首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 446 毫秒
1.
Sperm length is extremely variable across species, but a general explanation for this variation is lacking. However, when the risk of sperm competition is high, sperm length is predicted to be less variable within species, and there is some evidence for this in birds and social insects. Here, we examined intraspecific variation in sperm length, both within and between males, and its potential associations with sperm competition risk and variation in female reproductive tract morphology across dung flies. We used two measures of variation in sperm size, and testis size was employed as our index of sperm competition risk. We found no evidence of associations between sperm length variation and sperm competition or female reproductive tract variation. These results suggest that variation in sperm competition risk may not always be associated with variation in sperm morphology, and the cause(s) of sperm length variation in dung flies remains unclear.  相似文献   

2.
Sperm competition is widely recognized as a potent force in evolution, influencing male behavior, morphology, and physiology. Recent game theory analyses have examined how sperm competition can influence the evolution of ejaculate expenditure by males and the morphology of sperm contained within ejaculates. Theoretical analyses rest on the assumption that there is sufficient genetic variance in traits important in sperm competition to allow evolving populations to move to the evolutionarily stable equilibrium. Moreover, patterns of genotypic variation can provide valuable insight into the nature of selection currently acting on traits. However, our knowledge of genetic variance underlying traits important in sperm competition is limited. Here we examine patterns of phenotypic and genotypic variation in four sperm competition traits in the dung beetle Onthophagus taurus. Testis weight, ejaculate volume, and copula duration were found to have high coefficients of additive genetic variation (CV(A)S), which is characteristic of fitness traits and traits subject to sexual selection. Heritabilities were high, and there was some evidence for Y-linked inheritance in testis weight. In contrast, sperm length had a low CV(A), which is characteristic of traits subject to stabilizing selection. Nevertheless, there was little residual variance so that the heritability of sperm length exceeded 1.0. Such a pattern is consistent with Y-linked inheritance in sperm length. Interestingly, we found that testis weight and sperm length were genetically correlated with heritable male condition. This finding holds important implications for potential indirect benefits associated with the evolution of polyandry.  相似文献   

3.
Environmental influences on the gametic investment of yellow dung fly males   总被引:2,自引:2,他引:0  
The energetic investment per spermatozoon and in spermatogenesis is central to a male's reproductive strategy. Relatively little, however, is known about environmental influences on variation in male allocation decisions and associated trade-offs. Plasticity in sperm length and testis size in response to variable food and temperature conditions either before or after adult eclosion was investigated in Scathophaga stercoraria, a classic model organism for sperm competition. Both measures showed interesting and clear environmental effects and also a heritable component. Testis length, and thus presumably sperm production, showed a hypoallometric (b < 1), but non-linear increase with body size, indicating that the allometric relationship changed with size. Like body size, testis length decreased with increasing developmental temperatures, but also showed a complex cubic relationship with adult temperatures. In contrast, sperm length increased or showed a negative quadratic relationship with increasing temperatures. The increase of within-male variation in sperm length with increasing developmental temperature and decreasing adult food indicates that some of our treatments were stressful. Nevertheless, there was no evidence of a trade-off between testis size and sperm length. The missing effect of adult or larval food availability on testis and sperm length, despite strong effects of larval food on body size, suggests that investment into reproduction is less sensitive to food restriction than investment into growth.  相似文献   

4.
Sperm morphometry is extremely variable across species, but a general adaptive explanation for this diversity is lacking. As sperm must function within the female, variation in sperm form may be associated with variation in female reproductive tract morphology. We investigated this and other potential evolutionary associations between male and female reproductive characters across the Scathophagidae. Sperm length was positively associated with the length of the spermathecal (sperm store) ducts, indicating correlated evolution between the two. No association was found between sperm length and spermathecal size. However, the size of the spermathecae was positively associated with testis size indicating co-evolution between male investment in sperm production and female sperm storage capacity. Furthermore, species with a higher degree of polyandry (larger testes) had longer spermathecal ducts. However, no associations between sperm length or length variation and testis size were found which suggests greater sperm competition sensu stricto does not select for longer sperm.  相似文献   

