seedlings. A screen for mutants with decreased response to these hormones led to the isolation of a novel allele
(amp1-7) of the ALTERED MERISTEM PROGRAM (AMP) 1 locus. The amp1-7 allele contains a missense mutation causing a phenotype, which is weaker than that of the amp1-1 mutant that carries a nonsense mutation. The mutant phenotype prompted the hypothesis that AMP1 is involved in ethylene and
GA signalling pathways or in a parallel pathway-controlling cell and hypocotyl elongation and cellular organization. Amp1 mutants contain higher zeatin concentrations causing enlargement of the apical meristem, which was confirmed by cytokinin
application to wild type seedlings. Light grown amp1 seedlings have shorter hypocotyls than wild type; however, application of cytokinins promotes hypocotyl elongation of both
Col-0 and amp1. We suggest that in amp1 mutants either zeatin overproduction or its action is strictly localized.
Nelson J. M. Saibo and Wim H. Vriezen contributed equally to this work. 相似文献
18.
Shoot organogenesis, one of the in vitro plant regeneration processes that occur during in vitro micropropagation, is used in the study of plant development. Morphological, physiological, and molecular aspects of in vitro shoot organogenesis have been extensively studied for over 50 years. Because of the research progress in plant genetics and molecular biology, our understanding of in planta and in vitro shoot meristem development, the cell cycle and cytokinin signal transduction has advanced significantly. These research advances provide useful information as well as molecular tools to study further the genetic and molecular aspects of shoot organogenesis. A number of key molecular markers, genes, and pathways have been shown to play a critical role in the process of in vitro shoot organogenesis. Furthermore, these studies reveal that in vitro shoot organogenesis, as with in planta shoot development, is a complex, well-coordinated developmental process, given that the induction of a single molecular event is likely to be insufficient to induce the entire process. Continued study is required to identify additional molecular events that trigger dedifferentiation and act as developmental switches for de novo shoot development. 相似文献
19.
María del Rocío Oliveros-Valenzuela David Reyes Jos Snchez-Bravo Manuel Acosta Carlos Nicols 《Plant Physiology and Biochemistry》2008,46(12):1071-1076
Polar auxin transport (PAT) is necessary for the formation of adventitious roots in the base of leafy stem cuttings, as has been demonstrated in several studies in which the application of PAT inhibitors strongly inhibited the rooting of cuttings. However, unlike in the case of lateral roots, there is almost no information on the molecular mechanism that controls PAT in the formation of adventitious roots. A novel cDNA encoding an auxin influx carrier has been isolated and characterized from carnation (Dianthus caryophyllus) cuttings. The full length of DcAUX1 was obtained and the deduced aminoacid sequence revealed a high degree of identity with the corresponding auxin carrier proteins from several species. The expression of this gene depended on the organ, the carnation cultivar and the length of time cuttings had been stored in a cold chamber. As a rule, expression was higher in stem than in leaves, in the basal than in the first internode and in mature than in young leaves irrespective of the cultivar and the duration of the storage. This pattern of expression agrees with the results of a previous study showing that auxin from mature leaves was essential for rooting, while exogenous auxin applied to mature leaves was polarly transported in the stem and accumulated in the basal internode (the rooting zone). Variations in the expression observed during storage (depending of the cultivar) might be related to the variation in PAT and rooting reported in previous studies. 相似文献
20.
Phenylacetic acid (PAA), a naturally-occurring acidic plant growth substance, was readily taken up by pea (Pisum sativum L. cv. Alderman) stem segments from buffered external solutions by a pH-dependent, non-mediated diffusion. Net uptake from a 0.2 M solution at pH 4.5 proceeded at a constant rate for at least 60 min and, up to approx. 100 M, the rate of uptake was directly proportional to the external concentration of the compound. The net rate of uptake of PAA was not affected by the inclusion of indol-3yl-acetic acid (IAA) in the uptake medium (up to approx. 30 M) and, unlike the net uptake of IAA, was not stimulated by N-1-naphthylphthalamic acid (NPA) or 2,3,5-triiodobenzoic acid. At an external concentration of 0.2 M and pH 4.5, the net rate of uptake of PAA was about twice that of IAA. It was concluded that the uptake of PAA did not involve the participation of carriers and that PAA was not a transported substrate for the carriers involved in the uptake and polar transport of IAA. Nevertheless, the inclusion of 3–100 M unlabelled PAA in the external medium greatly stimulated the uptake by pea stem segments of [1-14C]IAA (external concentration 0.2 M). It was concluded that whilst PAA was not a transported substrate for the NPA-sensitive IAA efflux carrier, it interacted with this carrier to inhibit IAA efflux from cells. Over the concentration range 3–100 M, PAA progressively reduced the stimulatory effect of NPA on IAA uptake, indicating that PAA also inhibited carrier-mediated uptake of IAA. The consequences of these observations for the regulation of polar auxin transport are discussed.Abbreviations IAA
indol-3yl-acetic acid
- DMO
5,5-dimethyloxazolidine-2,4-dione
- NPA
N-1-naphthylphthalamic acid
- PAA
phenylacetic acid
- TIBA
2,3,5-triiodobenzoic acid 相似文献