5.
Interspecific variation in sperm size is enigmatic, but generally assumed to reflect species-specific trade-offs in selection pressures. Among passerine birds, sperm length varies sevenfold, and sperm competition risk seems to drive the evolution of longer sperm. However, little is known about factors favouring short sperm or constraining the evolution of longer sperm. Here, we report a comparative analysis of sperm head abnormalities among 11 species of passerine bird in Chernobyl, presumably resulting from chronic irradiation following the 1986 accident. Frequencies of sperm abnormalities varied between 15.7 and 77.3% among species, more than fourfold higher than in uncontaminated areas. Nonetheless, species ranked similarly in sperm abnormalities in unpolluted areas as in Chernobyl, pointing to intrinsic factors underlying variation in sperm damage among species. Scanning electron microscopy of abnormal spermatozoa revealed patterns of acrosome damage consistent with premature acrosome reaction. Sperm length, but not sperm competition risk explained variation in sperm damage among species. This suggests that longer spermatozoa are more susceptible to premature acrosome reaction. Therefore, we hypothesize a trade-off between sperm length and sperm integrity affecting sperm evolution in passerine birds.  相似文献   

6.
Recent attention has focused on the role that sperm competitionmay play in the evolution of sperm morphology. Theoretical analysespredict increased sperm size, decreased sperm size, and no changein sperm size in response to sperm competition, depending onthe assumptions made concerning the life history and functionof sperm. However, although there is good evidence that spermmorphology varies widely within and between species, the adaptivesignificance of this variation has not been examined. Here wedocument significant intraspecific variation in sperm lengthin the field cricket, Teleogryllus oceanicus. Sperm length didnot influence the rate of migration of sperm from the spermatophoreto the female's spermatheca. We performed sperm competitiontrials in which we varied the numbers of sperm transferred byeach of two males that differed in the length of sperm theyproduced. Neither sperm length nor the number of sperm transferredinfluenced paternity. The same results were obtained using twodifferent methods for assigning paternity. The distributionof paternity across a female's mates was highly variable, withfrequently one, or more in the case of females mated to fourmales, principal sire. There were no mating order effects onpaternity. These data show that sperm do not mix randomly inthe female's spermatheca. We discuss several alternative explanationsfor the patterns of paternity observed.  相似文献   

7.
Post‐copulatory sexual selection is thought to be responsible for much of the extraordinary diversity in sperm morphology across metazoans. However, the extent to which post‐copulatory selection targets sperm morphology versus sperm production is generally unknown. To address this issue, we simultaneously characterized the evolution of sperm morphology (length of the sperm head, midpiece and flagellum) and testis size (a proxy for sperm production) across 26 species of Anolis lizards, a group in which sperm competition is likely. We found that the length of the sperm midpiece has evolved 2–3 times faster than that of the sperm head or flagellum, suggesting that midpiece size may be the most important aspect of sperm morphology with respect to post‐copulatory sexual selection. However, testis size has evolved faster than any aspect of sperm morphology or body size, supporting the hypothesis that post‐copulatory sexual selection acts more strongly upon sperm production than upon sperm morphology. Likewise, evolutionary increases in testis size, which typically indicate increased sperm competition, are not associated with predictable changes in sperm morphology, suggesting that any effects of post‐copulatory selection on sperm morphology are either weak or variable in direction across anoles. Collectively, our results suggest that sperm production is the primary target of post‐copulatory sexual selection in this lineage.  相似文献   

8.
Spermatozoa are among the most diversified cells in the animal kingdom, but the underlying evolutionary forces affecting intraspecific variation in sperm morphology are poorly understood. It has been hypothesized that sperm competition is a potent selection pressure on sperm variation within species. Here, we examine intraspecific variation in total sperm length of 22 wild passerine bird species (21 genera, 11 families) in relation to the risk of sperm competition, as expressed by the frequency of extrapair paternity and relative testis size. We demonstrate, by using phylogenetic comparative methods, that between-male variation in sperm length within species is closely and negatively linked to the risk of sperm competition. This relationship was even stronger when only considering species in which data on sperm length and extrapair paternity originated from the same populations. Intramale variation in sperm length within species was also negatively, although nonsignificantly, related to sperm competition risk. Our findings suggest that postcopulatory sexual selection is a powerful evolutionary force reducing the intraspecific phenotypic variation in sperm-size traits, potentially driving the diversification of sperm morphology across populations and species.  相似文献   

9.
Sperm competition theory predicts increased spermatogenic investment with increased sperm competition risk when competition is numerical. There is ample correlational evidence for this relationship in a wide range of taxa. However, as with all correlations, this does not establish cause and effect. Nevertheless, there are no published experimental studies of the evolutionary influence of sperm competition on testis size. We report here on evolutionary responses of testis size to variation in sperm competition intensity in the yellow dung fly. Experimental flies were divided across two treatments, polyandrous or monogamous, with four replicates of each. There was a rapid evolutionary response in testis size resulting from selection via sperm competition, with larger testes found when sperm competition intensity was greatest. These results provide direct experimental evidence of evolutionary change consistent with macro‐evolutionary patterns found across a wide range of taxa.  相似文献   

10.
SPERM COMPETITION SELECTS BEYOND RELATIVE TESTES SIZE IN BIRDS   总被引:1,自引:0,他引:1  
Sperm morphology varies considerably across taxa, and postcopulatory sexual selection is thought to be one of the main forces responsible for this diversity. Several studies have investigated the effects of the variation in sperm design on sperm function, but the consequences of variation in sperm design on testis morphology have been overlooked. Testes size or architecture may determine the size of the sperm they produce, and selection for longer sperm may require concomitant adaptations in the testes. Relative testes size differs greatly between species and is often used as an index of sperm competition, but little is known about whether larger testes have more sperm-producing tissue or produce sperm at a faster rate. Using a comparative approach in New World Blackbirds (Icteridae), we found (1) a strong link between testis histology and sperm length, suggesting selection on testis architecture through selection on sperm size, and (2) that species under intense sperm competition had a greater proportion of sperm-producing tissue within their testes. These results support the prediction that sperm competition fosters adaptations in reproductive organs that extend beyond testes size, and raise questions about the trade-offs influencing reproductive investment.  相似文献   

11.
The number of mating partners an individual has within a population is a crucial parameter in sex allocation theory for simultaneous hermaphrodites because it is predicted to be one of the main parameters influencing sex allocation. However, little is known about the factors that determine the number of mates in simultaneous hermaphrodites. Furthermore, in order to understand the benefits obtained by resource allocation into the male function it is important to identify the factors that predict sperm‐transfer success, i.e. the number of sperm a donor manages to store in a mate. In this study we experimentally tested how social group size (i.e. the number of all potential mates within a population) and density affect the number of mates and sperm‐transfer success in the outcrossing hermaphroditic flatworm Macrostomum lignano. In addition, we assessed whether these parameters covary with morphological traits, such as body size, testis size and genital morphology. For this we used a method, which allows tracking sperm of a labelled donor in an unlabelled mate. We found considerable variation in the number of mates and sperm‐transfer success between individuals. The number of mates increased with social group size, and was higher in worms with larger testes, but there was no effect of density. Similarly, sperm‐transfer success was affected by social group size and testis size, but in addition this parameter was influenced by genital morphology. Our study demonstrates for the first time that the social context and the morphology of sperm donors are important predictors of the number of mates and sperm‐transfer success in a simultaneous hermaphrodite. Based on these findings, we hypothesize that sex allocation influences the mating behaviour and outcome of sperm competition.  相似文献   

12.
The male ejaculate is made up of two components: sperm and non-sperm. There has been little consideration of how these two basic compartments evolve. If they are subject to trade-offs, theory predicts that when the sperm competition raffle is unfair, when seminal fluid proteins stimulate fecundity and/or when ejaculate components alter fertilization success, there will be differential selection on sperm versus non-sperm ejaculate characteristics. However, the fundamental assumption that there are trade-offs between sperm and non-sperm ejaculate compartments in Drosophila has not yet been tested. To address this, we examined testis (sperm producing) and accessory gland (non-sperm producing) size across 22 species of Drosophila . We also examined how these characters varied with copulation duration, which may represent an additional target for sperm competition. The results showed no evidence of a trade-off between testis length and accessory gland length. Copulation duration correlated negatively with accessory gland length and there was a positive correlation with testis length, but only after correcting for body size. Overall, the results suggest no evidence for gross trade-offs in sperm versus non-sperm compartments across these Drosophila species, and motivate more detailed examination of ejaculate investment patterns.  © 2008 The Linnean Society of London, Biological Journal of the Linnean Society , 2008, 94 , 505–512.  相似文献   

13.
Spermatozoa exhibit taxonomically widespread patterns of divergent morphological evolution. However, the adaptive significance of variation in sperm morphology remains unclear. In this study we examine the role of natural variation in sperm length on fertilization success in the dung beetle Onthophagus taurus. We conducted sperm competition trials between males that differed in the length of their sperm and determined the paternity of resulting offspring using amplified fragment length polymorphism (AFLP) markers. We also quantified variation in the size and shape of the female's sperm storage organ to determine whether female morphology influenced the competitiveness of different sperm morphologies. We found that fertilization success was biased toward males with relatively shorter sperm, but that selection on sperm length was dependent on female tract morphology; selection was directional for reduced sperm length across most of the spermathecal size range, but stabilizing in females with the smallest spermathecae. Our data provide empirical support for the theory that sperm competition should favor the evolution of numerous tiny sperm. Moreover, because sperm length is both heritable and genetically correlated with condition, our results are consistent with a process by which females can accrue genetic benefits for their offspring from the incitement of sperm competition and/or cryptic female choice, as proposed by the "sexy sperm" and "good sperm" models for the evolution of polyandry.  相似文献   

14.
Sperm competition is an important component of post‐copulatory sexual selection that has shaped the evolution of sperm morphology. Previous studies have reported that sperm competition has a concurrently directional and stabilizing effect on sperm size. For example, bird species that show higher levels of extrapair paternity and larger testes (proxies for the intensity of sperm competition) have longer sperm and lower coefficients of variation in sperm length, both within and between males. For this reason, these sperm traits have been proposed as indexes to estimate the level of sperm competition in species for which other measures are not available. The relationship between sperm competition and sperm morphology has been explored mostly for bird species that breed in temperate zones, with the main focus on passerine birds. We measured sperm morphology in 62 parrot species that breed mainly in the tropics and related variation in sperm length to life‐history traits potentially indicative of the level of sperm competition. We showed that sperm length negatively correlated with the within‐male coefficient of variation in sperm length and positively with testes mass. We also showed that sperm is longer in sexually dichromatic and in gregarious species. Our results support the general validity of the hypothesis that sperm competition drives variation in sperm morphology. Our analyses suggest that post‐copulatory sexual selection is also important in tropical species, with more intense sperm competition among sexually dichromatic species and among species that breed at higher densities.  相似文献   

15.
Male traits that correlate with fertilization success include testis size and structure, ejaculate size, ejaculation frequency, and sperm motility. Two hypotheses potentially explain interspecific differences in these traits: sperm competition and sperm limitation. We examined variation in six traits associated with fertilization success in three closely‐related species of bitterling fish; the European bitterling (Rhodeus amarus), the Chinese rose bitterling (Rhodeus ocellatus), and the Chinese bitterling (Rhodeus sinensis). Interspecific differences indicated that the three study species have evolved different sperm allocation strategies. Rhodeus amarus displayed the most developed reproductive apparatus with a number of traits associated with both high levels of sperm production and fertilization efficiency. Rhodeus ocellatus and R. sinensis appear to have more comparable sperm allocation strategies, although relative testis size and spermatozoa head : tail ratio were greater in R. sinensis, suggesting that sperm competition risk may be higher in this species. All three species possessed an unusually well developed sperm duct with evidence of mucin production, which greatly extends the longevity of sperm and, consequently, the period over which fertilization can occur. We discuss these findings in the context of differences in the mating systems of the species examined, and relate the results obtained to differences in the temporal and spatial clustering of fertilizations. © 2011 The Linnean Society of London, Biological Journal of the Linnean Society, 2011, 103 , 622–632.  相似文献   

16.
Sperm size and number variation in the red flour beetle   总被引:5,自引:0,他引:5  
Disruptive selection between large, nutritive gametes and numerous, competing gametes may have driven the evolution and maintenance of anisogamy. Sperm competition can explain why there are so many tiny sperm because numerical competition between rival gametes drives males to maximize sperm number and this may be achieved by minimizing sperm size. Since males operate within a finite reproductive budget and ejaculate production is limited, we might predict that, when variation in sperm size exists, males must trade increases in sperm size against a decrease in sperm number. We use Tribolium castaneum as our model to investigate the existence of a sperm size-number trade-off. We sampled 14 different populations that have been isolated for different periods (up to 39 years) and find across this sample of 70 males that there is significant variation in both sperm length and ejaculate sperm number between males. Despite this significant variance, we find no evidence for any relationship between sperm size and number across males. There is some evidence for a trade-off when we analyse across 14 population means, but this relationship is not robust and disappears when a single outlier is omitted. We conclude that sperm size and ejaculate sperm number vary independently, but that differential allocation to gonadal tissue and/or ejaculation frequency would permit this independent variation.  相似文献   

17.
Intraspecific variation in the proportion of offspring sired by the second male to mate with a female (P2) is an aspect of sperm competition that has received little attention. We examined variation in the sperm competition success of individual male dung flies, Scatophaga stercoraria. In unmanipulated matings, copula duration was dependent on male size with smaller males copulating for longer. A principal component analysis was used to generate uncorrelated scores based on a male's size and copula duration. Using these scores demonstrated that P2 values were dependent both on the relative size and copula durations of competing males. When copula duration was held constant, the success of an individual male increased as his body size, relative to the first male, increased. We interrupted copulations of “large” and “small” second males and fitted the resultant P2 values to a linear model of sperm competition with unequal ejaculates. The data fit well to a model of sperm displacement in which sperm mix quickly on introduction to the sperm stores. Furthermore, they show that “large” males have a greater rate of sperm displacement than “small” males. The levels of prey availability during testis maturation may influence a male's success in sperm competition although his immediate mating history does not. We show why an understanding of variation in sperm competition success is important for understanding the mechanisms and evolutionary significance of sperm competition.  相似文献   

18.
Comparative studies documenting a relationship between male gonadal investment and the degree of sperm competition (SC) have usually considered the association between these traits to be driven by qualitative differences in the mating system, such as whether spawning occurs in pairs or groups. However, ecological and demographic differences between conspecific populations may also generate variation in the importance of SC that can drive the evolution of male gonadal investment. In this study, we examined whether variation in population density, which is predicted to influence the level of SC in many animals, is correlated with male gonadal investment among populations of the least killifish, Heterandria formosa, a species with internal fertilization in which multiple mating is common. We complemented this field study by testing whether males respond plastically to experimentally increased levels of SC by increasing investment in testis. This experiment involved two treatments. In the first, we eliminated the potential for sperm competition (NSC) by housing a single male with a single female. In the second, we created a high risk of SC by housing five males with two females. In the field survey, we found significant differences among populations in density and relative testis mass. However, there was no evidence for a correlation between population density and relative testis mass. In our lab experiment, males did not adjust their gonadal investment in response to experiencing different levels of SC for 4 weeks. Our combined results indicate that gonadal investment in male H. formosa is not related to variation in population density.  相似文献   

19.
It is often assumed that longer sperm, by virtue of their increased swimming speed, have a fertilization advantage over shorter sperm when in competition to fertilize eggs. However, there is surprisingly little evidence for a positive correlation between sperm length and speed. Here we use an approach that accounts for within‐male variation in sperm traits to examine the relationships between sperm length and sperm speed across a broad range of species, including three internally fertilizing species and three externally fertilizing species. Our results reveal that correlations between sperm size and speed are indeed present and possibly more common than currently thought. However, the direction of the correlations between sperm length and speed, which are more prevalent within a male's ejaculate than among males, were influenced by fertilization mode in contrasting and unexpected ways. Broadly, the patterns revealed that in externally fertilizing species sperm with longer flagellum and shorter heads relative to their flagellum swam faster, whereas in internally fertilizing species sperm with shorter flagellum and longer heads relative to their flagellum swam faster. We discuss these results in light of sperm competition theory and contrast the intraspecific patterns observed in this study with macroevolutionary patterns of sperm evolution reported elsewhere.  相似文献   

20.
Sperm competition theory predicts that sperm traits influencing male fertilizing ability will evolve adaptively. However, it has been suggested that some sperm traits may be at least partly encoded by mitochondrial genes. If true, this may constrain the adaptive evolution of such traits because mitochondrial DNA (mtDNA) is maternally inherited and there is thus no selection on mtDNA in males. Phenotypic variation in such traits may nevertheless be high because mutations in mtDNA that have deleterious effects on male traits, but neutral or beneficial effects in females, may be maintained by random processes or selection in females. We used backcrossing to create introgression lines of seed beetles (Callosobruchus maculatus), carrying orthogonal combinations of distinct lineages of cytoplasmic and nuclear genes, and then assayed sperm viability and sperm length in all lines. We found sizeable cytoplasmic effects on both sperm traits and our analyses also suggested that the cytoplasmic effects varied across nuclear genetic backgrounds. We discuss some potential implications of these findings for sperm competition theory.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号